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Dispersion of Love waves in a stochastic layer
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Summary. — We consider the problem of propagation of Love waves in an elas-
tic layer of uniform thickness overlying a half-space. The layer is assumed to have
elastic properties which vary randomly with position. The mean field in the layer is
obtained using the smoothing method. Some interesting cases are described graph-
ically.
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Introduction

The existence of horizontally polarized shear waves propagating in a homogeneous
elastic layer overlying an elastic half-space was shown by Love [1]. Since then, these
surface waves, commonly known as Love waves, have attracted considerable attention due
to the applications in earthquake engineering and theoretical seismology. The observed
data for Love waves in a seismological station is also used to interpret the internal
structure of the earth. However, the homogeneous and isotropic layered model of the
earth considered by Love does not describe the real situation very well. The anisotropic
nature of the earth has been subject of study of many authors, e.g., Anderson [2, 3]
considered the Rayleigh waves in an anisotropic single half-space model while Kelley [4]
studied propagation of Love waves in case of some interesting variations in the overlying
layer using numerical methods. Others, among them Sato [5] and Paul [6] studied the
problem of variations in the shape of the overlying layer using analytical methods.

The problem of a non-homogeneous layer or the half-space due to poor consolidation
or presence of inhomogeneities has also attracted interest. Ghosh [7], Chattopadhaya et
al. [8] have considered Love waves in an inhomogeneous layer overlying a homogeneous
half-space. Similar studies in which the density was assumed to be varying were carried
out by Zaman et al. [9,10]. All these models assumed the inhomogeneity to be described
by a deterministic function of depth.
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The earth, in general and the near surface in particular, have a very complex elastic
parameter distribution. The deterministic models mentioned above do not account for
point-to-point irregularities of the earth. These are best described by assuming the elastic
properties to be randomly varying with position. This gives rise to a stochastic model.
In this model, the random inhomogeneity is described through a random function of
space variables and a random parameter. In realistic media model, both density and
rigidity show random variation as from the geophysical point of view, the variation in
both density and rigidity occur. Korvin [11] has combined the process by considering
the shear velocity to be a random function. In this paper we consider the density to be
a random function of depth. However a corresponding change in rigidity may also be
considered at the cost of a more complicated model. Our present work is restricted to the
case in which only density of the medium is assumed to be a random function of depth.
The theory of wave propagation in such a media has been discussed by Sobczyk [12]. Some
interesting studies in this direction are by Korvin [11,13] who used perturbation method
to calculate the attenuation coefficient due to random inhomogeneities. Chu, Askar and
Cakmak [14] used the same method in their work to measure elastic properties of the
medium. Li and Hudson [15] used the Born approximation to study the elastic waves in a
laterally heterogenous layer. In this paper, we consider propagation of the Love waves in
an elastic layer of uniform thickness overlying a homogeneous, isotropic half-space. The
overlying layer is assumed to have depth dependent randomly varying properties. Such
a model could be used to describe the situation where the overlying layer has a sand-clay
mixture constitution. Assuming that the inhomogeneities caused by such a mixture are
small, we use the first-order smoothing perturbation method to obtain the mean field in
the layer. The randomness in the parameters is taken to be an ergodic and statistically
homogeneous stochastic process. The mean field thus obtained is used to numerically
present the affects of presence of inhomogeneities in different ways.

Smoothing method

We present here a brief account of the smoothing method. Many practical problems
associated with continuous stochastic media lead to differential equations with random

coefficients which can be written as
(1) L(v) =y,
where L () is a linear stochastic operator depending upon the random parameter v and

g is a determinate function.
Let us represent L () and the solution u () as

2 L) =(L)+ L1,

(3) u(y) = (w) = wu,

where () denotes the statistical mean and (L1) =0, (u1) = 0. (L) = Ly and (u) = ug are
the mean deterministic operator and mean field respectively. Equation (1) then becomes

4) (Lo+Li)u=g.
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If Lo is an invertible operator, we may write eq. (4) as

(5) u=Lg'g—Ly'Liu.

Taking average of eq. (5), we get

(6) (u) = Lg'g — L5 (L1w) .

In order to find (Lju), we refer back to (5) and obtain

(7) Ly(uw) = Li(Lg'g) = Iy Ly (w) .

Upon averaging, eq. (7) yields

(8) (Lywy = = (L7 'Ly ' Lyu) .

If we assume the Bourret local independence hypothesis [12], we get
9) (L1Lg ' Lyw) = (LiLg™* L) (u) -

Thus using egs. (8) and (9), we may write (6) as

(10) Lo (u) — (L L5 L) (u) = g.

