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Abstract

Complete symmetry analysis is presented for non-linear Klein Gordon equations
utt = uxx + f(u). A group classification is carried out by finding f(u) that
give larger symmetry algebra. One-dimensional optimal system is determined
for symmetry algebras obtained through group classification. The subalgebras in
one-dimensional optimal system and their conjugacy classes in the corresponding
normalizers are employed to obtain, up to conjugacy, all reductions of equation
by 2-dimensional subalgebras. This is a new idea which improves the computa-
tional complexity involved in finding all possible reductions of a PDE of the form
F (x, t, u, ux, ut, uxx, utt, uxt) = 0 to a first order ODE. Some exact solutions are
also found.

Key words: Nonlinear wave equation, Lie symmetries, group classification, opti-

mal system, invariant solutions.

1 Introduction

This paper gives a complete symmetry analysis of a class of non-linear wave equations.

We follow ideas of Ovsiannikov [15] , Ibragimov [6, 7] and Clarkson-Mansfield [12] to

carry this through.

The equations considered are the non-linear Klein Gordon equations in one space

dimension, namely the non-linear wave equations of the form

utt = uxx + f(u). (fuu 6= 0) (1.1)

The analysis consists of first finding the Lie symmetries of equation with arbitrary f(u)

and then determining all possible forms of f(u) for which larger symmetry groups exist.
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This is followed by the determination of optimal systems of subalgebras and reductions

and invariant solutions corresponding to these optimal systems.

The first group classification problem was carried out by Ovsiannikov [15] who

classified all forms of the non-linear heat equation ut = (f(u)ux)x . Studies related

to group properties of non-linear wave equations began with the well-known paper of

Ames [1] in 1981.

The group classification problem for the equation utt = uxx + uyy + uzz + f(u) in

three space dimensions has been carried out by Rudra in [16] . However, we have

followed ideas of Clarkson-Mansfield [12] to carry this through because of the link with

Groebner bases and their potential wider applicability.

The calculations of minimal symmetry algebra and the forms of f(u) which provide

larger symmetry algebra are based on necessary conditions on f(u) obtained through a

triangulation of determining equations of Lie symmetries of Equation (1.1). An efficient

method to obtain triangulation is the well-known method of Mansfield [13, Section 2.9]

of generating differential Gröbner bases of determining equations using Kolchin-Ritt

algorithm.

Here we obtain a triangulation of the determining equations using a variant of

Kolchin-Ritt algorithm, the direct search algorithm by Clarkson-Mansfield [12], that

allows an efficient triangulation of determining equations: the reader is referred to [12]

for a detailed discussion to carry out calculations based on these algorithms.

For the determination of optimal subalgebras and corresponding reductions of

PDE (1.1) to a first order ODE, we have used a variant of schemes of Ibragimov

[7] and Ovsiannikov [15], and have introduced a new idea. Generally, for all pos-

sible reductions of PDE (1.1) to a first order ODE, one needs conjugacy classes of

2-dimensional subalgebras. Here to improve the computational methodology, we have

first determined conjugacy classes of 1-dimensional subalgebras and reduced the PDE

to a second order ODE using these classes. And then (where needed) have carried

out the second reductions to reduce PDE (1.1) to a first order ODE by determining

and utilizing the conjugacy classes in the normalizers of 1-dimensional subalgebras in

1-dimensional optimal system. The optimal system of 1-dimensional subalgebras is

obtained in Section 3, and the implementation of the new idea for obtaining desired

reductions and solutions is carried out in Section 4.

The literature on classical Lie symmetry theory, its applications and its extensions

is vast; the reader is referred to [2, 3, 4, 5, 8, 9, 10, 11, 14, 15].
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2 Symmetry group classification

In this section we present complete classification of Lie symmetries of Equation (1.1).

To obtain the Lie symmetries of Equation (1.1) we consider the one parameter Lie

group of infinitesimal transformations in (x, t, u) given by

x∗ = x + εξ(x, t, u) + O(ε2)

t∗ = t + ετ(x, t, u) + O(ε2)

u∗ = u + εφ(x, t, u) + O(ε2)

where ε is the group parameter, hence the corresponding generator of the Lie algebra

is of the form

X = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂y
+ φ(x, t, u)

∂

∂u
.

If X [2] denotes the second prolongation of X then using the invariance condition

X [2] (utt − uxx − f(u)) |utt=uxx+f(u) = 0

yields the following system of 8 determining equations.

e1 : ξu = 0

e2 : τu = 0

e3 : −ξx + τt = 0

e4 : ξt − τx = 0

e5 : φuu = 0

e6 : −τtt + τxx + 2φtu = 0

e7 : −ξtt + ξxx − 2φxu = 0

e8 : −fuφ− 2fτt + fφu + φtt − φxx = 0

The main tool to obtain triangulation of determining equations are the operations

of finding diffSpolynomial of two differential polynomials and pseudo-reduction of a

differential polynomial by a set of differential polynomials; we refer to [13, 12] for

details and background.
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Assuming the lexicographic ordering of the system as φ > τ > ξ > f and x > t > u.

