King Fahd University of Petroleum and Minerals

Department of Mathematics and Statistics

Math 102
Exam I
Term 112
Tuesday 28/02/2012
Net Time Allowed: 120 minutes

MASTER VERSION

1. The estimated area under the graph of $f(x)=\frac{1}{2}\left|x^{2}-3\right|$ from $x=0$ to $x=8$ by using four approximating rectangles and midpoints equals to
(a) 76
(b) 52
(c) 72
(d) 54
(c) 28
2. If the region bounded by the curves $x+y=2, x=0, x=1$, and $y=0$ is rotated about the x-axis, then the volume of the solid generated is equal to
(a) $\frac{7}{3} \pi$
(b) 3π
(c) $\frac{10}{3} \pi$
(d) 5π
(e) $\frac{11}{3} \pi$
3. The value of $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(2 \sqrt{x_{i}}+\frac{1}{2 \sqrt{x_{i}}}\right)^{2} \triangle x$ on the interval $[1,2]$ is equal to
(a) $8+\frac{1}{4} \ln 2$
(b) 8
(c) $12+\frac{1}{4} \ln 2$
(d) 10
(e) $10+\ln 2$
4. $\int \frac{5}{x(4+3 \ln x)^{6}} d x=$
(a) $\frac{-1}{3}(4+3 \ln x)^{-5}+c$
(b) $3(4+3 \ln x)^{-5}+c$
(c) $-15(4+3 \ln x)^{5}+c$
(d) $\frac{-5}{3}(4+3 \ln x)^{5}+c$
(e) $5(4+\ln x)^{-6}+c$
5. $\quad \int \frac{6 x^{2}-13 x-5}{3 x+1} d x=$
(a) $x^{2}-5 x+c$
(b) $\frac{1}{3} \ln |3 x+1|+c$
(c) $2 x^{2}+x+c$
(d) $x^{2}+\frac{1}{3} \ln |3 x+1|+c$
(e) $3 x^{3}-6 x+c$
6. If $f(1)=9, f(8)=4$, and $g(x)=\frac{f^{\prime}(x)}{\sqrt{f(x)}}$ is continuous on $[1,8]$, then $\int_{1}^{8} g(x) d x=$
(a) -2
(b) -5
(c) 7
(d) $1-2 \sqrt{2}$
(e) $2-4 \sqrt{2}$
7. $\int_{0}^{\ln \sqrt{3}} \frac{e^{x}}{1+e^{2 x}} d x=$
(a) $\frac{\pi}{12}$
(b) $\frac{\pi}{3}$
(c) $\frac{\pi}{6}$
(d) $\frac{\pi}{4}$
(e) $\frac{\pi}{2}$
8. If f is an odd continuous function such that $\int_{-2}^{5} f(x) d x=6$, and $\int_{3}^{5} f(x) d x=10$, then $\int_{2}^{3} f(x) d x=$
(a) -4
(b) 16
(c) -16
(d) 10
(e) -6
9. $\int_{0}^{\frac{\pi}{4}} \frac{1-\tan x}{1+\tan x} d x=$
(a) $\frac{1}{2} \ln 2$
(b) 2
(c) 5
(d) $-3 \ln 2$
(e) 1
10. If $f(x)=\left\{\begin{array}{ll}2-x ; & 0 \leq x \leq 2 \\ \sqrt{9-(x-5)^{2}}, & 2<x \leq 8\end{array}\right.$, then using area under curves to evaluate the integral $\int_{0}^{8} f(x) d x$, we get
(a) $2+\frac{9 \pi}{2}$
(b) $2+8 \pi$
(c) $2+2 \pi$
(d) $8+25 \pi$
(e) $2+25 \pi$
11. $\int_{0}^{\pi / 4} \frac{12}{\left(\cos ^{2} x\right)(1+3 \tan x)^{3 / 2}} d x=$
(a) 4
(b) 6
(c) 3
(d) 2
(e) 1
12. If $f(x)=\int_{x}^{2 x} \frac{e^{t}}{t} d t$ then $f^{\prime}(1)=$
(a) $e^{2}-e$
(b) $e^{2}-1$
(c) $e+1$
(d) $\frac{e^{2}}{2}-e$
(e) $e-1$
13. The volume of the solid obtained by rotating the region bounded by the parabolas $y=x^{2}$ and $y^{2}=x$ about the line $x=2$ is given by the integral
