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Abstract

In this paper we consider a model for the motion of incompressible viscous flows
proposed by Ladyzhenskaya. The Ladyzhenskaya model is written in terms of the
velocity and pressure while the studied model is written in terms of the stream-
function only. We derived the streamfunction equation of the Ladyzhenskaya model
and present a weak formulation and show that this formulation is equivalent to the
velocity-pressure formulation. We also present some existence and uniqueness results
for the model. Finite element approximation procedures are presented. The discrete
problem is proposed to be well posed and stable. Some error estimates are derived.
We consider the 2D driven cavity flow problem and provide graphs which illustrate
differences between the approximation procedure presented here and the approxi-
mation for the streamfunction form of the Navier-Stokes equations. Streamfunction
contours are also displayed showing the main features of the flow.
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1 Introduction

In [23–25], Ladyzhenskaya has proposed a model for the motion of ideal incom-
pressible flow. An excellent piece of motivation why one consider this model
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can be found in [10]. Du and Gunzburger mentioned several reasons to con-
sider this model. They are modeling, mathematical, practical engineering and
practical programming point of views. Ladyzhenskaya presented her model in
velocity-pressure version. Further studies are made in [8–10,27].

In this paper, we study the streamfunction equation of Ladyzhenskaya model.
The attractions of the streamfunction equation are that the incompressibility
constraint is automatically satisfied, the pressure is not present in the weak
form and there is only one scalar unknown to solve for. The purpose of this
paper is to present and analyze a weak formulation for the streamfunction of
the Ladyzhenskaya model and its discretization.

We first need to state the Ladyzhenskaya model in velocity-pressure form. Let
Ω be a bounded, simply connected, polygonal domain in R2 and ~u denotes
the velocity field, p the pressure and ~f the body force. The Ladyzhenskaya
equations for two dimensional incompressible fluid flow are

−∂x(Â(u)u1,x) − ∂y(Â(u)u1,y) + u1u1,x + u2u1,y + px = f in Ω, (1)

−∂x(Â(u)u2,x) − ∂y(Â(u)u2,y) + u1u2,x + u2u2,y + py = f in Ω, (2)

ux + uy = 0 on ∂Ω, (3)

with the homogeneous Dirichlet boundary conditions on u1 and u2, i.e.

u1 = u2 = 0 on ∂Ω, (4)

where in (2)

Â(~u) = ε0 + ε1 | 5~u |q−2 with q > 2, (5)

and

| 5~u |= [u2
1,x + u2

1,y + u2
2,x + u2

2,y]
1/2. (6)

We also assume that 1
Re

= ε0 > 0 and ε1 > 0 are constants. Note that if we
set ε1 = 0, equations (1-3) become the familiar Navier-Stokes equations.

Any divergence-free velocity field, ~u, in H1
0 (Ω) has a streamfunction ψ defined

by
~curl ψ = ~u.

Moreover, ψ is uniquely determined up to a constant. Since ∂ψ
∂τ

= 0 on ∂Ω,
where τ denotes the unit tangent to ∂Ω, setting ψ = 0 on ∂Ω guarantees the
uniqueness of the streamfunction.
Thus we have

−∂x(A(ψ)ψxy) − ∂y(A(ψ)ψyy) + ψyψxy − ψxψyy + px = f1 in Ω, (7)

−∂x(A(ψ)ψxx) − ∂y(A(ψ)ψxy) + ψyψxx − ψxψxy + py = f2 in Ω, (8)

ψ =
∂ψ

∂n
= 0 on ∂Ω, (9)
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where in (7) and (8), n represents the outward unit normal to Ω and A(ψ) is
defined by

A(ψ) = ε0 + ε1 ‖ ~4ψ ‖q−2, (10)

and
~4ψ = ~grad ( ~grad ψ) = [ψxx, ψxy, ψyx, ψyy]

T ,

and
‖ ~4ψ ‖= [ψ2

xx + 2ψ2
xy + ψ2

yy]
1/2. (11)

Taking the ” curl ” of (7) and (8) will eliminate the pressure p and yields the
streamfunction equation of the Ladyzhenskaya equations

∂xx(A(ψ)ψxx) + 2∂xy(A(ψ)ψxy) + ∂yy(A(ψ)ψyy)−

ψy 4 ψx + ψx 4 ψy = f2,x − f1,y in Ω,

ψ =
∂ψ

∂n
= 0 on ∂Ω.