The diffSpolynomial of e3 and e4 gives

e9 : ξtt − ξxx = 0

which directly leads to

e10 : τtt − τxx = 0.

Differentiating e8 twice with respect to u and pseudo-reducing, by {e11, e12}, the deriv-

ative of e12 with respect to u yields

e11 : fuuφ + 2fuτt = 0

e12 : fuuuφ + fuuφu + 2fuuτt = 0

e13 :
{
fufuufuuuu − 2fuf

2
uuu + f 2

uufuuu

}
τt = 0.

The derivative of e11 with respect to t after reduction leads to

e14 :
{
f 2

uu − fufuuu

}
τtt = 0.

Next we look at possibilities for f(u). If τt = 0 then by e11, e10, e3 and e4 we obtain

φ = 0

τ = k2 + k3x

ξ = k1 + k3t.

without any restriction on f(u). Hence the minimal symmetry algebra is 3-dimensional

which exits for any choice of f(u) and is spanned by

t
∂

∂x
+ x

∂

∂t
,

∂

∂t
,

∂

∂x
.

To look for functions f(u) that may give larger symmetry algebra we assume τt 6= 0

and solve the differential equations

f 2
uu − fufuuu = 0 (2.1)

and

fufuufuuuu − 2fuf
2
uuu + f 2

uufuuu = 0. (2.2)
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The substitution H = fu reduces Equation (2.1) to

Hu

H
− Huu

Hu

= 0

which gives f(u) = aebu + c.

The substitution H = fu reduces Equation (2.2) to

Huuu

Huu

− 2
Huu

Hu

+
Hu

H
= 0

which gives

(i) f(u) = au2 + bu + c

(ii) f(u) = (au + b)n + c for n 6= 0, 1, 2

(iii) f(u) = ln(au+b)
a

+ c

(iv) f(u) = aebu + c.

Hence from e14 we see that if f(u) 6= aebu + c, we must have τtt = 0.

The symmetry algebras for different forms of f(u) are summarized in the following

cases.

2.1 f(u) 6= aebu + c

2.1.1 f(u) = u2 + bu + c

It follows from Equations e11 and e8 that (b2 − 4c)τt = 0. Hence a larger symmetry

algebra is possible if b2 − 4c = 0 i.e. f(u) is a perfect square. For f(u) = u2 the

symmetry algebra is 4-dimensional and is determined by

ξ = k1t + k3 + k4x

τ = k1x + k2 + k4t

φ = −2uk4.
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2.1.2 f(u) = un + c n 6= 0, 1, 2

Equations e11 and e8 imply that c 6= 0 leads to minimal algebra. For f(u) = un the

symmetry algebra is 4-dimensional and is determined by

ξ = k1t + k3 + k4x

τ = k1x + k2 + k4t

φ = − 2u
n−1

k4.

2.1.3 f(u) = ln(u + b) + c

Equations e11 and e8 imply that τt = 0 which leads to minimal algebra.

2.2 f(u) = aebu + c

Here it is not necessary to have τtt = 0 but using Equations e11 and e8 it follows that

unless c = 0 there will only be minimal symmetry algebra. For f(u) = e2u, Equations

e11, e2, e3 imply that

φ = B(x, t)

τt = −B(x, t) (2.3)

ξx = −B(x, t)

where it follows from e9 or e10 that B(x, t) satisfies

Btt −Bxx = 0. (2.4)

The symmetry algebras for simpler forms of B(x, t) are summarized in the table below.

B(x, t) ξ τ φ
C (constant) −k1x + k2t + k4 −k1t + k2x + k3 k1

B(x) −1
2
(x2 + t2)k1 − k2x + k3t + k5 −xtk1 − k2t + k3x + k4 k1x + k2

B(t) −xtk1 − k2x + k3t + k4 −1
2
(x2 + t2)k1 − k2t + k3x + k5 k1t + k2

In general if B(x, t) is a function such that Bx 6= 0 and Bt 6= 0 then by Equation (2.4)

it must be of the form

B(x, t) = f(t + x)− g(t− x). (2.5)

Hence, by Equation (2.3),

φ = f(t + x)− g(t− x). (2.6)
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and

τt = − [f(t + x) + g(t− x)] . (2.7)

which gives

τ = −
∫

[f(t + x) + g(t− x)] dt + G(x). (2.8)

It follows from Equations (2.7), (2.8) and e10 that

G′′(x) = ψ(x) (2.9)

where

ψ(x) = − [f ′(t + x) + g′(t− x)] +

∫
[f ′′(t + x) + g′′(t− x)] dt.

Thus τ is determined as

τ = −
∫

[f(t + x) + g(t− x)] dt +

∫ x

a1

(∫ u

a2

ψ(s)ds

)
du + k1x + k2. (2.10)

From Equation (2.3)

ξ = −
∫

[f(t + x) + g(t− x)] dt + H(t). (2.11)

It follows from e4 and Equation (2.10) that

H ′(t) = ρ(t) + k1 (2.12)

where

ρ(t) = − [f ′(t + x)− g′(t− x)] +

∫
[f ′(t + x) + g′(t− x)] dx +

∫ x

a1

ψ(s)ds.

