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INTRODUCTION

The principal aim of this paper is to prove the following results. Section 1 explains
the terminology involved; applications are given in Section 4.

Theorem 1. Let G ⊂ GL(n,R) be a real reductive group with Cartan decomposition

g = k⊕ p, g being the Lie algebra of G.

Let GC be the subgroup of GL(n,C) with Lie algebra g ⊕ ig and K̃ the subgroup of GC

whose Lie algebra is k⊕ ip.
Let ΩC be a complex homogeneous space for GC and ϕ a K̃-invariant strictly plurisub-

harmonic function on ΩC.
If Ω is a G-orbit in ΩC and f = ϕ|Ω has a critical point, then f is proper, Ω is closed

in ΩC and the critical set of f is a single K-orbit, K being the subgroup of G whose Lie
algebra is k. Moreover, the function f achieves its minimum value on its critical set.

Theorem 2. Using the notations of Theorem 1, if

(i) G operates on a real vector space V and GC on V C = V
⊗

R
C by complexification

and N is the norm square function on V C obtained from a K̃-invariant hermitian inner
product on V C which is real-valued on V , then for all v ∈ V one has

N(gv) = N(gv), ∀ g ∈ GC,

where g denotes the complex conjugate of g.
(ii) If ϕ is a differentiable function on GC such that ϕ(g) = ϕ(g), then ϕ|G has the

identity e as a critical point ⇔ ϕ has e as a critical point.
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(iii) If v ∈ V and Ω = G · v, ΩC = GC · v, then v is a critical point of N |Ω ⇔ v is a
critical point of N |ΩC (N as in (i)).

The following theorem reduces the study of orbits of real reductive groups to that of
their complexifications (see (4.2) infra).

Theorem 3. Let G be a Lie group, σ an automorphism of finite order of G and H
a σ-invariant closed subgroup of G. Let (G/H)σ denote the set of fixed points of σ in
G/H. If ξ ∈ (G/H)σ then the G◦

σ-orbit of ξ is the connected component of (G/H)σ which
contains ξ. Hence, the components are single G◦

σ-orbits.

As in [1] and [2], the proofs use elementary convexity properties of plurisubharmonic
functions and a basic result of Mostow [14, Thm. 3], which itself is essentially a convexity
result: it is a consequence of the convexity of norm of Jacobi fields on manifolds of
nonpositive curvature (see Appendix).

The definition of reductive groups given in this paper is different from that in e.g.
[11, p. 384]. However, it is sufficient for the problems considered here and leads to
substantial simplifications in proofs. Our results are independent of Refs [3, 4]. Related
results are given in D. Luna [13] and in Richardson-Slodowy [17] to which this paper owes
much. Plurisubharmonic functions continue to play a role in group theory and important
applications have been made by A.T. Huckleberry and his school [see e.g. 9] and by K.H.
Neeb [16]. The group-theoretic aspects of plurisubharmonic functions have also been
applied by Uwe Helmke [7, 8] to problems of system and control engineering and there is
interest in the analogue of results of [1, 2] for real reductive groups.

1. REDUCTIVE GROUPS

Standard references for reductive groups are Borel - Harish-Chandra [4] and Springer
[19]. In this paper, we will take the following as a working definition. All groups and
subgroups will henceforth be Lie. G◦ will denote the connected component of G, G′ its
commutator and Z(G) its center.

Definition. A connected subgroup G of GL(n,R) is reductive if its Lie algebra g
has a decomposition

g = k⊕ p

where
(i) [k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k

and
(ii) the Lie group K̃ of GL(n,C) whose Lie algebra is k̃ = k⊕ ip is compact.

Proposition 1.1 (i) The group G is a closed subgroup of GL(n,R) and G = KP,
where K = 〈exp(X) : X ∈ k〉 and P = exp(p). Moreover G is homeomorphic to K × P
and K is maximal compact in G.
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(ii) There is a K̃-invariant hermitian inner product on Cn which is real-valued on Rn

and consequently an orthonormal basis for Rn remains an orthonormal basis for Cn.

