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Abstract

A proof of the Jordan canonical form, suitable for a first course in linear
algebra, is given. The proof includes the uniqueness of the number and sizes of
the Jordan blocks. The value of the customary procedure for finding the block
generators is also questioned.

2000 MSC: 15A21.

The Jordan form of linear transformations is an exceeding useful result in all theo-

retical considerations regarding conjugacy classes of matrices, nilpotent orbits and the

Jacobson -Morozov theorem. The author wishes to share a proof of the Jordan form

which he found in connection with a problem in Lie theory. The ideas of the proof

give at the same time the number and sizes of all the blocks. The proof has the added

advantage that the most important parts can be taught in a first course on linear alge-

bra, as soon as basic ideas have been introduced and the invariance of dimensions has

been established. It is thus also a contribution to the teaching of these ideas.

Although extensive work has been done in [4] regarding this circle of ideas, our

method provides a very simple algorithm whose importance is shown through some

simple examples.

A classical reference for this topic is Smirnov’s book [2,p.245-254]. There is a very

well known proof due to Fillipov [1], which is also given in Strang’s book [3, p. 422-

425]. There is also a proof given in the Wikipedia [5]. The proofs in [3 & 5] do

not give sufficient details regarding the number of Jordan blocks and their sizes, nor

an algorithmic procedure to handle matrices of large size. In view of the algorithm
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given in this note, and the examples given below, it is not clear to us why a precise

determination of the block generators is needed, although, for the sake of completeness,

we have discussed this aspect too- at the expense of increasing the level of exposition.

It would be very desirable to compare the computational complexity of computing

the Jordan canonical form, using the algorithm given in this paper, with other algo-

rithms, which programmes like Maple and Mathematica use to determine the Jordan

form.

As is well known, the main technical step in establishing the Jordan canonical form

is to prove its existence and uniqueness for nilpotent transformations. We will return

to the general case towards the end of this note.

Let A be a nilpotent transformation on a finite dimensional vector space V , let v

be a nonzero vector in V and n the smallest integer such that Anv = 0.

Proposition 1 The vectors {Aiv : 0 ≤ i < n} are linearly independent.

Proof. Take an expression
n−1∑
i=0

ciA
iv = 0, (∗)

in which the number of non-zero coefficients is as small as possible. If the coefficient

cj is the non-zero coefficient of largest index j, then multiplying by An−j, we obtain

an expression like (*) of smaller length. So in (*) every ci with i < j is 0. Therefore

cjA
jv = 0 and therefore Ajv = 0, with j ≤ n − 1, which contradicts the choice of n.

This proves the claim,

Proposition 2 Let R(A) be the range space of A and N(A) be the null space of A. Let

{A(vi) : i = 1, . . . , r} be a basis of the range space. Let {nj : j = 1, . . . , s} be a basis of

the null space of A. Then {vi : i = 1, . . . , r, nj : j = 1, . . . , s} is a basis of the vector

space V .

Proof. Let v ∈ V . So A(v) =
r∑

i=1

ciA(vi). Therefore v−
r∑

i=1

civi belongs to the null space

of A, hence it is a linear combination of the {vi} and {nj}. To see that these vectors

are linearly independent, suppose
r∑

i=1

civi +
s∑

j=1

djnj = 0. This gives
r∑

i=1

cA(vi) = 0 and

by linear independence of the vectors A(vi), we get ci = 0, i = 1, . . . , r. The linear
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independence of {nj} then shows that dj = 0, j = 1, . . . , s.

Proposition 3 V is a direct sum of cyclic subspaces.

Proof. We prove this, as in the standard proofs [2,3], by induction on dimension. The

null space of A is a non-zero subspace and therefore the range space of A is a proper

subspace of V . If this is the zero subspace, then a basis of V gives the decomposition

into cyclic subspaces. So suppose that R(A) is a nonzero subspace. It is an A invariant

subspace. By induction on dimensions, it is a direct sum of cyclic subspaces, with

generators vi, i = 1, . . . , k, and basis Ajvi, 0 ≤ j ≤ ni, and Ani+1vi = 0. Let vi = Awi.

So Ajvi = AAjwi shows, using Proposition 2, that the vectors Ajwi, 0 ≤ j ≤ ni are

linearly independent. Also Ani+1vi = Ani+2wi = 0, so Ani+1wi = Anivi belong to the

null space of A.

By Proposition 2, if we enlarge Anivi, i = 1, . . . , k, to a basis of the null space of A

by adjoining independent vectors n1, . . . , nl in the null space of A, then Ajwi,0 ≤ j ≤

ni,0 ≤ i ≤ k, Anivi,i = 1, . . . , k, n1, . . . , nl form a basis of V .

Therefore, the cyclic subspaces generated by wi, i = 1, . . . , k and the one-dimensional

subspaces generated by nr, 1 ≤ r ≤ l give a direct sum decomposition of V into cyclic

subspaces.

From this description, it is clear that in each summand only Ani+1wi = Anivi

contributes to the null space of A in that summand and therefore the number of

summands in the above given decomposition is the dimension of the null space of A.

Corollary Let di = dim (N(A|R(Ai)), i = 0, 1, . . . , n), where n is the smallest positive

integer so that An = 0. The differences d0− d1, d1− d2, . . . , dn−1− dn give the number

of Jordan blocks of sizes 1, 2, . . . , n.

