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1. Introduction
The graphing of Cartesian curves is analysed in great detail in all the standard textbooks, whereas
polar curves are given a very careless treatment. Is there a calculus for polar and in general
parametric curves? Why do certain limacons have a dimple? How were such questions handled
before our dependence on technology? The answers to such questions are given here, through
intuitive and geometric arguments.
All the standard text books of calculus, for instance (1–3), treat the graphing of curves

in rectangular co-ordinates with great care. For example, for graphs of functions like y¼x3

or y¼ xþ x2, the critical points of the function, its points of inflection and its behaviour at
infinity are determined for a good sketch. However, when it comes to sketching polar curves in
more advanced courses, the attitude changes dramatically. Here is the advice which is given by
Anton et al. (1, p. 726):

‘The most elementary way to graph the polar equation r¼ f (y) is to plot points. The idea is to
choose some typical values of y, calculate the corresponding value of r and plot the point (r, y) in
polar coordinates.’

The books (2–4) give similar advice.
In lower level calculus courses, the student is supposed to work with epsilons and deltas and to

think analytically, whereas in higher level courses, when dealing with polar curves, he is asked to
do just the opposite. For instance, for certain families of polar curves like the limacons, the
student is asked to memorize their shapes, without any discussion or a hint as to how their shapes
could be worked out [see e.g. (2, p. 571)]. Since the hall-mark of the Calculus Reform Movement
is focus on understanding, there should be an alternative. Here we present one alternative.

2. Some principles for sketching polar curves
The graphing of polar equations can be based on three principles:

(1) If r¼ f(y) and f(y0)¼ 0, then the ray y¼ y0 is tangent at the origin to the graph of r¼ f(y) in
the (X,Y)-plane.

(2) The point (�r, y) is obtained from (r, y) by rotating it by 180�.

(3) If dy/dx 6¼ 0 at (a, b), then along the curve and near (a, b), x can be solved as a function of y.
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Regarding (1) and (3) the students are completely satisfied by pictorial arguments like the
following:

. For (1), take a curve passing through origin O, a point P on the curve and a ray OP. As the
point P moves on the curve towards O, the ray OP approaches the ray y¼ y0 which is tangent
to the curve at the origin.

. For (3), if the tangent line is not horizontal, then near the point, projecting on the y-axis gives x
as a function of y.

The third principle is needed if one wants to determine changes in shape of the curve (i.e. changes
in curvature).

3. Illustration of graphing using these principles
Example 1: Let us see how these ideas help in explaining why the curve r¼ siny� (1/2) has two
loops, one inside the other.
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Steps:

(1) Find theta where r¼ 0. This will determine intervals where r is positive and where it is
negative, and tangent rays at the origin. The values of y are y¼ p/6 and y¼ 5p/6. In the
interval p/6� y� 5p/6, r� 0.

(2) Draw the part of the curve where r� 0. The rays y¼ p/6, y¼ 5p/6 are tangent at the origin.
Since, now r is the distance of the moving point from the origin, it is easy to plot the points
r¼ f(y) by hand and we analyse its behaviour as for curves in rectangular coordinates.
For this, we find where r is increasing and where it is decreasing. The smallest value of r is 0
and the largest value is 1/2. So the graph of this part appears like this:

(3) Draw the part of the curve where r� 0. First draw the curve r¼�(siny� (1/2)) in the
interval 5p/6 to 2pþ p/6. The smallest value of r is 0 and largest value is 3/2. The rays
�¼ 5p/6, y¼ 2pþp/6� p/6 are tangent at O.
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Now rotate this through 180�. After rotation the smaller loop comes inside this bigger loop and
the bigger loop is tangent to the rays y¼ 7p/6, y¼ 11p/6. This gives the complete curve.

Example 2: Roses
The graphs for roses, etc., are simpler to draw, with the tangent rays at the origin separating

neatly where r¼ f(y) is positive and where it is negative. This also helps the student to see why for
example, for the curve r¼ sin(2y) there are four loops, whereas for r¼ sin(3y) the curve is traced
twice and there are only three loops.

4. Why do certain limacons have a dimple?
These are the curves r¼ aþ bsiny (and r¼ aþ bcosy), with ab 6¼ 0. The books (1–3) give the
following criterion: If 15ja=bj52 then the curve has a dimple.
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What is the explanation for this? This is due to changes in concavity as we move along the
curve, but this needs to be interpreted properly. Is the circle convex or concave or neither?
A satisfactory treatment of this simple question is given in the next section. However, an
explanation along the following lines is quite sufficient in the class room. At points where
dx/dy 6¼ 0, y can be solved as a function of x and therefore y itself is a function of x. So it makes
sense to compute d2y/dx2 and to determine the possible points of inflections.

A computation shows that where dx/dy 6¼ 0, d2y/dx2¼ 0 if and only if l2þ 3lsinyþ 2¼ 0.
This means that

siny ¼
� 2þ l2
� �

3l
: ð1Þ

Taking absolute values this gives,

jlj � 1ð Þ jlj � 2ð Þ � 0:

So,

1 � jlj � 2 ð2Þ

and the values of y are given by equation [1]. It remains to be checked whether these
possible points of inflection are indeed points of inflection. This follows from one of the exercises
given in the end. At points where dx/dy¼ 0, we have dy/dy 6¼ 0 and similar computations give
the same result.