Proof. (i) Since g⊕ ig = k̃⊕ ik̃ and the group K̃ is compact, it follows that GC is the
Zariski closure of K̃ [20, § 8], so GC is closed in GL(n,C). Therefore the group G is also
closed, as it is the connected component of GC

σ , σ being complex conjugation in GL(n,C).
Similarly, K = 〈exp(X) : X ∈ k〉 = K̃σ is also closed. Moreover, as K̃C = GC = K̃ exp(ik̃)
and K̃ exp(ik̃) is homeomorphic to K̃ × exp(ik̃) [20, § 8], we also have G = KP , where
P = exp(p).

By choosing a hermitian K̃-invariant inner product on Cn, it is clear that exp(ik) is
represented by positive hermitian matrices and therefore K̃ is maximal compact in GC

and K is maximal compact in G.

(ii) [Cf. 17] Let V = Rn, V C = Rn
⊗

R
C. Let σ denote complex conjugation in V C

as well as in GL(V C) and J the real endomorphism of V C induced by multiplication by
i. The endomorphism J centralizes GC, hence also K̃. From σgσ−1 = gσ we see that
σ normalizes K̃. Therefore K̃ is normalized by the group generated by J and σ. From
σJσ−1 = J−1 we see that the latter group is finite. Hence the group generated by K̃, J
and σ is compact. Select an inner product R on V C, considered as a real space, that
is invariant under this group. If W is a subspace of V C that is J and σ-invariant, then
its orthogonal complement W⊥ is also J and σ-invariant. Therefore we can find a basis
e1, . . . , en of V such that

V C = 〈e1, Je1〉⊥ · · · ⊥〈en, Jen〉.

Hence e1, . . . , en is an orthonormal basis of V C for the hermitian form H(ξ, η) = R(ξ, η)+
iR(Jξ, η) and H is real-valued on V .

Remark. Since K̃ = Z(K̃) K̃ ′ with Z(K̃) ∩ K̃ ′ finite, we have K̃ =
(
Z(K̃)

)◦
K̃ ′.

Therefore GC = Z(GC)◦(GC)′ and G = (Z(G))◦ G′; also Z(G) consists of semisimple
elements. In particular, if Z(G) is finite, then in any linear representation ρ of G in
GL(V ), the image ρ(G) is also reductive. On the other hand, if Z(G) is infinite, its
image in a representation may no longer be reductive. We shall therefore consider only
those representations in which the connected component of the center is represented as a
reductive group.

2. PRELIMINARY LEMMAS

A plurisubharmonic (briefly psh) function on an n-dimensional complex manifold M is
a function f whose complex hessian matrix [(∂2f/∂zi∂zj)], in a system of local holomor-
phic coordinates z1, . . . , zn is positive semi-definite. And f is strictly plurisubharmonic
(briefly spsh), if its complex hessian is strictly positive definite. In other words, f is spsh if
the hermitian form (Lf)p defined by (Lf)p(u, v) = (∂∂f)(p)(u, v), p ∈ M , u, v ∈ T 1,0

p (M),
is positive definite.
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The following lemma is basic. A version of it already occurs in [1, 12]. We make no
assumptions about reductivity or compactness of the groups involved.

Lemma 2.1. Let G̃ be a complex Lie group, K̃ a subgroup of G̃ and P̃ = {exp(X) :
X ∈ i Lie(K̃)} with G̃ = K̃P̃ . Let G be a subgroup of G̃ with G = KP , where K is a
subgroup of K̃ and P = {exp(Y ) : Y ∈ m}, with m a subspace of i Lie (K̃).

Let ϕ be a K̃-invariant strictly plurisubharmonic function on a complex homogeneous
space ΩC of G̃ and Ω a G-orbit in ΩC. If f = ϕ|Ω has a critical point, then the critical
set of f is a single K-orbit and f achieves its absolute minimum there. Moreover, if ξ is
a critical point of f then the stabilizer Gξ of ξ in G factorizes as Gξ = KξPξ, where Kξ

is the stabilizer of ξ in K and

Pξ = {(exp Y ) : Y ∈ p, (exp Y )ξ = ξ}
= {exp Y ) : Y ∈ p, (exp tY )ξ = ξ ∀ t ∈ R}.

Proof. Let ξ be a critical point of f and η another critical point of f . By K̃-invariance,
we may assume that η = exp(X)ξ for some X ∈ m ⊂ i Lie (K̃).