This leads to

ξ = −
∫

[f(t + x) + g(t− x)] dt +

∫ t

a

ρ(s)ds + k1t + k3. (2.13)

Thus the symmetry algebra is infinite dimensional with the finite dimensional subal-

gebra consisting of the minimal symmetry algebra.

3 Optimal system of subalgebras

In order to perform symmetry reductions of Equation (1.1) in a systematic manner,

we need to obtain a classification of the subalgebras of the symmetry algebra into

conjugacy classes under the adjoint action of the symmetry group. We use a variation

of the schemes of Ibragimov [7] and Ovsiannikov [15] in the following manner.
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The algebras for different cases obtained in Section 2 turn out to be solvable. For

reductions, it suffices to determine conjugacy classes of 1-dimensional subalgebras and

the conjugacy classes in their normalizers.

The first reduction by subalgebras in optimal system of 1-dimensional subalgebras

followed by the reductions by classes of corresponding normalizer will thus give reduc-

tions of Equation (1.1) by 2-dimensional subalgebras (up to conjugacy). The optimal

system of 1-dimensional subalgebras are obtained in subsequent subsections and the

reductions are carried out in detail in Section 4.

3.1 Optimal system of 1-dimensional subalgebras of the sym-
metry algebra of Equation (1.1) for f(u) = un (n 6= 0, 1)

This section presents a classification of 1-dimensional subalgebras of symmetry algebras

obtained in Section 2.1 for f(u) = un (n 6= 0, 1). In each case the symmetry algebra G
is 4-dimensional and is spanned by X1, X2, X3, X4 where

X1 = t
∂

∂x
+ x

∂

∂t
,

X2 =
∂

∂t
,

X3 =
∂

∂x
,

X4 = x
∂

∂x
+ t

∂

∂t
− 2u

n− 1

∂

∂u
.

The commutation relations are

X1 X2 X3 X4

X1 0 −X3 −X2 0
X2 X3 0 0 X2

X3 X2 0 0 X3

X4 0 −X2 −X3 0

Commutator table for the Lie algebra G.

Set H = 〈X1, X4〉 and G ′ = 〈X2, X3〉. Since the commutator G ′ is abelian, G is solvable.

It is straight forward to see that

etadX1 =




1 0 0 0
0 cosh t − sinh t 0
0 − sinh t cosh t 0
0 0 0 1


 ,

etadX4 =




1 0 0 0
0 e−t 0 0
0 0 e−t 0
0 0 0 1


 ,
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etadX2 =




1 0 0 0
0 1 0 t
t 0 1 0
0 0 0 1


 ,

and

etadX3 =




1 0 0 0
t 1 0 0
0 0 1 t
0 0 0 1


 .

Let X =
∑4

i=1 xiXi be an element of G. Writing X = (x1, x2, x3, x4), we see that

esadX2 · etadX3(x1, x2, x3, x4) = (x1, tx1 + x2 + sx4, sx1 + x3 + tx4, x4).

The equations

tx1 + x2 + sx4 = 0

tx4 + x3 + sx1 = 0

can be solved if x2
1 − x2

4 6= 0. So any such element X is conjugate to (x1, 0, 0, x4)

whenever x2
1 − x2

4 6= 0. Thus we get representatives

〈1, 0, 0, x〉 and 〈x, 0, 0, 1〉 (x2 6= 1)

which are in different conjugacy classes as G/G ′ is abelian.

Assuming x2
1− x2

4 = 0. If x1 = ±x4 6= 0, then we get representatives (1, x, y, 1) and

(1, x, y,−1).

The group H generated by etadX1 , esadX4 leaves x1, x4 fixed and operates on G ′
by scalings and hyperbolic rotations which preserve the form Q(x, y) = x2 − y2 on G ′.
Thus we get representatives:

(1, 0, 0, ε), (1, 1, 1, ε), (1, 1,−1, ε), (1, 1, 0, ε), (1, 0, 1, ε) (ε2 = 1).

If x1 = ±x4 = 0, then X is in G ′ on which the group generated by etadX2 , esadX3

operated trivially. So we get representatives

(0, 1, 0, 0), (0, 0, 1, 0), (0, 1, 1, 0), (0, 1,−1, 0).

Altogether we have proved that there are 14 conjugacy classes of 1-dimensional subal-

gebras L1
i of symmetry algebra G and the representatives of these classes are given by
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the following subalgebras.

