King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

> Math 102 Exam I Term 112 Tuesday 28/02/2012 Net Time Allowed: 120 minutes

MASTER VERSION

- 1. The estimated area under the graph of $f(x) = \frac{1}{2}|x^2-3|$ from x = 0 to x = 8 by using four approximating rectangles and midpoints equals to
 - (a) 76
 - (b) 52
 - (c) 72
 - (d) 54
 - (e) 28

2. If the region bounded by the curves x+y=2, x=0, x=1, and y=0 is rotated about the x-axis, then the volume of the solid generated is equal to

(a)
$$\frac{7}{3}\pi$$

(b) 3π
(c) $\frac{10}{3}\pi$
(d) 5π
(e) $\frac{11}{3}\pi$

Math 102 Term 112 Exam I

T

3. The value of
$$\lim_{n \to \infty} \sum_{i=1}^{n} \left(2\sqrt{x_i} + \frac{1}{2\sqrt{x_i}} \right)^2 \Delta x$$
 on the interval $[1, 2]$ is equal to

(a)
$$8 + \frac{1}{4} \ln 2$$

(b) 8
(c) $12 + \frac{1}{4} \ln 2$
(d) 10

(e)
$$10 + \ln 2$$

4.
$$\int \frac{5}{x(4+3\ln x)^6} dx =$$
(a) $\frac{-1}{3}(4+3\ln x)^{-5} + c$
(b) $3(4+3\ln x)^{-5} + c$
(c) $-15(4+3\ln x)^5 + c$
(d) $\frac{-5}{3}(4+3\ln x)^5 + c$
(e) $5(4+\ln x)^{-6} + c$

-

5.
$$\int \frac{6x^2 - 13x - 5}{3x + 1} dx =$$

(a)
$$x^{2} - 5x + c$$

(b) $\frac{1}{3} \ln |3x + 1| + c$
(c) $2x^{2} + x + c$
(d) $x^{2} + \frac{1}{3} \ln |3x + 1| + c$

(e)
$$3x^3 - 6x + c$$

6. If
$$f(1) = 9$$
, $f(8) = 4$, and $g(x) = \frac{f'(x)}{\sqrt{f(x)}}$ is continuous on $[1, 8]$, then $\int_{1}^{8} g(x) dx =$

(a)
$$-2$$

(c) 7

(d)
$$1 - 2\sqrt{2}$$

(e)
$$2 - 4\sqrt{2}$$

7.
$$\int_0^{\ln\sqrt{3}} \frac{e^x}{1+e^{2x}} dx =$$

(a)
$$\frac{\pi}{12}$$

(b) $\frac{\pi}{3}$
(c) $\frac{\pi}{6}$
(d) $\frac{\pi}{4}$
(e) $\frac{\pi}{2}$

8. If f is an odd continuous function such that $\int_{-2}^{5} f(x)dx = 6$, and $\int_{3}^{5} f(x)dx = 10$, then $\int_{2}^{3} f(x)dx =$

(a) -4
(b) 16
(c) -16
(d) 10

See. 1

(e) -6

MASTER

i

9.
$$\int_0^{\frac{\pi}{4}} \frac{1 - \tan x}{1 + \tan x} dx =$$

(a)
$$\frac{1}{2}\ln 2$$

- (b) 2
- (c) 5
- (d) $-3\ln 2$
- (e) 1

10. If
$$f(x) = \begin{cases} 2-x, & 0 \le x \le 2\\ \sqrt{9-(x-5)^2}, & 2 < x \le 8 \end{cases}$$
,

then using a rea under curves to evaluate the integral $\int_0^8 f(x) dx,$ we get

- (a) $2 + \frac{9\pi}{2}$
- (b) $2 + 8\pi$
- (c) $2 + 2\pi$
- (d) $8 + 25\pi$
- (e) $2 + 25\pi$

Math 102 Term 112 Exam I

Ť

11.
$$\int_{0}^{\pi/4} \frac{12}{(\cos^{2} x)(1+3\tan x)^{3/2}} dx =$$
(a) 4
(b) 6
(c) 3
(d) 2
(e) 1