Consider the function g(z) = ϕ(exp(zX) · ξ), z ∈ C. As ϕ is K̃-invariant, we have
g(x + iy) = g(x). Since g is subharmonic, ∆g ≥ 0 implies g′′(x) ≥ 0. So g is convex and
it achieves its absolute minimum at any critical point. Since x = 0 and x = 1 are critical
points of g(x), we see that g(x) is constant for 0 ≤ x ≤ 1. Now g(z) = g(Re(z)), so the
function g is constant on the strip 0 ≤ Re z ≤ 1. Therefore ϕ(γ(z)) = g(z) = constant
on 0 ≤ Re z ≤ 1, where γ(z) = exp(zX) · ξ. Hence

(∂∂ϕ)(γ(z))(γ′(z), γ′(z)) = 0, 0 ≤ Re z ≤ 1

and since i∂∂ϕ is positive definite, we must have γ′(z) ≡ 0. Hence γ(z) is constant, so
γ(0) = ξ = γ(1) = η.

By the same argument, if g = k exp(Y ) ∈ G with Y ∈ m ⊂ i Lie (K̃) and gξ = ξ, then
exp(tY ) · ξ = ξ, 0 ≤ t ≤ 1, so k · ξ = ξ. But if exp(tY ) · ξ = ξ, then exp(−tY ) · ξ = ξ, so
the entire 1-parameter subgroup {exp(tY )}t∈R stabilizes ξ. Hence Gξ has the factorization
claimed above.

Lemma 2.2. If f : Rn → R is a differentiable function whose restriction to each line
through the origin is convex and has the origin as its only critical point, then lim

‖x‖→∞
f(x) =

+∞.

For a proof, see [2].

3. PROOFS OF MAIN RESULTS

We shall use the notation set up in Section 1 without further comment.

Proof of Theorem 1. Let ΩC be a complex homogeneous space for GC, ϕ a K̃-invariant
spsh function on ΩC whose restriction f to a G-orbit Ω has a critical point ξ. By Lemma
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2.1, the stabilizer Gξ of ξ factorizes as Gξ = KξPξ, where Kξ = Gξ ∩K and

Pξ = {exp(Y ) : Y ∈ p, exp(Y ) · ξ = ξ}
= {exp(Y ) : Y ∈ p, (exp tY ) · ξ = ξ ∀ t ∈ R}.

So Pξ = exp(q) where q = {Y : Y ∈ p, (exp tY ) · ξ = ξ ∀ t ∈ R}. From the charac-
terization of q given it follows that q = p ∩ gξ, where gξ denotes the Lie algebra of Gξ.
Therefore q is a Gξ ∩ K = L invariant subspace of p and [q, q] ⊂ gξ ∩ k = kξ, hence
[Z, [X, Y ]] ⊂ q for all X,Y, Z ∈ q. Let H = Gξ, L = Kξ, so H = L exp(q), and q is an
L-invariant subspace of p such that [X, [X,Y ]] ∈ q ∀ X,Y ∈ q.

Using the notations of Section 1, the Lie algebra g has the Cartan decomposition
g = k ⊕ p and G = K exp(p). By part (ii) of Proposition 1.1, there is a hermitian inner
product on Cn which is invariant under the compact group K̃ and an orthonormal basis of
Rn remains an orthonormal basis of Cn over C. Taking matrices relative to this basis, we
see that k is represented by real skew-symmetric matrices and p by symmetric matrices.
So the form B(X,Y ) = Tr(XY ) is nondegenerate on g. It is negative definite on k and
positive definite on p. Let q′ be the orthogonal complement of q in p relative to B. Then
the argument in Mostow [14, Thm 3, p. 40] is directly applicable to this situation and
one has the generalized polar decomposition

G = K exp(q′) exp(q)

with uniqueness of expressions. Since H = L exp(q), this gives immediately G/H ∼= K ×
L

exp(q′).
The rest of the argument is similar to that in [2]; we reproduce it here for completeness.
Fix v ∈ q′, v 6= 0. Consider the function

gv(t) = ϕ(exp tv · ξ), (t ∈ R).