L1 = 〈X1 + λX4〉 (3.1)

L2 = 〈X4 + λX1〉 (3.2)

L3 = 〈X1 + X2 + X3 + X4〉 (3.3)

L4 = 〈X1 + X2 + X3 −X4〉 (3.4)

L5 = 〈X1 + X2 −X3 + X4〉 (3.5)

L6 = 〈X1 + X2 −X3 −X4〉 (3.6)

L7 = 〈X1 + X2 + X4〉 (3.7)

L8 = 〈X1 + X2 −X4〉 (3.8)

L9 = 〈X1 + X3 + X4〉 (3.9)

L10 = 〈X1 + X3 −X4〉 (3.10)

L11 = 〈X2 + X3〉 (3.11)

L12 = 〈X2 −X3〉 (3.12)

L13 = 〈X2〉 (3.13)

L14 = 〈X3〉 (3.14)

3.2 Optimal system of subalgebras of minimal symmetry al-
gebra of Equation (1.1) for arbitrary f(u)

From Section 2, the minimal symmetry algebra G is 3-dimensional, which is spanned

by X1, X2, X3 satisfying the commutation relations

X1 X2 X3

X1 0 −X3 −X2

X2 X3 0 0
X3 X2 0 0

and has the abelian commutator G ′ = 〈X2, X3〉.
Let X =

∑3
i=1 xiXi be an element of G. Writing X = (x1, x2, x3), we see that

esadX2 · etadX3(x1, x2, x3) = (x1, tx1 + x2, sx1 + x3).

So if x1 6= 0, then any element X = (x1, x2, x3) is conjugate to (x1, 0, 0) and as

G/G ′ = 〈X1〉 we get one class represented by X1.

Suppose x1 = 0. Since now etadX1 operates on G ′ by hyperbolic rotations (and there

are no scalings) we get the following classes in G ′.

X2 + λX3, λX2 + X3 (λ ∈ R)
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So in all we get the classes

〈X1〉, 〈X2 + λX3〉 〈λX2 + X3〉.

4 Reductions and invariant solutions correspond-

ing to the optimal system

In this section we give a classification of symmetry reductions of PDE (1.1) by 2-

dimensional subalgebras (up to conjugacy) of symmetry algebra. Some exact invariant

solutions are also obtained. The reduction procedure explained below is followed.

For each representative X in optimal system of 1-dimensional subalgebras:

(i) Reduce the PDE (1.1) to ODE

(ii) Determine normalizer of X and conjugacy classes of 1-dimensional subalgebras

in the normalizer

The symmetries determined by elements in (ii) are inherited by the reduced ODE

obtained in (i). This allows us to determine all possible reductions and solutions

(where possible) by 2-dimensional subalgebras (up to conjugacy).

The reductions in this section require lengthy computations and do not follow a

standard algorithmic procedure, so it would be difficult to reproduce them using soft-

ware. We include a typical computation of reductions in the Case 4.1.1(I) below and

omit the details for the remaining cases which can be reproduced in a similar manner.

4.1 Reductions of utt = uxx + f(u) for f(u) = un n 6= 0, 1

The equation

utt = uxx + un (n 6= 0, 1) (4.1)

admits 4-dimensional symmetry algebra spanned by

X1 = t
∂

∂x
+ x

∂

∂t
,

X2 =
∂

∂t
, X3 =

∂

∂x
,

X4 = x
∂

∂x
+ t

∂

∂t
− 2u

n− 1

∂

∂u
.

Reductions of PDE (4.1) for different cases, associated to 1-dimensional subalgebras

are given below.
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4.1.1 Subalgebra L1 = 〈X1 + λX4〉

I. λ 6= 0,±1

The differential invariants (and hence the similarity variables) for

X = X1 + λX4 = (λx + t)
∂

∂x
+ (x + λt)

∂

∂t
− 2uλ

n− 1

∂

∂u

can be determined by solving the characteristic system

dx

λx + t
=

dt

x + λt
= −(n− 1)

du

2uλ
(4.2)

of XI = 0.

Equation (4.2) generates

d(x + t)

(λ + 1)(x + t)
= −(n− 1)

du

2uλ

and
d(x− t)

(λ− 1)(x− t)
= −(n− 1)

du

2uλ

which respectively give the similarity variables of X = X1 + λX4 as

ξ(x, t) =
(x + t)

1
λ+1

(x− t)
1

λ−1

V (ξ) = un−1 · (x + t)
2λ

λ+1 .

For reductions we begin by differentiating the similarity variable

un−1 · (x + t)
2λ

λ+1 = V

with respect to t, once and twice, to respectively get

(n− 1)un−2ut(x + t)
2λ

λ+1 + un−1 · 2λ

λ + 1
(x + t)

λ−1
λ+1 = V ′ξt (4.3)

and

(n− 1)(n− 2)un−3u2
t (x + t)

2λ
λ+1 + (n− 1)un−2utt(x + t)

2λ
λ+1

+ 2(n− 1)un−2ut
2λ

λ + 1
(x + t)

λ−1
λ+1 +

2λ

λ + 1
· λ− 1

λ + 1
un−1(x + t)

−2
λ+1 = V ′′ξ2

t + V ′ξtt.