12. If
$$f(x) = \int_{x}^{2x} \frac{e^{t}}{t} dt$$
 then $f'(1) =$

(a)
$$e^2 - e$$

(b) $e^2 - 1$
(c) $e + 1$

(d)
$$\frac{e^2}{2} - e$$

(e)
$$e - 1$$

13. The volume of the solid obtained by rotating the region bounded by the parabolas $y = x^2$ and $y^2 = x$ about the line x = 2 is given by the integral

(a)
$$\pi \int_0^1 (-4y^2 + y^4 + 4\sqrt{y} - y) dy$$

(b) $\pi \int_0^2 (4y^2 - y^4 - 4\sqrt{y} - y) dy$
(c) $\pi \int_0^1 (-4y^2 + y^4 - 4\sqrt{y} - 2y) dy$
(d) $\pi \int_0^2 (-4\sqrt{x} + x - 4x^2 - x^4) dx$
(e) $\pi \int_0^1 (x^2 - x^4) dx$

14. The area of the region enclosed by the curves $y^2 = 4 - x$ and x + 2y = 1 is given by the integral

(a)
$$\int_{-1}^{3} (3+2y-y^2) dy$$

(b) $\int_{-5}^{3} \left[\frac{1}{2} (1-x) - \sqrt{4-x} \right] dx$
(c) $\int_{-1}^{3} (y^2 - 2y - 3) dy$
(d) $\int_{-5}^{4} \left[\frac{1}{2} (1-x) - \sqrt{4-x} \right] dx$
(e) $\int_{-3}^{1} (3-2y+y^2) dy$

- 15. If a particle is moving in a straight line with velocity (in cm/s) given by $v(t) = 20(\cos t)(\sin^3 t)$ then the distance traveled by the particle during the time interval $[0, \pi]$ is
 - (a) 10 cm
 - (b) 5 cm
 - (c) 20 cm
 - (d) 0 cm
 - (e) 30 cm

- 16. The base of a solid S is the region enclosed by the curve $y = \sqrt{1 x^2}$ and the x- axis. If the cross sections of S perpendicular to the x-axis are squares, then the volume of S is
 - (a) $\frac{4}{3}$ (b) 4 (c) $\frac{7}{3}$ (d) 3 (e) $\frac{5}{3}$

Math 102 Term 112 Exam I

-

Page 9 of 10

17. An expression for the area under the graph of $f(x) = 2x^2 - 8x, 4 \le x \le 5$, as a limit and using right endpoints is

(a)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{8}{n^2} i + \frac{2}{n^3} i^2 \right)$$

(b)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{8}{n} - \frac{8}{n^2} i + \frac{2}{n^3} i^2 \right)$$

(c)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{16}{n^2} i + \frac{32}{n^3} i^2 \right)$$

(d)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{16}{n} - \frac{16}{n^2} i + \frac{4}{n^3} i^2 \right)$$

(e)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{8}{n^2} i - \frac{4}{n^3} i^2 \right)$$

18. If
$$y = \sqrt{x} \int_{3}^{\sqrt{x}} \ln t \, dt$$
, then $2x \frac{dy}{dx} - y =$

(a) $x \ln \sqrt{x}$

(b) $\sqrt{x} \ln \sqrt{x}$

- (c) $x + \ln \sqrt{x}$
- (d) $\sqrt{x} + \ln \sqrt{x}$
- (e) $\ln \sqrt{x}$

MASTER

19. The area of the region bounded by the curves $y = \frac{4}{x}$ and y = x from x = 1 to x = 4 is equal to

(a)
$$\frac{9}{2}$$

(b) $3 \ln 2$
(c) $\frac{7}{2}$
(d) $\frac{9}{2} + \ln 2$
(e) $\frac{11}{2}$

-

20. If $A = \int_{-3}^{4} \sqrt{25 - x^2} \, dx$, then which one of the following inequalities is **False** ?

- (a) $21 \le A \le 24$
- (b) $21 \le A \le 35$
- (c) $0 \le A \le 35$
- (d) $21 \le A \le \frac{25\pi}{2}$
- (e) $24 \le A \le \frac{25\pi}{2}$