On Perturbation and Beyond F. D. Zaman Mathematical Sciences Department Abstract

Perturbation method has been a powerful tool in solving problems arising in mathematical physics, direct and inverse scattering, solid and fluid dynamics and various engineering disciplines. After a brief introduction to the method and some interesting applications, some new alternates will be discussed. In particular a brief account of the decomposition method introduced by Adomian and homotopy analysis method recently proposed by Shijun Liao will be provided.

Plan of the talk

Basic Idea

- Boundary value Problems
- Eigenvalue Problems
- Adomian Method
- Homotopy Analysis Method
- Concluding Remarks

Consider an initial or boundary value problem

- Au = f, where A is some differential operator, acting on a domain that lies in an appropriate Hilbert space and f is specified.
- For even simple differential operators, closed form solution may not be available except for some nice values of *f*.
- The idea is to closely approximate the given problem to that which can be solved exactly. This approximation is achieved by introducing a small parameter ε
- Secondly it is assumed that the solution to the given problem can be written as a power series in ε(called perturbation expansion)
- Next, the expansion is put in the given problem and coefficients of powers of ε are compared.
- Zeroth order problem corresponds to un-perturbed case and provides with the leading term in the solution

Perturbed BVP Consider the equation $u'' + (1 + \varepsilon x^2)u = f(x), 0 < x < 1,$ u(0) = u(1) = 1.

The unperturbed problem corresponds to $\varepsilon = 0$

 $u'' + u = 0, \qquad 0 < x < 1$ u(0) = u(1) = 1

If $g(x,\xi)$ is Green's function of the problem, the solution to the unperturbed problem can be written as

where $w_0(x)$ is solution of the homogeneous problem. We can easily find the relevant Green's function. The coefficient of ε gives rise to the inhomogeneous problem

$$u_{1}'' + u_{1} = x^{2} u_{0},$$

$$u_{1}(0) = u_{1}(1) = 0$$

Put $F(x) = \int_{0}^{1} g(x,\xi) f(\xi) d\xi$

We can then write the solution as

$u(x) = w_0(x) + F(x) + \int_0^1 g(x,\xi)\xi^2 [w_0(\xi) + F(\xi)]d\xi$

This simple idea can be used in direct and inverse scattering problems in which the physical parameters (properties) of a medium show small determinate or random variations from a background comparison medium. Some examples are

 Zaman, Asghar and Ahmad: Dispersion of Love type waves in an inhomogeneous layer, J. Phys Earth, 1990.

• Zaman and Masood: Recovery of propagation speed and damping of the medium, Il Nuovo Cimento (C), 2002.

• Zaman and AI –Zayer : Dispersion of Love waves in a stochastic layer, II Nuovo Cimento (To Appear).

Eigenvalue Problem

- Find eigenvalues and eigenfunctions of the unperturbed problem
- If the unperturbed problem is symmetric. The eigenvalues are real and eigenfunctions form a complete orthonormal set
- This provides a powerful tool to recover the correction terms in the perturbed eigenvalues
- The perturbed eigenfunctions can only be obtained as a Fourier series

Problem in Ocean Acoustics

 $p_{rr}(r,z) + \frac{1}{r} p_r(r,z) + p_{zz}(r,z) + k^2 p(r,z) = 0$

p(r,0) = 0 and $p_z(r,h) = 0$. We solve using separation of variables $p(r,z)=\Phi(r)\theta(z)$

8

The Idealized Depth Equation is the Sturm Liouville Problem

$$\phi^{//}(z) + k^2 \phi(z) = \lambda \phi(z)$$

 $\phi(0)=0$ and $\phi'(h)=0$

The normalized eigenfunctions and eigenvalues are

$$\phi_{m}(z) = \sqrt{\frac{h}{2}} \sin \frac{(2m-1)\pi z}{2h}$$

$$\lambda_{m} = k^{2} - \left[\frac{(2m-1)}{2h}\right]^{2}$$

$$m = 1, 2, 3 \dots \dots$$

An ocean with depth dependent properties leads to

 $\psi'(z) + k^2 n^2(z) \psi(z) = \lambda \psi(z)$

with boundary conditions

 $\psi(0) = 0$ and $\psi'(h) = 0$

The index of refraction

 $n^{2}(z) = 1 + \varepsilon s(z)$

Contains a perturbation term $\mathcal{E}S(Z)$ The case $\mathcal{E} = 0$ represents an idealized ocean