(4.4)

Similarly differentiating the similarity variable

un−1 · (x + t)
2λ

λ+1 = V
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with respect to x, once and twice, respectively gives

(n− 1)un−2ux(x + t)
2λ

λ+1 + un−1 · 2λ

λ + 1
(x + t)

λ−1
λ+1 = V ′ξx (4.5)

and

(n− 1)(n− 2)un−3u2
x(x + t)

2λ
λ+1 + (n− 1)un−2uxx(x + t)

2λ
λ+1

+ 2(n− 1)un−2ux
2λ

λ + 1
(x + t)

λ−1
λ+1 +

2λ

λ + 1
· λ− 1

λ + 1
un−1(x + t)

−2
λ+1 = V ′′ξ2

x + V ′ξxx.

(4.6)

Now subtracting Equation (4.6) from Equation (4.4), Equation (4.5) from Equa-

tion (4.3) and adding Equation (4.3) & Equation (4.5) leads respectively to the

identities

(n− 1)(n− 2)un−3(x + t)
2λ

λ+1 (u2
t − u2

x) + (n− 1)un−2(x + t)
2λ

λ+1 (utt − uxx)

+ 2(n− 1)un−2 2λ

λ + 1
(x + t)

λ−1
λ+1 (ut − ux) = V ′′(ξ2

t − ξ2
x) + V ′(ξtt − ξxx),

(4.7)

(x + t)
2λ

λ+1 (ut − ux) =
1

(n− 1)un−2
· V ′(ξt − ξx) (4.8)

and

(x + t)
2λ

λ+1 (ut + ux) =
1

(n− 1)un−2

(
−2un−1 2λ

λ + 1
(x + t)

λ−1
λ+1 + V ′(ξt + ξx)

)
.

(4.9)

Using Equations (4.8), (4.9) and the relations

ξt =
2ξ(λx + t)

(λ2 − 1)(x2 − t2)

ξx =
−2ξ(λt + x)

(λ2 − 1)(x2 − t2)

ξt + ξx =
2ξ

(λ + 1)(x + t)

ξt − ξx =
2ξ

(λ− 1)(x− t)

ξ2
t − ξ2

x =
4ξ2

(λ2 − 1)(x2 − t2)

ξtt − ξxx =
4ξ

(λ2 − 1)(x2 − t2)

in identity (4.7) yields

(n− 1)un−2(x + t)
2λ

λ+1 (utt − uxx)(λ
2 − 1)(x2 − t2)

= 4ξ2V ′′ + 4ξV ′ − 8λξV ′ − n− 2

n− 1
4ξV ′

(
ξV ′

V
− 2λ

)
.

(4.10)
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Finally, combining Equations (4.10) and PDE (4.1) leads to

4ξ2V ′′ + 4ξV ′ − 8λξV ′ − n− 2

n− 1
4ξV ′

(
ξV ′

V
− 2λ

)

= (n− 1)un−1(x + t)
2λ

λ+1 (λ2 − 1)
(
un−1(x2 − t2)

)
.

(4.11)

Now using the relation

un−1(x2 − t2) =
V

ξλ−1
,

we obtain the first reduction of PDE (4.1) to the ODE

ξV ′′ + V ′(1− 2λ)− n− 2

n− 1
V ′

(
ξV ′

V
− 2λ

)
=

(n− 1)(λ2 − 1)

4

V 2

ξλ
. (4.12)

For second reduction, we use conjugacy classes of the normalizer. The normalizer

N(X1 + λX4) = 〈X1, X4〉 is abelian so conjugacy classes are represented by

X1 + cX4, cX1 + X4.

The inherited symmetry of ODE (4.12) in both cases is a multiple of

X̃ = ξ
∂

∂ξ
+ (λ− 1)V

∂

∂V
,

so we perform second reduction by X̃. Its similarity variables are

r(ξ, V ) =
V

ξλ−1

w(r) =
V ′

ξλ−2

which reduce ODE (4.12) to Abel equation of second kind of the form

(w + (1− λ)r)
dw

dr
− (1 + λ)w − n− 2

n− 1
w

(w

r
− 2λ

)
= (n− 1)(λ2 − 1)

r2

4
.

II. λ = 1.

The similarity variables

ξ(x, t) = t− x

V (ξ) = un−1 · (x + t)

of X = X1 + X4 reduce PDE (4.1) to the ODE

4V ′ + (n− 1)2V 2 = 0.
14



This can be integrated to get the exact solution

u(x, t) =

{
4

(x + t)[(n− 1)2(t− x) + C]

} 1
n−1

of PDE (4.1).

III. λ = −1.

The similarity variables

ξ(x, t) = x + t

V (ξ) = un−1 · (x− t)

of X = X1 −X4 reduce PDE (4.1) to the ODE

4V ′ − (n− 1)2V 2 = 0.

This can be integrated to get the exact solution

u(x, t) =

{
4

(x− t)[−(n− 1)2(x + t) + C]

} 1
n−1

of PDE (4.1).