Now, let us be more specific and consider the stochastic Helmholtz equation that can
be written as

(11) Low(?) + X (2, 7u(Z) =g,

where Lo is a deterministic Laplace differential operator and X (Z’,) is a random field.
Assuming Ly to be invertible, we may write

(12 L5 (@) = [ Go(@, 70)f(Fo)d T,

where Go(Z', ) is the Green’s function of the operator L. Hence eq. (10) leads to the
following where L; is replaced by X (7', 7):

(13) Lo (u(@, 7)) - / Go(T, To) Kxx (u(T0,7)) dT0 = 9(T),

where Kxx(Z', ) is the correlation function of the random field.
Equation (13) is an integro-differential equation in the mean field (u(Z',~)). We apply
these ideas to the Love wave problem.
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Formulation of the problem

We consider a layer of uniform thickness h overlying a homogeneous and isotropic
half-space. The axes are chosen such that the free surface coincides with 2z = 0 and
the interface between the layer and the half-space is the plane z = h. The horizontally
polarized shear wave is assumed to be propagating in the positive z-axis direction in the
upper layer. The solution to this problem is well known if the upper layer is homogeneous
and isotropic see, e.g., Aki and Richard [16]. We assume that the overlying upper layer
has inhomogeneities which are random functions of position. As a consequence the
horizontally polarized shear wave, commonly known as Love wave, will appear as a
random field. The equation of motion can be written as

(T, t) | w(Z,t) 1 0W(Z,t)
(14) Ox? 822 2 o2 =l )

where o(Z,t) is the source function, 8 = \/u/p is the shear wave velocity, u being
rigidity and p density of the medium and w is the angular frequency. Assuming that
the source (7', t) and the displacement v(7Z,t) are time-harmonic, we take these in the

following form:

(15) { v(z, z,t) = V(2) exp [i(kz — wt)] ,

o(z,z,t) = S(z)exp [i(kx — wt)] ,

where k is the wave number. The equation of motion (14) thus transforms into the
following ordinary differential equation:

(16) V() | (ﬂﬁf - k?) V() = S(2).

dz?

Now, let us assume the elastic parameters to be varying as a random process. Al-
though both p and u can be taken to be randomly varying functions, we assume only
the density p to be a function of the random variable v and neglect variations in p.
As mentioned earlier, this does not take into account a realistic but more complicated
situation in which both p and x4 would vary. Thus we may write

(17) p={p [1+e(z,7)],

where (p) is the mean density, € a small parameter and p/(z,v) is a random field such

that (o'(z,7)) = 0.
Let us use the subscripts 1 and 2 to denote the displacement field and density in the

upper layer and the half-space, respectively. The equations of motion in the layer and
the half-space can be written as

(19) s - ot Ten) + € () 9 e Vi) = 506)

and

(19 [ - ot vt =0,
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where

(U2
k= m (0) L+ (2,7),

(20) 5 w? 5 w2
k - — s ]{7 = —
< 1> i () 2 2 P2

02 = (k2) — K, o2 =k" —K].

The following boundary conditions are to be satisfied.

1) Normal stress at the free surface should vanish, i.e.

=

(21) Hz“Lo .

2) The displacement and the stress at the interface between the layer and the half-space
should be continuous,

(22) Vi(h) = Va(h) = q (say),

Solution of the problem

We are interested in finding the field (V3(z)) in the upper layer. To this end, we
consider the auxiliary problem consisting of the differential equation (18) subject to the
initial conditions

‘/1<Z)|z:0 = XO>
24
(24) [%} —Y.
dz |,

Once the solution to the initial value problem (24) is obtained, the solution of our
problem can be found by imposing the boundary conditions (21)-(23). Now, using the
integro-differential equation (13) derived from the stochastic Helmholtz equation, we get
from eq. (18)

(25) E;— - o%] Wi(2) =

() [ Gata,20) (e, 20) (o) 20 + (2,
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where K, is the correlation function for the process p(z,v) and G1(z, o) is the Green’s
function given by

2
M +07G1(z2,20) = 6(2 — 20)
(26) ClG'ld(z 20)
T z=0 =0 G (Z, ZO)lz:O =0.

The solution to (26) can be found to be

1.
(27) Gr(z20) =4 on sino1(z — 20), 2 <z,
otherwise.

We can choose the correlation function in the form
K2 — 20) = D?exp [~ |z — 2| 8],
where D? is the variance and b is the inverse of the correlation length. Equation (25)

then gives the following integro-differential equation in the mean field (V1(2)):

dz?
e (k?)* D?

a1

(28) [22— + af} (Vi(2)) =

/Oz sinoy (2 — 20)e #7210 (V1 (20)) dzg + S(z) .

Case I

Let us first take the source S(z) = 0, .e. we assume that the wave is coming from a
far away source. The solution can be found by taking the Laplace transform of (28) as
the kernel of the integral is of the convolution type. The transformed integro-differential
equation (28) together with the initial conditions (24) lead to the solution

s[(s+b)* + o] [(s+ )%+ 03]
P(s) O P(s) ’

where Fi(s) is the Laplace transform of (V;(z)) and
(30) P(s) = (s> +0%) [(s + b)? + 0%] — & (k2)* D2

We use the Cauchy residue integral formula to find the inverse Laplace transform as

4 4
(31) (V1(2)) = Xo Z Age®* + Yo ZBkes’“zy
k=1 k=1
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where
o) PEICELES.]