10

Perturbation Results The first correction term in the perturbation series can be found as

 $\lambda_{m}^{(1)} = \frac{2k^{2}}{h} \int_{0}^{h} s(z) \sin \frac{(2m-1)\pi z}{2h} \bigg|^{2} dz$

The Fourier coefficien ts are

$$\alpha^{(1)}{}_{mn} = \frac{2k^2}{h} \int s(z) \sin \frac{(2m-1)\pi z}{2h} \sin \frac{(2n-1)\pi z}{2h} dz$$

 $\alpha^{(1)}{}_{mm}=0$

$$_{m}(z)^{(1)} = \sum_{k=1}^{\infty} \alpha^{(1)}_{mk} \phi_{k}(z)$$

11

Layered Model (Zaman & Al-Muhiameed Applied Acoustics:2000)

- Ocean properties are depth dependent
- The variations is piecewise constant
- Depth equation has piecewise constant coefficients
- Rigid seabed assumption gives nice normal mode theory

Undulated Seabed (Zaman & Marzoug ICIAM 2003)

Inhomogeneous, layered model with non-smooth seabed

13

Beyond Perturbation Methods

 Decomposition Method Adomian, G., Solving Frontier Problems of Physics: The Decomposition Method, Kluwer, London &. Boston, 1994. **Homotopy Analysis Method** Liao, Shijun, Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman & Hall/ CRC, 2004.

Adomian Method

- Powerful tools for ordinary and partial differential equations
- Can be applied to nonlinear problems
- The approximation series converges quickly
- Approximate solutions by this method often are in the terms of polynomials
- The method is based upon expressing the solution in terms of inverse operator of a linear operator and then approximating it by an infinite series

Method Description Consider the nonlinear problem $M \left[u \left(\underline{r}, t \right) \right] = f \left(\underline{r}, t \right)$

where M is a nonlinear operator, u is a dependent variable, $f(\underline{r}, t)$ is a known function, and \underline{r} and t are spatial and temporal variables. Assume that the nonlinear operator can be expressed as

 $M = L_0 + N_0$

where L_0 is a linear operator and N_0 is some nonlinear operator Under these assumptions the original problem can be written as

 $L_{0}\left[u\left(\underline{r},t\right)\right] + N_{0}\left[u\left(\underline{r},t\right)\right] = f\left(\underline{r},t\right)$

The solution is then expressed as

$$u(\underline{r},t) = u_{0}(\underline{r},t) + \sum_{n=1}^{\infty} u_{n}(\underline{r},t)$$

where

$$u_{0}\left(\underline{r},t\right) = L_{0}^{-1}\left[f\left(\underline{r},t\right)\right]$$
$$u_{n}\left(\underline{r},t\right) = -L_{0}^{-1}\left[A_{n-1}\left(\underline{r},t\right)\right]$$

$$A_{n}(\underline{r},t) = \frac{1}{n!} \left[\frac{d^{n}}{dq^{n}} N_{0} \left(u_{0}(\underline{r},t) + \sum_{1}^{\infty} u_{n}(\underline{r},t)q^{n} \right) \right]_{q=0}$$

 $u_{1}(\underline{r},t) = -L_{0}^{-1} \left[A_{0}(\underline{r},t) \right]$ $A_{0}(r,t) = N_{0} \left[u_{0}(r,t) \right]$

Illustration

Consider the problem

$$V'(t) + V^{2}(t) = 1, \quad t \ge 0$$

 $V(0) = 0$

We can replace this equation by the following

$$V(t) = t - \int V^{2}(t) dt$$

0

The solution is given by

$$V(t) = V_0(t) + \sum_{1}^{\infty} V_k(t)$$

where

$$V_{0}(t) = t$$

$$V_{k}(t) = -\int_{0}^{t} A_{k-1}(t)dt, \quad k \ge 1$$

$$A_{k}(t) = \sum_{0}^{k} V_{n}(t)V_{k-n}(t)$$

where

$$V_1(t) = -\frac{t^3}{3}, V_2(t) = \frac{2t^5}{15}, V_3(t) = -\frac{17t^7}{315}$$