IV. λ = 0

The similarity variables

ξ(x, t) = t2 − x2

V (ξ) = u

of X = X1 reduce PDE (4.1) to the ODE

4ξV ′′ + 4V ′ = V n. (4.13)

For second reduction, we use conjugacy classes of the normalizer of X = X1. The

normalizer N(X1) = 〈X1, X4〉 is abelian so conjugacy classes are represented by

X1 + cX4, cX1 + X4.

The inherited symmetry of ODE (4.13) in both cases is a multiple of

X̃ = ξ
∂

∂ξ
− V

n− 1

∂

∂V
,

15



so we perform second reduction by X̃. Its similarity variables are

r(ξ, V ) = ξ
1

n−1 V

w(r) = ξ
n

n−1 V ′

which reduce ODE (4.13) to Abel equation of second kind of the form

4((n− 1)w + r)
dw

dr
= 4w + (n− 1)rn.

4.1.2 Subalgebra L2 = 〈λX1 + X4〉

The cases λ = ±1 reduce to the cases 4.1.1 (II, III).

I. λ = 0.

The similarity variables

ξ(x, t) =
t

x
V (ξ) = un−1 · x2

of X = X4 reduce PDE (4.1) to the ODE

(ξ2 − 1)V ′′ + 6ξV ′ +
n− 2

n− 1

[
V ′2

V
− ξ2V ′2

V
− 4ξV ′ − 4V

]
+ 6V + (n− 1)V 2 = 0.

(4.14)

For second reduction we use the conjugacy classes

X1 + cX4, cX1 + X4

of the normalizer N(X4) = 〈X1, X4〉.
The inherited symmetry of ODE (4.14) in both cases is a multiple of

X̃ = (1− ξ2)
∂

∂ξ
+ 2ξV

∂

∂V
,

so we perform second reduction by X̃. Its similarity variables

r(ξ, V ) = V (1− ξ2)

w(r) = (1− ξ2)
V ′

V
− 2ξ

reduce ODE (4.14) to Bernoulli equation

dw

dr
+

1

(n− 1)r
w =

(
4

(n− 1)r
+ n− 1

)
w−1

which can be solved to get

w2 = 4 + 2
(n− 1)2

n + 1
r +

C

r
2

n−1

.
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II. λ 6= 0,±1.

The similarity variables

ξ(x, t) =
(x + t)

1
1+λ

(x− t)
1

1−λ

V (ξ) = un−1 · (x + t)
2

1+λ

of X = λX1 + X4 reduce PDE (4.1) to the ODE

ξV ′′ − V ′ − n− 2

n− 1
V ′

(
ξV ′

V
− 2

)
=

(1− λ2)(n− 1)

4

V 2

ξ2−λ
. (4.15)

For second reduction we use the conjugacy classes

X1 + cX4, cX1 + X4

of the abelian normalizer N(λX1 + X4) = 〈X1, X4〉. The inherited symmetry of

ODE (4.15) in both cases is a multiple of

X̃ = ξ
∂

∂ξ
+ (1− λ)V

∂

∂V

so we perform second reduction by X̃. Its similarity variables are

r(ξ, V ) =
V

ξ1−λ

w(r) = V ′ξλ

which reduce ODE (4.15) to following Abel equation of second kind:

(w + (λ− 1)r)
dw

dr
− (1 + λ)w − n− 2

n− 1
w

(w

r
− 2

)
=

(n− 1)(1− λ2)

4
r2.

4.1.3 Subalgebra L3 = 〈X1 + X2 + X3 + X4〉

The similarity variables

ξ(x, t) = t− x

V (ξ) = (x + t + 1)un−1

of X = X1 + X2 + X3 + X4 reduce PDE (4.1) to the ODE

4V ′ + (n− 1)2V 2 = 0.

This yields the solution

u(x, t) =

{
4

(x + t + 1)[(n− 1)2(t− x) + C]

} 1
n−1

of PDE (4.1).
17



4.1.4 Subalgebra L4 = 〈X1 + X2 + X3 −X4〉

The similarity variables

ξ(x, t) = (x− t)ex+t

V (ξ) = un−1 · (x− t)

of X = X1 + X2 + X3 −X4 reduce PDE (4.1) to the ODE

4ξ2V ′′ − 4
n− 2

n− 1
ξV ′

(
ξV ′

V
− 1

)
+ (n− 1)V 2 = 0. (4.16)

The normalizer N(X) = 〈X1−X4, X2 + X3〉 is abelian so representatives of conjugacy

classes are

(X1 −X4) + c(X2 + X3) and c(X1 −X4) + (X2 + X3).

The inherited symmetry of reduced ODE in both cases is a multiple of

X̃ = ξ
∂

∂ξ
,

so we perform second reduction by X̃. Its similarity variables

r(ξ, V ) = V

w(r) = ξV ′

reduce the ODE (4.16) to Abel equation of second kind

4w
dw

dr
− 4w − 4

(n− 2)

n− 1
w

(w

r
− 1

)
+ (n− 1)r2 = 0.