(12)

Equation (12) is the particular equation we consider in this paper. We also
state the streamfunction equation of the Navier-Stokes equations

ε0 4
2 ψ − ψy 4 ψx + ψx 4 ψy = f2,x − f1,x in Ω,

ψ =
∂ψ

∂n
= 0 on ∂Ω.

(13)

Note that if we set ε1 = 0, equation (12) reduces to equation (13).

Remark 1 Equations (1-2) can be rewritten as

−5 (Â5 u) + (u · 5)u+ 5p = f. (14)

Many researchers in LES, prefer the use of equation (14) with the symmetric
part of the gradient. In this case, equation (14) becomes

−5 (Ã5s u) + (u · 5)u+ 5p = f, (15)

where 5s is the symmetric part of the gradient defined by

5su =
5u+ 5uT

2
,

and Ã is defined by
Ã(u) = ε0 + ε1 ‖ 5su ‖q−2

F ,

as ‖ · ‖F is the Frobenius norm defined by: for all V ∈ R2

‖ V ‖F=

√

√

√

√

2
∑

i,j=1

V V T .

With Korns inequality, all results proven for equation (14) can be extended to
equation (15) immediately.
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2 Notation And Function Spaces

We start by introducing some function spaces. First, let us define

D(Ω) := C∞
0 (Ω) = the space of (real-valued) smooth functions with

compact support in the domain Ω,

L2(Ω) := the space of (real-valued) functions which are square integrable

over Ω with respect to the Lebegue measure,

L2
0(Ω) := the space of functions in L2(Ω) with mean zero.

We also define the Soboleve space

Wm,p(Ω) := {φ ∈ Lp(Ω) : ∂αφ ∈ Lp(Ω) ∀ | α |≤ m},

which is a Banach space for the norm

‖ φ ‖m,p,Ω=





∑

|α|≤m

∫

Ω
| ∂αφ(x) |p dΩ





1/p

p <∞.

The space Wm,p(Ω) is separable and reflexive. We also provide Wm,p(Ω) with
the following seminorms

| φ |m,p,Ω=





∑

|α|=m

∫

Ω
| ∂αφ(x) |p dΩ





1/p

,

when p = 2,Wm,p(Ω) is usually denoted by Hm(Ω). Hm(Ω) is a Hilbert space
for the scalar product

(ψ, φ)m,Ω =
∑

|α|≤m

∫

Ω
∂αφ(x)∂αψ(x)dΩ.

As D(Ω) ⊂W 2,q(Ω) (q > 2) and D(Ω) ⊂ H2(Ω). We define

V := H2
0 (Ω) := completion of D(Ω) in the H2-norm,

Vq := W 2,q
0 (Ω) := completion of D(Ω) in the W Vq-norm, (q > 2).

We also define the following spaces

G := {u ∈ [D(Ω)]2 : div u = 0},

V̂ := completion of G in the H1-norm,

V̂q := completion of G in the W 1,q-norm (q > 2).
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The space V̂ is a Hilbert space with corresponding inner product and norm

(u, v) :=
∫

Ω
5u : 5v dΩ for u, v ∈ V̂ ,

‖ u ‖1,2 :=
[∫

Ω
| 5u |2 dΩ

]1/2

.

The space V̂q is a reflexive Banach space, endowed with the following norm :

for u ∈ V̂q,

‖ u ‖1,q:=
[∫

Ω
| 5u |q dΩ

]1/q

.