F T T (d/ds)P(s)

S§=8

and
(33) B, = [+ T ai]

" (d/ds)P(s)

S§=8

Here si, k = 1,2,3,4 are the zeros of P(s). We can now eliminate the auxiliary values
Xo and Y, using (21) and (22) to get

YO = Ov
(34)

XO = 4—q—h-

Zk:l Agesk

Further, in the half-space, the displacement field will be of the form
(35) Va(z) = qe™ %%,

so that using continuity condition (22) at z = h, we get

4
q E _ Ak: eskz
(36) (Vi(2)) = Lt A
> k=1 Are

Equation (36) gives the mean field in the layer 0 < z < h. Using the continuity of the
stress at the interface (eq. (23)), we obtain the so-called dispersion relation for the Love
wave in the stochastic medium as

4 h
2 ok=1 SARe™"  paoy

et Axess M

(37)

Case II

Let us now assume that an energy source S(z) = 4wd(z — h) is present at the interface
between the two media. Following the same procedure as in case I, the integro-differential
equation (25) leads to

s[(s+b)%+o?] N [(s+b)%+07]
P(s) 0 P(s)
e~sh [(s +0)2 + of] 2002
P(s) (k)
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Fig. 1. — Velocity difference vs. frequency.

where D(s) is the same as in eq. (30). The inverse transform now yields

4 4 4
(39) Vi(2)) = Xo > Are™* + Yo > Bre™* + > Crer#,
k=1 k=1 k=1

where Ay, and By, are given by eqgs. (28) and (29), while

e~sh [(s +b)% + U%]
(d/ds)P(s) ’

8=S8jk

(40) Cr=

Sk, k=1, .....,4 being zeros of P(s).
Using the boundary conditions (21) through (23), we can again determine X, and Y,
to get

4 4
geo2h — zi_l Cresrh _
(41) (Vi(2)) = 7 = Ape® 4% Cret®.
2 k=1 Aresh 1@2::1 l;
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Fig. 2. — Effect of correlation length.

Discussion and numerical results

In order to test our results and in particular the dispersion relation of Love waves given
by eq. (37), we compare it to the case of a homogeneous and isotropic layer overlying
a half-space. For this case ¢ = 0 and b = 0. The zeros of the P(s) are now given by
§1 = S$2 = 011, 83 = 84 = —01%. Using these values we determine the coefficients Ag in

2 2

s 4o
izL‘zl, k=1,., 4.
4s(s® + of)

k=4 1 .. 1 ;
So that Y Agesrh = —eo1th 4 Ze—oiih anq
k=1 2 2 k=1
Using these results in the dispersion relation derived by us in (37) we obtain

eq. (32). This gives Ay =

k=4
skh __ o1i o1ih __ 015 ,—0o1ih
ApspesEt = e e .

(42) H202 Qqietih _ g=orihorih | o—orih
H1
This gives
(43) F2%2 _ tan o1h,
H1

which is the dispersion relation for Love wave propagating in a homogeneous and isotropic
layer overlying a half-space [16].

The model considered by us takes into account the change in density of the medium
only. This does not adequately model the rock behavior in which density and rigidity
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Fig. 3. — Effect of inhomogeneity.

are proportional. Keeping in mind this limitation, we compute the difference in the
phase velocity of Love wave in the presence of random variation in density with that
of homogeneous case. Using ¢ = 0.1 and the correlation length b = 2, the difference in
the two phase velocities is plotted against frequency in fig. 1. It shows an increase with
the frequency. The bold line corresponds to the fundamental mode while the dotted line
shows the first mode. This illustrate the need to consider the stochastic effect. In order
to study the effect of randomness of the medium, the inverse correlation length b has
been chosen. To confirm the established fact that randomness causes attenuation, we plot
the percentage attenuation as the correlation inverse length b increases. Figure 2 shows
that difference between the homogeneous case and the stochastic case (corresponding to
€ = 0.1) decreases as b increases and goes to zero very rapidly after b = 0.5. This agrees
with elastic waves in a random media [11]. Finally, the effect of increase in inhomogeneity
is studied through increase in the parameter €. By choosing z = h/2, and b = 0.5, we
plot the difference of displacement between the homogeneous and random case. This is
presented in fig. 3.

As a conclusion, one can assert the need for a stochastic model whenever the overlying
layer does not have a homogeneous constitution. The perturbation procedure outlined
here can be extended to include the variation of rigidity of the layer and variation of elastic
properties of the underlying half-space. The present paper highlights the significance and
effect of the randomness in the layer and shows that this effect dies out as the inverse
correlation length increases.
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