4.1.5 Subalgebra L5 = 〈X1 + X2 −X3 + X4〉

The similarity variables of X = X1 + X2 −X3 + X4 are

ξ(x, t) = (x + t)ex−t

V (ξ) = un−1 · (x + t)

which reduce PDE (4.1) to

4ξ2V ′′ − 4
n− 2

n− 1
ξV ′

(
ξV ′

V
− 1

)
+ (n− 1)V 2 = 0. (4.17)

The (abelian) normalizer N(X) = 〈X1 +X4, X2−X3〉 has representatives of conjugacy

classes as

(X1 + X4) + c(X2 −X3) and c(X1 + X4) + (X2 −X3).
18



In both cases, the inherited symmetry of ODE (4.17) is a multiple of

X̃ = ξ
∂

∂ξ
.

This, as in Case 4.1.4, reduces ODE (4.17) to Abel equation of second kind

4w
dw

dr
− 4w − 4

(n− 2)

n− 1
w

(w

r
− 1

)
+ (n− 1)r2 = 0.

4.1.6 Subalgebra L6 = 〈X1 + X2 −X3 −X4〉

The similarity variables

ξ(x, t) = x + t

V (ξ) = un−1 · (x− t + 1)

of X = X1 + X2 −X3 −X4 reduce PDE (4.1) to

4V ′ − (n− 1)2V 2 = 0,

yielding the solution

u(x, t) =

{ −4

(x− t + 1)[(n− 1)2(x + t) + C]

} 1
n−1

4.1.7 Subalgebra L7 = 〈X1 + X2 + X4〉

The similarity variables of X = X1 + X2 + X4 are

ξ(x, t) = (2x + 2t + 1)e2(x−t)

V (ξ) = un−1 · (2x + 2t + 1)

which reduce PDE (4.1) to

16ξ2V ′′ − n− 2

n− 1
16ξV ′

(
ξV ′

V
− 1

)
+ (n− 1)V 2 = 0. (4.18)

The (abelian) normalizer N(X) = 〈X1 + X2 + X4,−X2 + X3〉 has representatives of

conjugacy classes as

(X1 + X2 + X4) + c(−X2 + X3) and c(X1 + X2 + X3) + (−X2 + X3).

The inherited symmetry of ODE (4.18) in both cases is a multiple of

X̃ = ξ
∂

∂ξ
,
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so we perform second reduction by X̃. Its similarity variables

r(ξ, V ) = V

w(r) = ξV ′

reduce ODE (4.18) to

16w
dw

dr
− 16w − 16

(n− 2)

n− 1
w

(w

r
− 1

)
+ (n− 1)r2 = 0,

which is Abel equation of second kind.

4.1.8 Subalgebra L8 = 〈X1 + X2 −X4〉

The similarity variables

ξ(x, t) = (2x− 2t + 1)e2(x+t)

V (ξ) = un−1 · (2x− 2t + 1)

of X = X1 + X2 −X4 reduce PDE (4.1) to

16ξ2V ′′ − 16
n− 2

n− 1
ξV ′

(
ξV ′

V
− 1

)
+ (n− 1)V 2 = 0. (4.19)

The normalizer N(X) = 〈X1 + X2 −X4, X2 + X3〉 is abelian and so representatives of

conjugacy classes are

(X1 + X2 −X4) + c(X2 + X3) and c(X1 + X2 −X4) + (X2 + X3).

In both cases, the inherited symmetry of ODE (4.19) is a multiple of

X̃ = ξ
∂

∂ξ
.

So we perform second reduction by X̃ and, like Case 4.1.7, ODE (4.19) reduces to

following Abel equation of second kind

16w
dw

dr
− 16w − 16

(n− 2)

n− 1

(w

r
− 1

)
+ (n− 1)r2 = 0.

4.1.9 Subalgebra L9 = 〈X1 + X3 + X4〉

The similarity variables of X = X1 + X3 + X4 are

ξ(x, t) = (2x + 2t + 1)e2(t−x)

V (ξ) = un−1 · (2x + 2t + 1)
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which reduce PDE (4.1) to

16ξ2V ′′ − 16
n− 2

n− 1
ξV ′

(
ξV ′

V
− 1

)
− (n− 1)V 2 = 0. (4.20)

The normalizer N(X) = 〈X1 + X2 + X4,−X2 + X3〉 has representatives of conjugacy

classes as

(X1 + X2 + X4) + c(−X2 + X3) and c(X1 + X2 + X4) + (−X2 + X3).

The inherited symmetry of ODE (4.20) in both cases is a multiple of

X̃ = ξ
∂

∂ξ
.

Like case 4.1.7, this symmetry reduces ODE (4.20) to

16w
dw

dr
− 16w − 16

(n− 2)

n− 1

(w

r
− 1

)
− (n− 1)r2 = 0.

which is Abel equation of second kind.