Proof. As shown in the proof of Proposition 3, the number of summands in the Jordan

decomposition is the dimension of the null space of A. Therefore the number of blocks

of size≥ 1 is dim(N(A)). Applying A removes all blocks, if any, of size 1, and so the

number of blocks of size≥ 2 is dim(N(A|R(A))) = d1. Continuing, we get that di is

the number of blocks of size≥ i, i = 1, . . . , n. Therefore the difference di−1 − di gives
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the number of blocks of size i, for i = 1, . . . , n.

Example

Let A be any nilpotent upper triangular matrix whose entries to the right of the

main diagonal give a non-singular matrix. Then the null space of A is 1 dimensional

and therefore the canonical form of A consists of only one block.

In particular, the matrices



0 2
0 1

0 −1
0 −2

0




and 


0 1 2 3 4
0 7 6 5

0 8 9
0 10

0




are conjugate matrices as they are conjugate to



0 1
0 1

0 1
0 1

0




.

In view of such examples, it is not clear to us why an algorithmic procedure is needed

to find the precise generators of the various blocks, because all one needs to find the

form of the Jordan blocks is to compute the invariants di. Nevertheless, for the sake

of completeness, we outline such a procedure - at the expense of increase in level of

exposition.

Step 1:

Find all eigenvalues. For an eigenvalue λ, compute the generalized eigenspace cor-

responding to λ. Although, one needs to compute only all vectors annihilated by

(A− λI)dim V , it is algorithmically better to compute the vectors annihilated by (A− λI)n,

where n is the multiplicity of the eigenvalue λ in the characteristic polynomial of A.

So, by working in the generalized eigenspace for λ, and replacing (A − λI) by A, we

may assume that A is a nilpotent transformation of index≤ n.
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So we assume now that A is a nilpotent transformation defined on a vector space V .

Step 2:

Find the number and sizes of blocks of this nilpotent transformation according to the

algorithm given in the Corollary. This is the most important step, which is needed to

complete the next step efficiently.

Step 3:

If, for some reason, one needs to find explicitly the generators of these blocks in terms

of a preassigned basis, one can proceed as follows:

For a vector v, call the smallest integer m so that Am(v) = 0 the weight of v. There

must be a vector of weight n; in fact, if we start with any basis of V , there must be

such a vector in this basis. Call it v1. The vectors v1, . . . , A
n−1v1 are then linearly

independent by Proposition 1.

Find a basis of N(An)/N(An−1). If v, w, . . . are representatives, then they are of

weight n and are linearly independent.

If x is in the span of v, Av, . . . , An−1v and Ajx = 0 , then x is a linear combination

of Akv with k ≥ n−j . It follows that v, Av, . . . , An−1v, w, Aw, . . . , An−1w, are linearly

independent. Repeating this, we get a subspace W1 generated by linearly independent

vectors of weight n, and the number of such vectors is the number of blocks of size n.

This takes care of blocks of size n.

Consider the blocks of size m -just below n. Find a basis of N(Am)/(N(Am−1)∩W1).

Each basis of this generates a block of size m. Call this subspace W2. Then

W1 + W2 is a direct sum. Consider the blocks of size l just below m. Find a basis of

N(Al)/(N(Al−1) ∩ (W1 + W2)). Each basis element generates blocks of size l.

Continuing in this way, we get all the blocks of the Jordan decomposition.

Examples
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1. If

A =




0 1 0 1
0 0 1 0
0 0 0 1
0 0 0 0


 ,

then N(A)works out to be 1 dimensional, so there is only 1 Jordan block.

Also

A3 =




0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0


 ,

so

N(A3) =




x
y
z
0




and, as A4 = 0, a basis of N(A4)/N(A3) is

ν =




0
0
0
1


 .

Therefore, this must be a generator of the block.

2. Let

A =




2 0 2 1
0 2 1 1
0 0 2 2
0 0 0 4


 .

The eigenvalue 2 is of multiplicity 3, so the generalized eigenspace V(2) is 3−

dimensional, whose basis works out to be (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and the

matrix of A|V(2) is therefore 


2 0 2
0 2 1
0 0 2


 .

We have

(A− 2I)|V(2) =




0 0 2
0 0 1
0 0 0


 .

Let Ã = (A−2I)|V(2). This gives d0 = dim(N(Ã) = 2, d1 = dim(N(Ã|R(Ã)) = 1,

d2 = dim(N(Ã|R(Ã2)) = 0.

Therefore Ã has d0 − d1 = 1 block of size 1 and d1 − d2 = 1 block of size 2.
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The Jordan form of Ã is therefore


0 0 0
0 0 1
0 0 0




and of A|V(2) is 


2 0 0
0 2 1
0 0 2




The eigenspace for eigenvalue 4 is one-dimensional. Therefore, the Jordan form

of A is 


2 0 0 0
0 2 1 0
0 0 2 0
0 0 0 4


 .

A final remark on applications: A main application of the Jordan form in differen-

tial equations is in computation of matrix exponentials. However, it is computationally

more efficient to calculate the matrix of A relative to a basis of generalized eigenvectors-

not necessarily given by cyclic vectors -and compute its exponential relative to this ba-

sis; finally, conjugating by the change of basis matrix gives the exponential of A.
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