(a) $\pi \int_{0}^{1}\left(-4 y^{2}+y^{4}+4 \sqrt{y}-y\right) d y$
(b) $\pi \int_{0}^{2}\left(4 y^{2}-y^{4}-4 \sqrt{y}-y\right) d y$
(c) $\pi \int_{0}^{1}\left(-4 y^{2}+y^{4}-4 \sqrt{y}-2 y\right) d y$
(d) $\pi \int_{0}^{2}\left(-4 \sqrt{x}+x-4 x^{2}-x^{4}\right) d x$
(e) $\pi \int_{0}^{1}\left(x^{2}-x^{4}\right) d x$
14. The area of the region enclosed by the curves $y^{2}=4-x$ and $x+2 y=1$ is given by the integral
(a) $\int_{-1}^{3}\left(3+2 y-y^{2}\right) d y$
(b) $\int_{-5}^{3}\left[\frac{1}{2}(1-x)-\sqrt{4-x}\right] d x$
(c) $\int_{-1}^{3}\left(y^{2}-2 y-3\right) d y$
(d) $\int_{-5}^{4}\left[\frac{1}{2}(1-x)-\sqrt{4-x}\right] d x$
(e) $\int_{-3}^{1}\left(3-2 y+y^{2}\right) d y$
15. If a particle is moving in a straight line with velocity (in $\mathrm{cm} / \mathrm{s})$ given by $v(t)=20(\cos t)\left(\sin ^{3} t\right)$ then the distance traveled by the particle during the time interval $[0, \pi]$ is
(a) 10 cm
(b) 5 cm
(c) 20 cm
(d) 0 cm
(e) 30 cm
16. The base of a solid S is the region enclosed by the curve $y=\sqrt{1-x^{2}}$ and the x - axis. If the cross sections of S perpendicular to the x-axis are squares, then the volume of S is
(a) $\frac{4}{3}$
(b) 4
(c) $\frac{7}{3}$
(d) 3
(e) $\frac{5}{3}$
17. An expression for the area under the graph of $f(x)=2 x^{2}-8 x, 4 \leq x \leq 5$, as a limit and using right endpoints is
(a) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{8}{n^{2}} i+\frac{2}{n^{3}} i^{2}\right)$
(b) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{8}{n}-\frac{8}{n^{2}} i+\frac{2}{n^{3}} i^{2}\right)$
(c) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{16}{n^{2}} i+\frac{32}{n^{3}} i^{2}\right)$
(d) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{16}{n}-\frac{16}{n^{2}} i+\frac{4}{n^{3}} i^{2}\right)$
(e) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{8}{n^{2}} i-\frac{4}{n^{3}} i^{2}\right)$
18. If $y=\sqrt{x} \int_{3}^{\sqrt{x}} \ln t d t$, then $2 x \frac{d y}{d x}-y=$
(a) $x \ln \sqrt{x}$
(b) $\sqrt{x} \ln \sqrt{x}$
(c) $x+\ln \sqrt{x}$
(d) $\sqrt{x}+\ln \sqrt{x}$
(e) $\ln \sqrt{x}$
19. The area of the region bounded by the curves $y=\frac{4}{x}$ and $y=x$ from $x=1$ to $x=4$ is equal to
(a) $\frac{9}{2}$
(b) $3 \ln 2$
(c) $\frac{7}{2}$
(d) $\frac{9}{2}+\ln 2$
(e) $\frac{11}{2}$
20. If $A=\int_{-3}^{4} \sqrt{25-x^{2}} d x$, then which one of the following inequalities is False ?
(a) $21 \leq A \leq 24$
(b) $21 \leq A \leq 35$
(c) $0 \leq A \leq 35$
(d) $21 \leq A \leq \frac{25 \pi}{2}$
(e) $24 \leq A \leq \frac{25 \pi}{2}$