4.1.10 Subalgebra L10 = 〈X1 + X3 −X4〉

The similarity variables

ξ(x, t) = (2x− 2t− 1)e2(x+t)

V (ξ) = un−1 · (2x− 2t− 1)

of X = X1 + X3 −X4 reduce PDE (4.1) to

16ξ2V ′′ − 16
n− 2

n− 1
ξV ′

(
ξV ′

V
− 1

)
+ (n− 1)V 2 = 0. (4.21)

The normalizer N(X) = 〈X1 − X2 − X4, X2 + X3〉 has representatives of conjugacy

classes as

(X1 −X2 −X4) + c(X2 + X3) and c(X1 −X2 −X4) + (X2 + X3).

The inherited symmetry in both cases is a multiple of

X̃ = ξ
∂

∂ξ
,

which, like case 4.1.7, reduces ODE (4.21) to following Abel equation of second kind:

16w
dw

dr
− 16w − 16

(n− 2)

n− 1

(w

r
− 1

)
+ (n− 1)r2 = 0.
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4.1.11 Subalgebra L11 = 〈X2 + X3〉

In this case, the similarity variables

ξ(x, t) = t− x

V (ξ) = u

yield the trivial solution u = 0.

4.1.12 Subalgebra L12 = 〈X2 −X3〉

The similarity variables

ξ(x, t) = x + t

V (ξ) = u

lead to trivial solution u = 0.

4.1.13 Subalgebra L13 = 〈X2〉

The similarity variables

ξ(x, t) = x

V (ξ) = u

of X = X2 reduce PDE (4.1) to

V ′′ + V n = 0. (4.22)

For further reductions, we look at normalizer of X2 which is N(X2) = 〈X2, X3, X4〉.
Like Section 3.2, its representatives of conjugacy classes of 1-dimensional subalgebras

are given by

cX2 + X3, X2 + cX3 and X4.

I. For the symmetries cX2 +X3 or X2 +cX3, the inherited symmetry of ODE (4.22)

is

X̃ =
∂

∂ξ
.

Its similarity variables

r(ξ, V ) = V

w(r) = V ′

reduce ODE (4.22) to

w
dw

dr
+ rn = 0,
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which implies that the solutions of PDE (4.1) can be determined from

(
du

dx

)2

=
C − 2un+1

n + 1
, if n 6= −1

or (
du

dx

)2

= ln
C

r2
, if n = −1

II. For the symmetry X4, the inherited symmetry of ODE (4.22) is

X̃ = ξ
∂

∂ξ
− 2V

n− 1

∂

∂V
.

It similarity variables

r(ξ, V ) = V ξ
2

n−1

w(r) = V ′ξ
n+1
n−1

reduce ODE (4.22) to

(
w +

2r

n− 1

)
dw

dr
− (n + 1)

n− 1
w + rn = 0

which is Abel equation of second kind.

4.1.14 Subalgebra L14 = 〈X3〉

The similarity variables

ξ(x, t) = t

V (ξ) = u

of X3 reduce PDE (4.1) to

V ′′ + V n = 0. (4.23)

The normalizer of X3 is N(X3) = 〈X2, X3, X4〉 and, as above, its representatives of

conjugacy classes of 1-dimensional subalgebras are given by

cX2 + X3, X2 + cX3 and X4.

I. For cX2 + X3 or X2 + cX3, the inherited symmetry of ODE (4.23) is

X̃ =
∂

∂ξ
.
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Like case 4.1.13, it implies that the solutions of PDE (4.1) can be determined

from (
du

dx

)2

=
C + 2un+1

n + 1
, if n 6= −1

or (
du

dx

)2

= ln Cu2, if n = −1

II. For the symmetry X4, the ODE (4.23) reduces to the Abel equation

(
w +

2

n− 1
r

)
dw

dr
− (n + 1)

n− 1
w + rn = 0,

in a manner similar to Case 4.1.13 (II).

4.2 Reductions of utt = uxx + f(u) for arbitrary f(u)

For arbitrary f(u), the equation

utt = uxx + F (u) (4.24)

admits 3-dimensional symmetry algebra spanned by

X1 = t
∂

∂x
+ x

∂

∂t
,

X2 =
∂

∂t
, X3 =

∂

∂x
.

Like Section 4.1, we obtain following reductions through 1-dimensional optimal system

of symmetry algebra and classes in the associated normalizers.

4.2.1 Subalgebra 〈X2 + λX3〉

Like different cases in Section 4.1, the similarity transformations

ξ(x, t) = x− λt

V (ξ) = u

of X = X2 + λX3, followed by the transformations

r(ξ, V ) = V

w(r) = V ′

of inherited symmetry reduce PDE (4.24) to the separable ODE

(1− λ2)w
dw

dr
+ f(r) = 0.
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4.2.2 Subalgebra 〈λX2 + X3〉

As above, PDE (4.24) to the separable ODE of the form

(1− λ2)w
dw

dr
+ f(r) = 0.

4.2.3 Subalgebra 〈X1〉

The similarity variables

ξ(x, t) = x2 − t2

V (ξ) = u

of X = X1, reduce PDE (4.24) to the ODE

4ξV ′′ + 4V ′ + f(V ) = 0,

which can be further analyzed for different forms of f(u).
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