The spaces L2 and V are Hilbert spaces with corresponding inner products
and norms

(ψ, φ) :=
∫

Ω
ψ · φ dΩ for ψ, φ ∈ L2(Ω),

‖ φ ‖0,2 := (φ, φ)1/2.

Similarly,

< ψ, φ > :=
∫

Ω
(ψxxφxx + 2ψxyφxy + ψyyφyy)dΩ for ψ, φ ∈ V,

‖ φ ‖V :=| φ |V := [
∫

Ω
‖ ~4φ ‖2 dΩ]1/2.

Also, Lq and V q are reflexive Banach spaces, with the following norms

‖ φ ‖0,q :=
[∫

Ω
| φ |q dΩ

]1/q

for φ ∈ Lq(Ω),

‖ φ ‖Vq
:=

[∫

Ω
‖ ~4φ ‖q dΩ

]1/q

for φ ∈ V q.

Two applications of Green’s formula show

| φ |V=| 4φ |0,2 ∀φ ∈ V.

3 Weak Formulations

The weak form of (1-4) [see [9]] is:

For ~f ∈ V̂ ′ given, Find ~u ∈ V̂q satisfying

(Â(~u) 5 ~u,5~v) + b̂(~u, ~u,~v) = (~f,~v) ∀ ~v ∈ V̂q,
(16)

where
b̂(~u,~v, ~w) :=

∫

Ω
((~u · 5)~v) · ~w dΩ.
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We can establish the weak form for the streamfunction equation of the La-
dyzhenskaya equation by first multiplying equation (12) by a test function
φ ∈ Vq, and integrating over the domain Ω and then applying Green’s formula
twice to get

∫

Ω
A(ψ)(ψxxφxx + 2ψxyφxy + ψyyφyy)dΩ + (17)

∫

Ω
4ψ(ψyφx − ψxφy)dΩ=

∫

Ω
(f1φy − f2φx)dΩ,

for all φ ∈ Vq. Also, we can rewrite (17) as

∫

Ω
A(ψ)(~4ψ · ~4φ)dΩ +

∫

Ω
4ψ(ψyφx − ψxφy)dΩ =

∫

Ω
(f1φy − f2φx)dΩ,

and we conclude that the weak form of the equation (12) is

Find ψ ∈ Vq such that, for all φ ∈ Vq

a(ψ, ψ, φ) + b(ψ, ψ, φ) = (~f, ~curl φ),
(18)

where

a(ψ, ψ, φ) =
∫

Ω
A(ψ)(~4ψ · ~4φ)dΩ, (19)

b(ψ, ξ, φ) =
∫

Ω
4ψ(ξyφx − ξxφy)dΩ, (20)

(~f, ~curl φ) =
∫

Ω
(f1φy − f2φx)dΩ. (21)

The above weak formulation is analogous to the weak form of the streamfunc-
tion equation of the Navier-Stokes equations (13)

Find ψ ∈ V such that for all φ ∈ V

ε0ã(ψ, φ) + b(ψ, ψ, φ) = (~f, ~curl φ),
(22)

where
ã(ψ, φ) =

∫

Ω
(~4ψ · ~4φ)dΩ. (23)

The standard weak form of (13) is given by

Find ψ ∈ V such that for all φ ∈ V

ε0
˜̃a(ψ, φ) + b(ψ, ψ, φ) = (~f, ~curl φ),

(24)

where
˜̃a(ψ, φ) =

∫

Ω
4ψ4 φdΩ. (25)