One can verify that perturbation method also gives the same solution

Problem from wave propagation in rods with variable Young's modulus
(Bhattacharya and Bera: Applied Mathematics Letters (17), 2004)
Consider elastic bar of length *I*, cross section *A*, material density *ρ* and elastic modulus *E*. Assume that E varies with position.
The governing equation is

$$\frac{\partial}{\partial x} \left[AE \ \frac{\partial u}{\partial x} \right] = \rho A \ \frac{\partial^2 u}{\partial x^2},$$

with initial and boundary conditions

$$u(x,0) = 0 = \frac{\partial u(x,0)}{\partial t},$$
$$u(l,t) = kH(t),$$
$$u(0,t) = 0,$$

K is a constant and H(t) is the Heaviside function.

$$E = E(x) = E_0 + \varepsilon E_1(x)$$

Taking Laplace transform in time we can arrange it as

$$\frac{d^2 U}{dx^2} + \left(1 - \frac{\varepsilon}{E_0}E_1\right)\frac{\varepsilon}{E_0}\frac{dE_1}{dx}\frac{dU}{dx} - \frac{s^2}{c^2}\left(1 - \frac{\varepsilon}{E_0}E_1\right)U = 0$$

$$U(0) = 0$$
, and $U(l) = \frac{\kappa}{s}$

To apply Adomian method we put $L_{0}(U) = \frac{d^{-2}U}{dx^{-2}}$ $N_{0}(U) = a_{1}\frac{dU}{dx} - \frac{k^{-2}}{c^{-2}}(1 - a_{1}x)$ $a_{1} = \frac{\varepsilon}{E_{0}}\frac{E_{1}}{l}$ So that

$$L_{0}U = -N_{0}U$$
$$U_{n+1} = -L_{0}^{-1} \left[N_{0}U_{n} \right]$$

After some effort one can write the solution in the transformed plane as

$$U = \frac{ck}{ls^{2}}\sinh(\frac{sx}{c}) - \frac{a_{1}x^{2}}{4}(\frac{k}{sl})\cosh(\frac{sx}{c}) - \frac{a_{1}x}{4}(\frac{ck}{s^{2}l})\sinh(\frac{sx}{c}) - - -$$

Perturbation Method

If we apply perturbation Procedure on the transformed governing equation The unperturbed problem corresponds to

$$\frac{d^{-2}U}{dx^{-2}} - \frac{s^{-2}}{c^{-2}}U = 0$$
$$U(0) = 0, U(1) = \frac{k}{s}$$
$$U_{0} = \frac{k}{s}(\csc h \frac{sl}{c}) \sinh \frac{s}{c}$$
This gives the same leading to

This gives the same leading term if expansion of csch sl/c is used.

Remarks

- The perturbation method seems to give the same result as Adomian method.
- The linear part of the operator in the Adomian method is the unperturbed (linearized) operator.
- The perturbation method provides some sense of smallness and the limitations involved which helps to select the unperturbed and perturbed part in the problem
- The claim that Adomian method yields fast convergence needs to be studied.

Liao's Homotopy Analysis Method

Claims

•

The method is valid for even strongly nonlinear problems

No need to identify a small / large parameter

 The convergence rate and region of convergence can be adjusted

Different base functions can be used to suit the problem

Description of Method

Consider the problem (linear or non-linear)

 $M \quad \left[u \quad \left(\begin{array}{c} \underline{r} \\ \underline{r} \end{array}, t \right) \right] = 0 \quad \cdots \quad \cdots \quad (1)$

M is a nonlinear or linear operator, $u(\underline{r},t)$ is an unknown function

Let $u_0(\underline{r},t)$ denote an initial guess, $h \neq 0$ an auxiliary parameter, $H(\underline{r},t) \neq 0$ an auxiliary function and L an auxiliary linear operator

$$L[f(\underline{r},t)] = 0$$
 when $f(\underline{r},t) = 0$

Then, using the parameter q we define the homotopy

 $H\left[\phi(\underline{r},t,q);u_{0}(\underline{r},t),H(r,t),h,q\right] = (1-q)\left\{L\left[\phi(\underline{r},t;q)-u_{0}(\underline{r},t)\right]-qhH(\underline{r},t)M\left[\phi(\underline{r},t;q)\right]\cdots\cdots(2)\right\}$

Enforcing the homotopy to be zero, we have the zero-th order deformation equation.

