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Abstract

We investigate the direct and inverse problem associated with the torsional waves

propagating in a cylinder. We analyse the usual wave equation as well as the damped

wave equation and consider the problem of recovering the initial profile from the obser-

vations of the final profile. This inverse problem arises when experimental measure-

ments are taken at any given time, and it is desired to calculate the initial profile. An

integral representation for the problem is found, from which a formula for initial distur-

bance is derived using Picard�s criterion and the singular system of the associated

operators.
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1. Introduction

The classical direct problem in wave propagation is to determine the wave

distribution in a medium as the time progresses. The task of determining the

initial distribution from the final distribution is distinct from the direct prob-

lem and is identified as the initial inverse problem [2,4,5,7]. In many physical
applications, one encounters the situation where the usual wave equation does

not serve as a realistic model. For instance, the wave equation does not model

correctly if the medium of propagation offers resistance, so a damping term

which is proportional to velocity is introduced in the wave equation. We intro-

duce a damping term in the wave equation [6] and study its effect on the inver-

sion. The damping may be caused due to impurities in the medium, distributed

boundary frictions or small viscous effects.

In the second section, the problem of torsional waves propagating in a
cylinder is formulated. The direct and the inverse problems without damping

are discussed in the third section. In the fourth section a damping term is

introduced in the governing equation and its effects on the direct and the

inverse problem is studied. Also an example is presented to check the

validity of the inverse solutions. Finally, in the last section the results are

summarized.

2. Formulation of the problem

The displacement components in the cylindrical polar coordinates are ur, uh,

uz and the components of stress are rrr, rrh, rhh, etc. The torsional waves prop-
agating in a cylinder involve only uh while other components are zero. More-

over, Uh is independent of h. The governing equation for torsional waves

propagating in a cylinder is given by [1]

o2uh
or2

þ 1

r
ouh
or

¼ o2uh
oz2

þ 1

c2
o2uh
ot2

; r; z 2 R; ð1Þ

where c ¼ ffiffiffiffiffiffiffiffi
l=q

p
is the shear velocity and is the region

R ¼ fðr; zÞ=r 2 ½0; a�; z 2 ½0; b�g. ð2Þ

The field uh(r, z, t) satisfies the following boundary conditions

uhðr; 0; tÞ ¼ 0; uhðr; b; tÞ ¼ h; ð3Þ

ouhðr; z; 0Þ
ot

¼ 0. ð4Þ
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The surface of the cylinder is kept stress free which gives

rrh ¼ l
ouh
or

� uh
r

� �
¼ 0; at r ¼ a. ð5Þ

Also we assume the displacement at r = 0 is finite.

We consider the inverse problem of finding initial disturbance g(r, z) from

the information of final profile f(r, z) for some future time t = T, so that

gðr; zÞ ¼ uhðr; z; 0Þ; ð6Þ
f ðr; zÞ ¼ uhðr; z; T Þ. ð7Þ

3. The direct and inverse problem without damping

We assume that the solution of the direct problem (1) is of the form

uhðr; z; tÞ ¼
X1
n¼1

un;mðtÞ/n;mðr; zÞ. ð8Þ

The solution of the corresponding eigenvalue problem is given by

/n;mðr; zÞ ¼
2

a
ffiffiffi
b

p
J 0
0ðaknÞ

sinðlmzÞJ 0ðknrÞ; ð9Þ

where 0 denotes derivative with respect to r, lm ¼ mp
b , and kn are solutions of

knJ 0
0ðknaÞ þ

J 0ðknaÞ
a

¼ 0. ð10Þ

The eigen functions /n,m(r, z) form a complete orthonormal system in Hr[R].
Thus g(r, z) 2 Hr[R] can be expanded as

gðr; zÞ ¼
X1
n;m¼1

cn;m/n;mðr; zÞ; r; z 2 R; ð11Þ

where

cn;m ¼
Z a

0

Z b

0

sgðs; gÞ/n;mðf; gÞdgds. ð12Þ

Substituting (8) in (1), (6) and (4), and using orthonormality property of the

eigen functions leads to the following ordinary differential equation

1

c2
d2vn;mðtÞ

dt2
þ ½l2

m þ k2n�vn;mðtÞ ¼ 0; t > 0; ð13Þ

vn;mð0Þ ¼ cn;m; ð14Þ
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dvn;mð0Þ
dt