As in Lemma 2.1, the function gv is convex and it has t = 0 as a critical point. If gv

had another critical point t0 6= 0, then by the argument in Lemma 2.1, exp(tv) · ξ would
equal ξ for all t ∈ R, contradicting the fact that k ×

L
v 7→ k exp(v)ξ (k ∈ K, v ∈ q′) is

a bijection. Consider the function F (v) = ϕ(exp v · ξ), (v ∈ q′). By what has just been
shown, the function F satisfies all the hypotheses of Lemma 2.2 and so lim

‖v‖→∞
F (v) = +∞.

To show that f = ϕ|(G·ξ) is proper, we have to show that the sublevel sets f ≤ c (c ∈ R)
are compact.

Let {kn exp(vn) · ξ} be a sequence in G · ξ with kn ∈ K and vn ∈ q′. Since f is K-
invariant, we have F (vn) = f(exp vn · ξ) = ϕ(exp vn · ξ) ≤ c. Since lim

‖v‖→∞
F (v) = +∞, we

see that the sequence {vn} must be bounded. Extracting convergent subsequences of {kn}
and {vn} we see that the sequence {kn exp(vn) · ξ} contains a convergent subsequence.
Hence the sublevel sets f ≤ c are compact and f is proper. The remaining assertions
follow at once from Lemma 2.1.

Proof of Theorem 2. (i) The group G operates on V . Let π : G → GL(V ) be the
corresponding representation. Let X1, . . . , Xr be a basis of the Lie algebra of G. The
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complexification π(G)C of π(G) in GL(V C) is generated by the complex 1-parameter
subgroups exp (zπ(Xk)) , z ∈ C, 1 ≤ k ≤ r, and clearly

[exp (zπ(Xk))]
− = exp (zπ(Xk)) .

Hence complex conjugation leaves (π(G))C stable, and one has [π(g) · v]− = π(g) v =
π(g)v, for g ∈ G, v ∈ V C. Since the given hermitian inner product on V C is real-valued
on V , we have N(v) = N(v) for all v ∈ V C. From this it follows that N(gv) = N(gv) =
N(gv) for g ∈ GC and v ∈ V . This proves part (i).

(ii) The map (X,Y ) 7→ exp(X + iY ) X, Y ∈ g gives local coordinates at the identity
e. Now if ψ(X, Y ) = ϕ(exp(X + iY )), then ψ(X,Y ) = ψ(X,−Y ), which clearly implies
(ii).

(iii) This is a direct consequence of parts (i) and (ii).

Proof of Theorem 3. For the proof, it is useful to define tangent spaces of arbitrary
subsets of a manifold. For a subset Z of a manifold M and a point p ∈ Z, the tangent
space Tp(Z) to Z at p is the subspace of Tp(M) spanned by the vectors γ′(0) where
γ : I → M , I an interval containing 0, is a differentiable curve with γ(0) = p and whose
trace lies in Z

Let K be a compact group of transformations of M whose fixed point set MK is non-
empty. Fix a K-invariant Riemannian metric on M . For p ∈ MK choose a geodesic ball
Bp centered at p with the property that any two points in Bp can be joined by a unique
geodesic in Bp: in other words, Bp is a geodesic strongly convex ball [6, p. 34]. Hence if r, s
are points in Bp∩MK , then the geodesic segment joining r with s lies entirely in Bp∩MK .
Therefore exp−1

p (Bp ∩ MK) is homeomorphic to an open ball in (Tp(M))K . The same
argument shows that dim Tp(MK) = dim (Tp(M))K . Similarly if q ∈ MK and Bp∩Bq 6= φ
then for all r ∈ Bp∩Bq ∩MK we have dim Tr(MK) = dim Tp(MK) = dim Tq(MK). Thus
the set {r ∈ MK : r can be joined to p by a continuous curve {γ(t)}t∈I ⊂ MK with
dim Tγ(t) (MK) = dim Tp(MK) for all t ∈ I} is both open and closed, hence it is the
component of MK which contains p, and this component is invariant under any connected
group operating on MK .