5. Using curvature to determine dimple of limacon
Although this treatment is sufficient for the class room, it is still not quite satisfactory because
we have to deal separately with the cases dx/dy 6¼ 0 and dy/dy 6¼ 0. The reader who has done
these complete computations will see a repetition of arguments, which is not satisfactory.
A satisfactory treatment is given by considering the curvature of plane curves where the
X and Y co-ordinates are treated on an equal footing.

What is curvature? Intuitively, the curvature of a plane curve is the rate at which the curve is
turning or changing direction. Since the tangent vector gives the direction of the curve, it is clear
that the curvature of a plane curve can be described as the rate at which the tangent vector is
turning. In more detail:

. take a parameterized curve (with parameter t) in the plane and a fixed reference direction
(say X-axis) (Fig. 1a).

. take a point p on the curve and unit tangent vector at p. As t changes, the unit tangent
vector moves along the curve. We measure the angle of rotation y(t) from the initial position
(Fig. 1b). The rate of change of this angle of rotation with respect to arc length is the signed
curvature of the curve.
In the following figures, y(t) is the counter clockwise angle of rotation from the fixed reference
direction to the direction of the tangent vector along the curve.

A formula for the curvature is easily obtained. If �(t)¼ (x(t), y(t)) is a parameterized curve,
then the unit tangent vector along the curve is given by �

:ðtÞ=j�:ðtÞj. If the components of this unit
vector are (f(t), g(t)) then the curvature is given by (fg0 � gf 0)/|�0(t)|. So, the sign of curvature
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is given by the sign of (fg0 � gf 0). Computations simplify considerably by using the following

observation: the sign of ðh=kÞðl=kÞ0 � ðl=kÞðh=kÞ0 is the same as the sign of hl0�lh0, for any

functions h, k and l for which these expressions are defined. The following examples show that

positive and negative curvature have no geometric meaning; it is only the change in sign of

curvature which has a geometric meaning.

Example: Consider the circle f(t)¼ (Rcos(t), Rsin(t)). As the reference direction we take the

unit tangent vector [1, 0]. The unit tangent vector for the parameter value t is (�sin(t), cos(t))

which is equal to (cos(tþ p/2), sin(tþp/2)). So here y(t)¼ tþp/2. As ds/dt¼R, where s is the

arc length function along the curve, we see that dy/ds¼ 1/R.

Similarly, if we move along the circle in clockwise direction, the curvature will be �1/R.

So there is no change in sign of curvature as we move along the circle in a fixed orientation.

Fig 1. Signed curvature.
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Example: The following figures show the relationship between points of inflection and change of

curvature.

. y¼ x2 with parameterization �(t)¼ (t, t2). As we move along the curve, y(t) increases, hence
curvature is positive and there are no points of inflection.

. y¼ x2 with parameterization �(t)¼ (�t, t2). As we move along the curve, y(t) decreases, hence
curvature is negative and there are no points of inflection.

. y¼ x3 with parameterization �(t)¼ (t, t3). As we move along the curve from the 3rd quadrant
to the 1st quadrant, y(t) decreases up to the origin and increases thereafter. The curvature
changes from negative to positive at origin, which is the point of inflection.
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. y¼ x3 with parameterization �(t)¼ (�t, t3). As we move along the curve from the 1st quadrant
to the 3rd quadrant, y(t) decreases up to the origin and increases thereafter. The curvature
changes from negative to positive at origin, which is the point of inflection.

6. Limacons from the point of view of curvature
Consider the curve r(t)¼ aþ bsin (t) in the XY plane. Since scaling does not change the shape
of the curve we may assume that r(t)¼lþ sin (t). The curve is singular if for some value of t,
dx/dt¼ 0 and dy/dt¼ 0. So this curve is non-singular if |l| 6¼ 1. A computation shows that the
sign of curvature is given by the sign of l2þ 3lsintþ 2. The equation l2þ 3lsintþ 2¼ 0 gives the
inequality 1� |l|� 2 as in equation [2]. This gives two values for t and there is an actual change of
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curvature as we pass through these values of t (see suggested exercises). It is this change in
curvature at two values of t which accounts for the dimple in the corresponding limacons.

7. Exercises and concluding remarks
When we draw polar curves, we are actually looking at the image of the curve r¼ f(y) in the (r, y)
plane under the map (r, y)!(rcosy, rsiny). Even if the original curve has well-defined tangent
lines, the image curve may acquire several tangents at the same point and still be non singular in
the sense that (x0(y), y0(y)) 6¼ 0 for any y. If (x0(y), y0(y))¼ 0 for some y, we call the curve singular.

Exercise
Verify that if l2þ 3lsintþ 2¼ 0 for some t and 15 |l|52, then the curvature changes as we

pass through t (use Taylor series of appropriate order for h(tþ "). If |l|¼1, then the curve has

a singular point. If |l|¼2, then the curve is non-singular and there is no change in curvature.
In elementary calculus, we deal with tangent lines, arc length and concavity of curves.

The analogue for this for parametric curves have obvious meaning with the exception that

concavity and convexity have no geometric meaning—only change in sign of curvature has

a geometric meaning. The calculus of parameterized curves is the differential geometry of curves,

see e.g. (5).
Finally, we should add that this note is not meant to be a criticism of technology. In fact,

all the graphics were done with Matlab. The message which we want to convey is that technology

and conceptual understanding enrich and enhance each other and with the wide availability of

advanced software and the consequent freedom from drudgery, our undergraduates are bound

to ask increasingly more conceptual questions.
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