¼ 0. ð15Þ

This initial value problem can easily be solved and so (8) takes the form

uhðr; z; tÞ ¼
X1
n¼1

cn;m cos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
m þ k2n

q
ct

� �
/n;mðr; zÞ. ð16Þ

Now we use condition (7) to write the final profile in the form

f ðr; zÞ ¼
X1

n;m¼1
cn;m cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
m þ k2n

q
cT

� �
/n;mðr; zÞ

¼
Z a

0

Z b

0

sgðs; gÞKðr; z; s; gÞdgds;
ð17Þ

where

Kðr; z; s; gÞ ¼
X1
n;m¼1

cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
m þ k2n

q
cT

� �
/n;mðs; gÞ/n;mðr; zÞ. ð18Þ

Thus the inverse problem is reduced to solving the integral equation of the first

kind. The singular system for the integral operator in (17) is given by

cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
m þ k2n

q
cT

� �
;/n;mðr; zÞ;/n;mðr; zÞ

� �
. ð19Þ

It now follows from Picard�s theorem [2,3] that our inverse problem is solvable

if and only if

X1
n;m¼1

jfn;mj2

cos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
m þ k2n

q
cT

�� �2 < 1; ð20Þ

where

fn;m ¼
Z a

0

Z b

0

f ðs; gÞ/n;mðs; gÞdgds; ð21Þ

are classical Fourier coefficients of f. In this case solution [2] is given by

gðr; zÞ ¼
X1
n;m¼1

fn;m/n;mðr; zÞ
cos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
m þ k2n

q
cT

� . ð22Þ

Eq. (22) represents the inverse solution in case there is no damping. The initial

profile g(r, z) can be calculated from the information of the final data f(r, z),

which is used to calculate the Fourier coefficients appearing in the expression

(22).
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4. The direct and inverse problem in the presence of the damping

The governing equation for torsional waves with a damping term d ouh
ot , prop-

agating in a cylinder is given by

o2uh
or2

þ 1

r
ouh
or

þ o2uh
oz2

¼ 1

c2
o2uh
ot2

þ d
ouh
ot

; r; z 2 R; d; t P 0; ð23Þ

together with initial and boundary conditions (3)–(7). Eq. (23) has a dissipation
or damping term which is proportional to velocity with constant of proportion-

ality being d. Following the same procedure as in the previous section, instead

of Eq. (13) in this case we have the following ordinary differential equation

1

c2
d2vn;mðtÞ

dt2
þ d

dvn;mðtÞ
dt

þ ½l2
m þ k2n�vn;mðtÞ ¼ 0; t P 0; ð24Þ

together with conditions (14) and (15). Eqs. (24), (14) and (15) can be solved

easily to yield the solution

vn;mðtÞ¼exp �c2d
2
t

� �
cn;mcosðrtÞþdcn;m

2kn
sinðrtÞ

� �
; 4c2ðl2

mþk2nÞ>d2c4;

ð25Þ
un;mðtÞ¼exp �c2d

2
t

� �
cn;mcoshðrtÞþdcn;m

2kn
sinhðrtÞ

� �
; 4c2ðl2

mþk2nÞ<d2c4;

ð26Þ
vn;mðtÞ¼cn;mexp �c2d

2
t

� �
; 4c2ðl2

mþk2nÞ¼d2c4; ð27Þ

where

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j4c2ðl2

m þ k2nÞ � d2c4j
q

2
: ð28Þ

Therefore Eq. (8) can be written as

uhðr; z; tÞ ¼
X1
n;m¼1

exp � c2d
2

t
� �

cn;m cosðrtÞ þ dcn;m
2kn

sinðrtÞ
� �

/n;m

� ðr; zÞ; 4c2ðl2
m þ k2nÞ > d2c4; ð29Þ

uhðr; z; tÞ ¼
X1
n;m¼1

exp � c2d
2

t
� �

cn;m coshðrtÞ þ dcn;m
2kn

sinhðrtÞ
� �

� /n;mðr; zÞ; 4c2ðl2
m þ k2nÞ < d2c4; ð30Þ

uhðr; z; tÞ ¼
X1
n;m¼1

cn;m exp � c2d
2

t
� �

� /n;mðr; zÞ; 4c2ðl2
m þ k2nÞ ¼ d2c4. ð31Þ
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These solutions show that higher modes are damped in an oscillatory manner

and lower modes are damped monotonically. The oscillatory damping is a seri-

ous structural drawback because fatigue stresses are caused due to such oscil-

lations. Now we use condition (7) to write the final profile in the form

f ðr; zÞ ¼
Z a

0

Z b

0

sgðs; gÞKðr; z; s; gÞdgds ð32Þ

with

Kðr; z; s; gÞ ¼ exp � c2d
2

T
� � X1

n;m¼1

/n;mðs; gÞ/n;mðr; zÞ
"

� cosðrT Þ þ d
2kn

sinðrT Þ
� �#

; 4c2ðl2
m þ k2nÞ > d2c4; ð33Þ

Kðr; z; s; gÞ ¼ exp � c2d
2

T
� � X1

n;m¼1

/n;mðs; gÞ/n;mðr; zÞ
"

� coshðrT Þ þ d
2kn

sinhðrT Þ
� �#

; 4c2ðl2
m þ k2nÞ < d2c4;

ð34Þ

Kðr; z; s; gÞ ¼ exp � c2d
2

T
� � X1

n;m¼1

/n;mðs; gÞ/n;mðr; zÞ;