Now take M = G/H, with σ(H) = H and K the group generated by σ. We have
MK = Mσ, where σ(gH) = σ(g)σ(H) = σ(g)H, ∀ g ∈ G. Thus σ(g ·m) = σ(g) · σ(m),
so if σ(m) = m and g ·m = m, then σ(g) ·m = m. Therefore the stabilizer Gm of m is
σ-invariant if σ(m) = m. For such an m, consider the isomorphism i : G/Gm→̃G ·m. We
have i ◦ σ = σ ◦ i. Let ξ0 = eGm. The component of (G/Gm)σ containing ξ0 is mapped
to the component of (G ·m)σ = Mσ containing m. We have already seen that if C is a
component of Mσ and z ∈ C, then the dimension of Tz(C) is the same as the dimension
of (Tz(M))σ and it is constant as z varies over C. Now dim Tm(Mσ) = dim Tξ0(G/Gm)σ

which in turn equals the dimension of (g/gm)σ
∼= gσ

(gm)σ

, as σ is of finite order: here gm is

the Lie algebra of the stabilizer Gm of m in G. Hence the G◦
σ orbit of ξ0 in (G/Gm)σ is open

in the component containing ξ0. Recalling that the component of (G/Gm)σ containing
ξ0 is mapped to the component of (G ·m)σ = Mσ containing m by the homeomorphism
i : G/Gm

∼= G ·m, we see that the G◦
σ-orbit of m is open in the component C containing
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m. Therefore all the orbits of G◦
σ in C are open, hence they are also closed. So C consists

of just one G◦
σ orbit. This completes the proof of the theorem.

4. APPLICATIONS

In this section, G,GC, N etc. have the same meaning as in the statement of Theorem
1.

4.1. (Birkes [3]) If G operates on a real vector space V and GC on V C and a G-orbit
of p ∈ V is closed, then the GC-orbit of p in V C is also closed.

Proof. Let Ω be a closed G-orbit in V . Since the function N is proper, N |Ω achieves
its minimum, say at q. By Theorem 1, the function ϕ(g) = N(gq) (q ∈ GC) has a critical
point at e, so by the Kempf-Ness theorem [10] or by [2], the orbit ΩC = GC · q = GC · p
is closed.

4.2. (Borel - Harish-Chandra [4]). If v ∈ V and ΩC = GC · v, then ΩC ∩ V is a union
of equidimensional orbits of G, each of which is a component of ΩC ∩ V .

In particular, if ΩC is closed, then all G-orbits in ΩC ∩ V are closed.

Proof. For this result, G need not be reductive. It suffices, by Theorem 3, to show
that all G-orbits in ΩC ∩ V have the same dimension. Now if v ∈ V and X,Y ∈ Lie(G)
with (X + iY )v = 0, then Xv = 0, Y v = 0, so all G-orbits in GCv ∩ V have the same
dimension.

Remark. In [4] it is shown, using an argument from real algebraic geometry, that
GCv ∩ V (v ∈ V ) is a finite union of G-orbits.

4.3. (Richardson–Slodowy [17]). If N restricted to a G-orbit Ω has a critical point,
then Ω is closed.

Proof. This follows immediately from Theorem 2 and (4.2).

4.4. If ϕ is a K̃-invariant spsh function on ΩC = GC · v (v ∈ V ) and ϕ|(G · v) has a
critical point, then Gv is reductive and G · v is closed in GC · v.

Proof. This is a consequence of Theorem 1 and Lemma 2.1.

4.5. If ϕ is a K̃-invariant spsh function defined in a neighbourhood of a G-orbit of
v ∈ V and ϕ|G · v has a critical point, then the G and the GC orbits of v are closed.

Proof. If ϕ|G · v has a critical point then f = ϕ|Ω is proper (Thm. 1) and since ϕ is
defined in a neighbourhood of G · v, the orbit G · v is closed in V ; therefore by Theorem
1, GC · v is also closed in V C.

Remark. If we take a compact group K and V a representation of K, then all KC-
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orbits of real points are closed in V C. The simplest example of a K-invariant spsh function
which is critical along K-orbits but not along KC-orbits is given by f(z) = (log |z|)+ |z|2
with K = S1, KC = C∗.

4.6. If ϕ is a K̃-invariant spsh proper function on V C such that ϕ|GCv has a critical
point (v ∈ V ), then ϕ|Gv also has a critical point.

Proof. The assumptions imply that GC · v is closed in V C; hence by (4.2), G · v is
closed in V so ϕ|G · v achieves its minimum value on G · v.