$H\left[\phi(\underline{r},t,q); u_0(\underline{r},t), H(\underline{r},t), h,q\right] = 0$

Giving us

$$(1-q)\left\{L\left[\phi(\underline{r},t;q)-u_0(\underline{r},t)\right]\right\} = qhH(\underline{r},t)M\left[\phi(\underline{r},t;q)\right],$$

 $\phi(\underline{r},t)$ depends upon initial guess, the auxiliary parameter h, auxiliary linear operator *L* and embedding parameter q which lies in [0,1]. For q =0 The zero-th order deformation equation becomes

$$L \left[\phi \left(\underline{r}, t \right) - u_{0} \left(\underline{r}, t \right) \right] = 0 \quad \text{or} \quad \phi(\underline{r}, t) = u_{0}(\underline{r}, t)$$

For q=1,

 $M[\phi(\underline{r},t;1)] = 0 \quad \text{which is the same as given equation if}$ $\phi(\underline{r},t) = u(\underline{r},t)$ Thus as the embedding parameter changes from 0 to $1, \phi(\underline{r}, t)$ evolves from the initial guess to the exact solution. That is why the word deformation has been used in the context above.

Higher order

Define the m-th order derivatives

 $u_0^{[m]}(\underline{r},t) = \left\lfloor \frac{\partial^m \phi(\underline{r},t;q)}{\partial q^m} \right\rfloor_{q=0}$ Expanding by Taylor's series and using the result on the left

 $\phi(\underline{r},t;q) = u_0(\underline{r},t) + \sum_{m=1}^{\infty} u_m(\underline{r},t)q^m$

Implementation

Let us re-visit the simple example

 $V'(t) + V^{2}(t) = 1, \quad t \ge 0$ V(0) = 0

The initial guess which satisfies the DE and the initial condition is

 $V_0(0) = 0$

Let q be the embedding parameter. We choose the auxiliary linear operator

$$L[\phi(t;q)] = \alpha_1(t) \frac{\partial \phi(t;q)}{\partial t} + \alpha_2 \phi(t;q)$$

Where S's are to be determined. Keeping in mind the given problem we can define the nonlinear operator

$$M[\phi(t;q)] = \frac{\partial \phi(t;q)}{\partial t} + \phi^2(t;q) - 1$$

With all the notations as described before we define a family of equations

$$(1-q)L[\phi(t;q) - V_0(t)] = hqH(t)M[\phi((t;q)], \phi(0;q) = 0$$

In most cases choice of auxiliary parameter h and auxiliary function H(t) as well as the initial guess provides a flexibility that puts this method at an advantage as compared with other methods (Liao) When q=0, we get

:0

$$L[\phi(t;0) - V_0(t)] = 0, \quad \phi(0;0) = 0$$

The solution is the initial guess. q=1 gives $\phi(t;1) = V(t)$

As described in the method above

$$V_{m}(t) = \frac{1}{m!} \left[\frac{\partial^{m} \phi(t;q)}{\partial q^{m}} \right]_{q=1}$$

 $\phi(t;q) = V_0(t) + \sum_{m=1}^{\infty} V_m(t)q^m$

leading to

Determination of V- functions Consider $(1-q)L[\phi(t;q)-V_0(t)] = hqH(t)M[\phi((t;q)], \phi(0;q) = 0$

Differentiate this equation m times with respect to q and then put q=0, we obtain the so-called mth-deformation equation

$$L[V_{m}(t) - \chi_{m}V_{m-1}(t)] = hH(t)R_{m}(V_{0} - -V_{m-1}),$$

$$V_{m}(0) = 0$$

$$\chi_{m} = \frac{0, \quad m \le 1}{1 \quad m > 1}$$

Mathematica or some other software can be used to solve above.linear first order differential equation.

Some Recent work

 S. Liao: An explicit analytic solution to the Thomas-Fermi equation, Applied Mathematics and Computation, 144, 2-3, 2003.

 S. Liao: On the homotopy analysis method for nonlinear problems, Applied Mathematics and Computation, 147, 2-3, 2004.

Concluding Remarks

- The perturbation method provides a measure of smallness which is inherent in the physics of the problem. This is not necessarily a drawback. It also helps to relate the solution of the perturbed problem to that of a perturbed problem
- The Adomian method and Homotopy method can well be applied if one has experience in perturbation to choose good first approximations
- The literature has some examples where an application of such a method without taking into account physics of the problem has led to un-realistic solutions of nonlinear problems
- One may take up a comparative study to study the rates of convergence in all three methods