
Chapter 3

Forms of the Problem

3.1 An operator form of the problem

Let U = (p, cφ, φ)t, M = diag(0, 1, 1), then the system of equations (2.2) -

(2.5) can be written as:

M
∂

∂t
U + L(U) = 0 (3.1)

where L is a nonlinear operator which is written as L = L1 + L2 + L3 with

L1 = (∇ · (φκ(φ)∇p)− f1)e1,

L2 = (∇ · [−cφκ(φ)∇p−D∇(cφ)]− f2)e2,

L3 = −f1e3.

Here e1 = (1, 0, 0)T , e2 = (0, 1, 0)T , e3 = (0, 0, 1)T and

f1(c, φ) = −k(φf − φ)2/3(c− ceq), f2(c, φ) = ρf1(c, φ). (3.2)
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We also have that L2 = L21 + L22 + L23 with

L21 = ∇ · [−cφκ(φ)∇p],

L22 = −f2,

L23 = −∇ · [D∇(cφ)].

Therefore, operator splitting method will be analyzed for the case of splitting into

three nonlinear operators.

3.2 A weak form of the problem

Consider a polygonal domain Ω ⊂ IRd, d = 2 or 3, with a boundary ∂Ω =

Γ1 ∪ Γ2 ∪ Γ3, where Γ1 is the inflow, Γ2 is the outflow, and Γ3 is the no-flow part of

the boundary. Let u = ūφ, and let

F = cu, q = −D∇(cφ), (3.3)

f1 and f2 as in (3.2) above. We rewrite equations (2.2)–(2.5) as:

∇ · u = −f1(c, φ), u = −φ κ(φ)∇p, (3.4)

∂(cφ)

∂t
+∇ · (F + q) = f2(c, φ), (3.5)

∂φ

∂t
= f1(c, φ), (3.6)

for x ∈ Ω, t ∈ J = (0, T ]. The system is completed with the boundary conditions

u · ν = g1 on Γ1, p = g2 on Γ2, u · ν = 0 on Γ3, (3.7)
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c = cB on Γ1, q · ν = 0 on Γ2 ∪ Γ3, (3.8)

and the initial condition

c(x, 0) = c0(x), x ∈ Ω. (3.9)

Let V = H(div; Ω) and define

Vg = {v : v ∈ H(div; Ω),v · ν = g on Γ1 and v · ν = 0 on Γ3},

V̄ = {v : v ∈ H(div; Ω),v · ν = 0 on Γ2 ∪ Γ3}, W = L2(Ω).

Let a(φ) = (φκ(φ))−1. Multiplying each equation by a test function from the proper

space and integrating, the weak solution of (3.3)–(3.9) is u(·, t) ∈ Vg1, p(·, t) ∈ W ,

q(·, t) ∈ V̄, c(·, t) ∈W , and φ(·, t) ∈W such that

(a(φ)u,v) = (p,∇ · v)− < g2,v · ν >Γ2
, v ∈ V0, (3.10)

(∇ · u, w) = (−f1, w), w ∈W, (3.11)

(D−1q,v) = (cφ,∇ · v)− < cB,v · ν >Γ1
, v ∈ V̄, (3.12)

(
∂(cφ)

∂t
, w) + (∇ · q, w) = −(∇ · F, w) + (f2, w), w ∈W, (3.13)

(
∂φ

∂t
, w) = (f1, w), w ∈W. (3.14)

where Green’s Formula (2.8) is used to obtain (3.10) and (3.12).
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3.3 Discretization in space

For h > 0, (3.11) - (3.14) are discretized in space on a finite element partition

of Ω, Th, with elements of diameter ≤ h. Let Vh ⊂ V and Wh ⊂ W be the lowest

order Raviart-Thomas spaces (RT0) defined as follows [34].

For an element T ∈ Th, define

Pk(T ) = {polynomials of degree ≤ k on T },

Pk1,k2
(T ) = {p(x1, x2) : p(x1, x2) =

∑

i≤k1,j≤k2

ai,jx
i
1x

j
2}.

Then we define

Qk(T ) =

{
Pk,k(T ) for d = 2,

Pk,k,k(T ) for d = 3.

For a rectangular element the Raviart-Thomas velocity spaces (RT) are defined as

RTk =

{
Pk+1,k × Pk,k+1 for d = 2,

Pk+1,k,k × Pk,k+1,k × Pk,k,k+1 for d = 3,

with

dim RTk =

{
2(k + 1)(k + 2) for d = 2,

3(k + 1)2(k + 2) for d = 3.

Therefore, for RT0 the degrees of freedom of a vector v ∈ Vh are the values of v · ν

at the centers of the element edges (faces),see Figure 3.1. For T ∈ Th we have

Vh(T ) = P1,0(T )× P0,1(T ).



16

Velocity Pressure

Figure 3.1: RT0

In the RT0 pressure space a function w ∈ Wh is constant on each element E ∈ Th,

therefore

Wh(T ) = Q0(T ).

