
Chapter 2

Reaction-Infiltration Instability

Problem

2.1 The mathematical model

The mathematical model was developed by Chadam, Hoff, Merino, Ortoleva

and Sen [12]. It is based on a simplified geological situation where an aquifer consists

of an insoluble porous matrix with a soluble mineral component partially filling the

pores. As flow passes through, the mineral dissolves out, leading to an increase of the

porosity and the permeability. Across the dissolution zone the soluble mineral content,

and hence the porosity, changes from its original downstream value to the altered value

upstream. If a protrusion in the porosity level curves occurs, dissolution is enhanced

at the tip of the protrusion and the flow focuses there, leading to a fingering effect.

On the other hand, diffusion from the sides of the tip slows the reaction rate there

and consequently decelerates the advancement of the dissolution front (see Figure
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Figure 2.1: Reaction-Infiltration Instability

2.1). As a result of the competition of these two mechanisms the reaction zone could

restabilize, go back to the original planar front, or develop fingering.

The Reaction-Infiltration Instability problem is modeled by a system of par-

tial differential equations. If we denote by φ the porosity then the flow equation,

representing conservation of water, is

∇ · (ūφ) = −
∂φ

∂t
,

where the flow velocity ū is given by Darcy’s law,

ū = −κ(φ)∇p.

Here ∇p is the pressure gradient and κ(φ) is a porosity-dependent permeability func-

tion. The exact relationship between permeability and porosity is complex and poorly

known. It depends on a complex interplay of many factors, such as pore size distribu-

tion, pore shapes, and connectivity [37]. It is predicted that κ(φ) is a power function
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of porosity. We use the linear function

κ(φ) = (
κ0

φ0

)φ (2.1)

where κ0 and φ0 are the initial permeability and porosity, respectively. Some of the

equations found in the literature are given below.

• P.C. Lichtner [7]

κ(φ) = κ0(
φ

φ0

)31.001− φ2
0

1.001− φ2

• Kozeny-Carman equation [19]

κ(φ) =
ωφ3

(1− φ)2

where ω is a rock-dependent constant which varies between 10−4 and 10−10cm2.

• Walder and Nur [30]

κ(φ) = κ0
φn − φn

c

φn
0 − φ

n
c

,

where φc is the critical porosity for through flow.

If we denote by c the concentration of the soluble component then the mass transport

equation takes the form

∂(cφ)

∂t
+∇ · [cφū−D∇cφ] = ρ

∂φ

∂t
,

where the right-hand side is the reaction term due to dissolution of the grains com-

prising the medium and ρ is the molar density of the mineral being dissolved. The
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first term in the bracket on the left side of the equation expresses the convection of

the solute, and the second term represents both mechanical and diffusive flux.

Let φf be the final porosity after complete dissolution and ceq be the equilibrium

concentration. The rate of increase in porosity is given by [12]

∂φ

∂t
= −k(φf − φ)

2

3 (c− ceq),

where k is the reaction rate constant. For moderately reactive chemicals k is be-

tween 0.0025 and 0.001 day−1 and for highly reactive chemicals k is greater than

0.0025 day−1 [31]. The 2/3 power in the above equation is typical of a simplified

surface dissolution [13]. Note that the above equation also represents the rate of dis-

solution of soluble minerals. The details of its derivation are given in [12]. There are

some other equations that represent the change in porosity [29, 32].

Summarizing the above, the governing equations that model the above phe-

nomenology in terms of the variables φ, c, and p -the porosity, solute concentration,

and pressure, respectively, may be written as:

∇ · (ūφ) = −
∂φ

∂t
, (2.2)

ū = −κ(φ)∇p, (2.3)

∂(cφ)

∂t
+∇ · [cφū−D∇cφ] = ρ

∂φ

∂t
, (2.4)

∂φ

∂t
= −k(φf − φ)

2

3 (c− ceq). (2.5)
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To incorporate both diffusive and convective mass transport processes the coefficient

of hydrodynamical dispersion D is defined by

Dij = D1(φ)δij + aT |ū|δij + (aL − aT )
ūiūj

|ū|
,

where aL and aT are called the longitudinal and transversal dispersivities, respectively,

D1 is the coefficient of purely molecular diffusion, and δij is the Kronecker delta

function.

To analyze the method two forms of the problem will be given in the next

chapter, an operator form and a weak form. In the analysis below we assume that

φ0 ≤ φ ≤ φf − δ (2.6)

for small fixed δ > 0. Under this assumption the right hand side of (2.5) is Lipschitz

continuous function of φ.

2.2 Some notation

For Ω, a bounded, open subset of IRd, with d = 2 or d = 3, having a

sufficiently smooth boundary Γ, we define the following Sobolev spaces which are

based on the space of square integrable functions on Ω:

L2(Ω) = {v :

∫

Ω

|v|2dx = ‖v‖2L2(Ω) < +∞}

For an integer m ≥ 0 we define

Hm(Ω) = {v : Dαv ∈ L2(Ω), |α| ≤ m}
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where

Dαv =
∂|α|v

∂xα1

1 ....∂x
αn
n

, |α| = α1 + ...+ αn,

with derivatives being taken in the sense of distributions. On this space we have the

semi-norm

|v|2m,Ω =
∑

|α|=m

|Dαv|2L2(Ω),

and the norm

‖v‖m,Ω =
∑

k≤m

|v|2k,Ω.

In particular, L2(Ω) is the space H0(Ω) and we shall usually write ‖v‖ to denote its

norm. We also define the special vector-function space

H(div; Ω) = {v : v ∈ (L2(Ω))d,∇ · v ∈ L2(Ω)},

with a norm

‖v‖
H(div)

= (‖v‖2 + ‖∇ · v‖2)
1

2 .

We shall omit the subscript Ω from the notation of the norms.

The standard inequality,

ab ≤
ε

2
a2 +

2

ε
b2, a, b, ε ∈ R, ε > 0 (2.7)

will be used repeatedly in the analysis.

We shall also make use of the following version of Green’s formula:

∫

Ω

(v∇ · u +∇v · u)dx =

∫

Γ

vu · νdn (2.8)
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for all v ∈ H1(Ω) and u ∈ H(div; Ω) and where ν is the unit outward normal along

Γ [25].