4c2ðl2
m þ k2nÞ ¼ d2c4. ð35Þ

Thus the inverse problem is reduced to solving the Fredholm integral equation

of the first kind. The singular systems for the integral operators in Eq. (32) are

given by

exp � c2d
2

T
� �

cosðrT Þ þ d
2kn

sinðrT Þ
� �

;/n;mðr; zÞ;/n;mðr; zÞ
� �

;

4c2ðl2
m þ k2nÞ > d2c4; ð36Þ

exp � c2d
2

T
� �

coshðrT Þ þ d
2kn

sinhðrT Þ
� �

;/n;mðr; zÞ;/n;mðr; zÞ
� �

;

4c2ðl2
m þ k2nÞ < d2c4; ð37Þ

exp � c2d
2

T
� �

;/n;mðr; zÞ;/n;mðr; zÞ
� �

;

4c2ðl2
m þ k2nÞ ¼ d2c4. ð38Þ
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Now by Picard�s theorem, using singular systems (36)–(38), the inverse problem

is solvable iffX1
n;m¼1

expðc2dT Þjfn;mj2

cosðrT Þ þ d
2kn

sinðrT Þ
� 	2

< 1; 4c2ðl2
m þ k2nÞ > d2c4; ð39Þ

X1
n;m¼1

expðc2dT Þjfn;mj2

coshðrT Þ þ d
2kn

sinhðrT Þ
� 	2

< 1; 4c2ðl2
m þ k2nÞ < d2c4; ð40Þ

X1
n;m¼1

expðc2dT Þjfn;mj2 < 1; 4c2ðl2
m þ k2nÞ ¼ d2c4; ð41Þ

where fn,m are classical Fourier coefficients of f(x) given by the expression (21).

In this case, by Picard�s theorem, the solutions are given by

gðr; zÞ ¼
X1
n;m¼1

exp c2dT
2

� 	
fn;m/n;mðr; zÞ

cosðrT Þ þ d
2kn

sinðrT Þ
� 	 ; 4c2ðl2

m þ k2nÞ > d2c4; ð42Þ

gðr; zÞ ¼
X1
n;m¼1

exp c2dT
2

� 	
fn;m/n;mðr; zÞ

coshðrT Þ þ d
2kn

sinhðrT Þ
� 	 ; 4c2ðl2

m þ k2nÞ < d2c4; ð43Þ

gðr; zÞ ¼
X1
n;m¼1

exp
c2dT
2

� �
fn;m/n;mðr; zÞ; 4c2ðl2

m þ k2nÞ ¼ d2c4. ð44Þ

From Eqs. (39)–(41) it is clear that fn,m should decay faster in case of oscillatory

damping as compared to monotonic damping. In case of oscillatory damping,

fn,m should be smooth enough to ensure that Eq. (39) is satisfied. This can be

more easily achieved by restricting to lower modes only. The solution to the
undamped wave equation can be obtained from the damped wave solution

by taking d = 0 in the damped wave solution.

Example. Let us consider the initial distribution of the form

gðr; zÞ ¼ /n;mðr; zÞ: ð45Þ
First we solve the direct problem (23), to find the final profile f(r, z). The solu-
tion of the direct problem is

f ðr; zÞ ¼ exp � c2d
2

T
� �

cn;m cosðrT Þ þ dcn;m
2kn

sinðrT Þ
� �

/n;mðr; zÞ;
4c2ðl2

m þ k2nÞ > d2c4;

¼ exp � c2d
2

T
� �

cn;m coshðrT Þ þ dcn;m
2kn

sinhðrT Þ
� �

/n;mðr; zÞ;
4c2ðl2

m þ k2nÞ < d2c4;

¼ exp � c2d
2

T
� �

/n;mðr; zÞ; 4c2ðl2
m þ k2nÞ ¼ d2c4. ð46Þ
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Our aim is to use the final profile given by (46) to recover back the initial dis-

turbance given by (45). From Eq. (21) the Fourier coefficients are given by

fn;m¼exp �c2d
2
T

� �
cn;mcosðrT Þþdcn;m

2kn
sinðrT Þ

� �
; 4c2ðl2

mþk2nÞ>d2c4;

ð47Þ
fn;m¼exp �c2d

2
T

� �
cn;mcoshðrT Þþdcn;m

2kn
sinhðrT Þ

� �
; 4c2ðl2

mþk2nÞ<d2c4;

ð48Þ
fn;m¼exp �c2d

2
T

� �
; 4c2ðl2

mþk2nÞ¼d2c4. ð49Þ

We use the final data given by Eqs. (47)–(49) in Eqs. (42)–(44) respectively to

recover the initial profile given by Eq. (45).

5. Conclusions

It has been shown here by classical means that damping of the medium play

a role in the initial profile reconstruction. It is clear from the processing formu-

las (42)–(45) and (22) that neglecting the damping of the medium may give mis-
leading results. Since every medium has damping so it is more realistic to use

the damped wave equation instead of the undamped wave equation for the

reconstruction of the initial profile from the information of the final profile.
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