4.7. If v ∈ V , then G · v contains a closed G-orbit.

Proof. The function N is proper, so N |G · v achieves its minimum value, say at p.
Hence the G-orbit of p is closed.

APPENDIX

The proof of Theorem 1 relies on Mostow [14, 15]. A summary of the main ideas
is given in A. Borel, Collected Works, Vol. 1, pp. 558–559. Mostow’s theorem is also
proved in Helgason [6, Thm. 1.4, p. 256]. The result is proved in these references for
semisimple groups. However, the arguments are valid for reductive groups if one works
with a suitable trace form instead of the Killing form, as is done in § 3 of this paper.
One of the main technical points of Mostow [14, 15] is the distance increasing property
of the exponential function on the space of symmetric matrices. As the space of positive
symmetric n×n matrices is a homogeneous space of GL(n,R) of non-positive curvature,
this is a special case of the following result. This result is also proved in Helgason [6,
Thm. 13.1, p. 73]. However, the following proof is more elementary, with its emphasis
on convexity of the norm of Jacobi fields. The proof uses an idea similar to an idea in
the proof of the Cartan-Hadamard theorem as given in [5, Lemma 3.2, p. 149].

Theorem. If M is a complete Riemannian manifold of non-positive curvature then
for all p ∈ M, v ∈ Tp(M) and w ∈ Tv(Tp(M)), one has the inequality

‖(d expp(v))(w)‖ ≥ ‖w‖.

Proof. We have (d expp(v))(w) =
d

ds

∣∣∣∣
s=0

expp(v + sw), so if we consider the variation

α(t, s) = expp(t(v + sw)) of the geodesic γ(t) = expp(tv), then the corresponding Jacobi

field J(t) =
∂α

∂s
(t, 0) vanishes at 0 and J(1) = (d expp(v))(w). Let ψ(t) = ‖J(t)‖. We

shall prove that ψ is differentiable for t 6= 0 and ψ is convex.

Now
∂α

∂s
= (d expp(t(v+sw)))(tw), so

∂α

∂s

∣∣∣∣
s=0

= (d expp(tv))[tw], and therefore J(t) =

tV (t), where V (t) = (d expp(tv))(w). We have J(0) = 0, J ′(0) = w and the field J
satisfies the equation

J ′′(t) = R(J(t), γ′(t))γ′(t),
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R being the curvature tensor, and therefore 〈J ′′(t), J(t)〉 ≥ 0 as 〈R(X, Y )X,Y 〉 ≤ 0 for
all fields X, Y .

Let ϕ(t) = ‖J(t)‖2. Using 〈J ′′(t), J(t)〉 ≥ 0, we find that ϕ′′(t) ≥ 0. Therefore ϕ′

is increasing and if ϕ′(t0) = 0 for some t0 > 0, then ϕ′ would be identically 0 on [0, t0],
taking into account that ϕ′(0) = 〈J ′(0), J(0)〉 = 0 as J(0) = 0. But then ϕ would also
equal 0 on [0, t0], so w = J ′(0) would also equal 0. Assuming w 6= 0, we see that J(t) = 0
only at t = 0. Therefore ψ(t) = ‖J(t)‖ is differentiable at t 6= 0.

Differentiating ψ2 = ‖J‖2, using J(t) = tV (t), we find that lim
t→0

ψ′(t) = ‖V (0)‖ = ‖w‖.
Differentiating ψψ′ = 〈J, J ′〉 and simplifying we get ψ3ψ′′ = ‖J‖2[〈J, J ′′〉]+‖J‖2 ‖J ′‖2−

〈J, J ′〉2 ≥ 0, taking into account 〈J, J ′′〉 ≥ 0 and the Cauchy-Schwarz inequality. There-
fore ψ = ‖J‖ is convex and Taylor series gives ψ(t) ≥ ψ(a) + (t− a)ψ′(a) for 0 < a < t.

Taking limits as a → 0+ we get ψ(t) ≥ ψ(0) + t‖w‖ = t‖w‖, so in particular ψ(1) =
‖J(1)‖ = ‖d(expp(v))(w)‖ ≥ ‖w‖ 2.

Acknowledgment. The authors thank the referee heartily for his careful reading
of the manuscript and for several suggestions which have been incorporated in the paper.
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