It makes no difference whether one uses (22) or (24) because ã(ψ, φ) = ˜̃a(ψ, φ)
for all ψ, φ ∈ V . Note that

b(ψ, φ, φ) = 0 for all ψ, φ ∈W 2,q
0 (Ω), (26)
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and

b(ψ, φ, ξ) = −b(ψ, ξ, φ) for all ψ, φ, ξ ∈W 2,q
0 (Ω), (27)

and

a(ψ, φ, ξ) = ε0ã(φ, ξ) + ε1a(ψ, φ, ξ),

where

a(ψ, φ, ξ) =
∫

Ω
‖ ~4ψ ‖q−2 ~4φ · ~4ξ dΩ. (28)

4 Equivalence Forms

Our aim in this section is to prove that the two weak forms (16) and (18) are
equivalent. In [25] and [24], existence of the weak solution for problem (16)
has been shown. Many uniqueness results for problem (16) can be found in
[10] and [9]. Owing to this equivalence, all existence and uniqueness results
for the problem (16) carry over to problem (18).

Let us first express the nonlinear term b(~u, ~u,~v) in terms of streamfunction,
observe

b̂(~u, ~u,~v) =
∫

Ω
curl ~u(u1v2 − u2v1)dx ∀ ~u = (u1, u2)

T , ~v = (v1, v2)
T ∈ V̂q.

This can be obtained from the following equations

u1
∂u1

∂x
+ u2

∂u1

∂y
=

1

2

∂

∂x
(u2

1 + u2
2) − u2 curl ~u,

u1
∂u2

∂x
+ u2

∂u2

∂y
=

1

2

∂

∂x
(u2

1 + u2
2) − u1 curl ~u.

Now, integration by parts and eliminating ~grad(‖ ~u ‖2) give

a(ψ, ψ, φ) = b(~u, ~u,~v) ∀ ~u = ~curl ψ, ~v = ~curl φ with ψ, φ ∈ Vq. (29)

Now, let us express the term (Â(~u)5~u,5~v) in terms of streamfunction. Note
that

(Â(~u) 5 ~u,5~v) =
∫

Ω
Â(~u)(5u1 · 5v1 + 5u2 · 5v2)dx ∀ ~u,~v ∈ V̂q,(30)

and

Â(~u) = A(ψ) ∀~u = ~curl ψ, ψ ∈ Vq. (31)

Also, we have
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





5u1 · 5v1 = ψxyφxy + ψyyφyy

5u2 · 5v2 = ψxyφxy + ψxxφyy
∀ ~u = curl φ, ~v = curl ψ. (32)

Equations (30), (31) and (32) give:

a(ψ, ψ, φ) = (Â(~u) 5 ~u,5~v). (33)

By definition, we have

(~f, ~curl φ) = (~f,~v) ∀ ~f ∈ V̂ ′, ~v = ~curl φ, φ ∈ V. (34)

Thus the forms (16) and (18) are equivalent and we can state the following
theorem.

Theorem 2 Problems (16) and (18) are equivalent in the sense that if ~u is a
solution of (16), then the streamfunction ψ of ~u satisfies (18); conversely, if

ψ is a solution of (18), then ~u = ~curl ψ satisfies (16).

5 Uniqueness

We define some constants and notations as

Cf := sup
φ∈V (Ω)

| (f, curl φ) |

‖ φ ‖V
,

Cf,q := sup
φ∈Vq

| (f, curl φ) |

‖ φ ‖Vq

,

γq := sup
φ∈Vq

‖ φ ‖V
‖ φ ‖Vq

, (35)

N := sup
φ,ξ∈V

| b(φ, φ, ξ) |

‖ φ ‖V · ‖ ξ ‖V
,

Nq := sup
φ,ξ∈Vq

| b(φ, φ, ξ) |

‖ φ ‖Vq
· ‖ ξ ‖Vq

,

N̂ := sup
u,v∈V̂ ;u,v 6=0

| b(u, u, v) |

‖ u ‖2
1,2 · ‖ v ‖1,2

,

Ĉf := sup
v∈V ;v 6=0

| (f, v) |

‖ v ‖1,2
.