These spaces possess the approximation properties [10, 21]:

infv∈Vh
‖q− v‖ ≤ K‖q‖1h,

(Ap) infv∈Vh
‖q− v‖

H(div)
≤ K(‖q‖1 + ‖∇ · q‖1)h,

infw∈Wh
‖ϕ− w‖ ≤ K‖ϕ‖1h.

Here and in the rest of the thesis K denotes a generic positive constant independent

of h. Let

V
g
h = {v ∈ Vh;< v · ν − g, µ >= 0 ∀µ ∈ Vh · ν|Γ1

, and v · ν = 0 on Γ3},

V̄h = {v ∈ Vh : v · ν = 0 on Γ2 ∪ Γ3},
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In the semidiscrete mixed finite element approximation to (3.10)–(3.14) we seek

U(·, t) ∈ V
g1

h , P (·, t) ∈ Wh, Q(·, t) ∈ V̄h, C(·, t) ∈ Wh, and Φ(·, t) ∈ Wh such

that

(a(Φ)U,v) = (P,∇ · v)− < g2,v · ν >Γ2
, v ∈ V0

h, (3.15)

(∇ ·U, w) = (−f1, w), w ∈Wh, (3.16)

(D−1Q,v) = (CΦ,∇ · v)− < cB,v · ν >Γ1
, v ∈ V̄h, (3.17)

(
∂(CΦ)

∂t
, w) + (∇ ·Q, w) = −(∇ · Fh, w) + (f2, w), w ∈Wh, (3.18)

(
∂Φ

∂t
, w) = (f1, w), w ∈Wh. (3.19)

Here Fh is a numerical approximation to the advective flux F = cu which can be

obtained by an appropriate advection method.

3.4 Discretization in time

Let {tn}
N
n=0 be a monotone partition of [0, T ] with t0 = 0 and tN = T , let

∆tn = tn − tn−1, and let fn = f(tn). Let ∆t = maxn ∆tn. Our time discretization

scheme is based on operator-splitting and Godunov method for the advection part

(φ̃c)t + ∇ · F = 0 of the transport equation. Let (CΦ)n−1 be given approximations

at time level tn−1. Godunov method is based on conservation of mass element-by-

element. Let T be a generic element in Th. Integrate over T × [tn−1, tn] to get

∫

T

(c̃φ)
n

=

∫

T

(CΦ)n−1 −

∫ tn

tn−1

∫

∂T

F · ν
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The Godunov method approximates F by a discontinuous, piecewise polynomial. The

normal advective flux F · ν is approximated by a constant on element edges. On the

boundary of each element the flux is approximated numerically by first calculating

left and right states wL and wR, and then using the Godunov flux to determine

the solution of a one-dimensional Riemann problem in the direction normal to the

boundary [23]. The Godunov flux Hω(wL, wR) for a given flux function ω(s) is given

by [17]

Hω(wL, wR) =

{
minwL≤s≤wR ω(s) if wL ≤ wR,

maxwR≤s≤wL ω(s) otherwise.

Now, let Gn−1 be the Godunov approximation to F and define (C̃Φ)n ∈Wh by

(C̃Φ)n|T = (CΦ)n−1|T −
∆t

m(T )

∫

∂T

Gn−1 · ν

where m(T ) is the measure of T . A CFL (Courant, Friedrichs, and Lewy) stability

constraint is assumed. Thus, if F = F(c, φ), then the time-step satisfies

sup |F|∆t ≤ h.

Next, we solve the reaction part (ĉφ)t = f3(c, φ) with initial condition (C̃Φ)n ∈ Wh.

Applying backward differencing in time to get

(ĈΦ)n − (C̃Φ)n

∆t
= f2(C

n,Φn) = f̃n
2

and then substituting the value for (C̃Φ)n we get

(ĈΦ)n|T = (CΦ)n−1|T + ∆tf̃n
2 |T −

∆t

m(T )

∫

∂T

Gn−1 · ν.
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Finally we solve the diffusion/dispersion part

(cφ)t +∇ · q = 0, q = −D∇c

with initial condition (ĈΦ)n. Applying backward differencing in time to get

(CΦ)n − (ĈΦ)n

∆t
+∇ · q = 0,

and then substituting the value for (ĈΦ)n we get:

(CΦ)n − (CΦ)n−1

∆t
− f̃n

2 +
1

m(T )

∫

∂T

Gn−1 · ν +∇ · q = 0.

The approximation (CΦ)n ∈ Wh and Qn ∈ V̄h to (cφ)n and qn, respectively, are

determined by

(D−1Qn,v)− ((CΦ)n,∇ · v) =< cB,v · ν >Γ1
, v ∈ V̄h (3.20)

(∂t((CΦ)n), w) + (∇ ·Qn, w) = −(∇ ·Gn−1, w) + (f̃n
2 , w), w ∈Wh (3.21)

where

∂t(CΦ)n =
(CΦ)n − (CΦ)n−1

∆tn
.

For the time discretization of (3.19) we employ Euler method

(
Φn+1 − Φn

∆tn
, w

)
= (f1(Φ

n, Cn), w), w ∈ Wh. (3.22)