By the assumption on f, b and Ω, the above constants are well-defined. More-
over, we can state the following

Lemma 3 (N = Nq) .
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Proof clearly, N ≥ Nq; on the other hand, W 2,q
0 (Ω) is dense in H2

0 (Ω). So
∀φ, ξ ∈ H2

0 (Ω), there are sequences of elements φi, ξi ∈ W 2,q
0 (Ω) such that

φi → φ and ξi → ξ in H2
0 (Ω) as i→ ∞. Thus,

Nq ≥ lim
i→∞

| b(φi, φi, ξi) |

‖ φi ‖2
V · ‖ ξi ‖V

≥
| b(φ, φ, ξ) |

‖ φ ‖2
V · ‖ ξ ‖V

.

Hence, Nq = N . Thus N = Nq �

Let ψ be a weak solution for the problem (18). Then we have

Lemma 4 (a(ψ, ψ) = ε0 ‖ ψ ‖2
V +ε1 ‖ ψ ‖qVq

) .

Proof

a(ψ, ψ) =
∫

Ω
A(ψ) ‖ ~4ψ ‖2 dΩ,

=
∫

Ω
(ε0 + ε1 ‖ ~4ψ ‖q−2) ‖ ~4ψ ‖2 dΩ,

= ε0

∫

Ω
‖ ~4ψ ‖2 dΩ + ε1

∫

Ω
‖ ~4ψ ‖q dΩ,

= ε0 ‖ ψ ‖2
V +ε1 ‖ ψ ‖qVq

. �

Setting φ = ψ in (18), we obtain

ε0 ‖ ψ ‖2
V +ε1 ‖ ψ ‖qVq

= (~f, ~curl ψ). (36)

We then have the following a priori estimates.

Theorem 5 For any weak solution ψ ∈ Vq of (18), we have

‖ ψ ‖q−1
Vq

≤ Cfq/ε1, (37)

and
‖ ψ ‖V≤ Rq(Cf). (38)

Here, Rq is defined as the inverse function of Sq : (0,+∞) → R

Sq(x) := ε0x+ ε1γ
−q
q · xq−1, for x > 0.

Proof Notice that for any x > 0

S ′
q(x) = ε0 + ε1(q − 1)γ−qq · xq−2, for x > 0.

Thus the existence of the function Rq is assumed.
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Now (36) implies

ε1 ‖ ψ ‖qVq
≤ ε0 ‖ ψ ‖qV +ε1 ‖ ψ ‖qVq

=| (~f, ~curl ψ) |,

which gives

ε1 ‖ ψ ‖q−1
Vq

≤
| (~f, ~curl ψ) |

‖ ψ ‖Vq

≤ sup
ψ∈Vq ;ψ 6=0

| (~f, ~curl ψ) |

‖ ψ ‖Vq

.

Now, we have

‖ ψ ‖q−1
Vq

≤
Cfq
ε1

.

To prove, (38), we rewrite (36) as

ε0 ‖ ψ ‖V +ε1γ
−q
q ‖ ψ ‖1

V≤ Cf .

i.e.

Sq(‖ ψ ‖V ) ≤ Cf ,

which implies (38). �

Remark 6 For q = 3, an explicit expression of R3 can be obtained as

R3(y) = −
1

2
ε−1
1 γ3

3 [ε0 − (ε2
0 + 4ε1γ

−3
3 )1/2],

or

S3(y) =
2y

ε0 + (ε2
0 + 4ε1γ

−3
3 y)1/2

.

In general, there is no explicit expression for the function Sq.

The following theorem and its proof can be found in [9,10].

Theorem 7 Assume that the following condition holds

N̂Rq(Ĉf) ≤ ε0 [or Ĉf ≤ Sq(
ε0

N̂
)].

Then problem (16) has a unique solution.

Theorem (2) and Theorem (7) give the following theorem which states exis-
tence and uniqueness of the problem (18).

Theorem 8 Assume that the following condition holds

NRq(Cf) ≤ ε0 [or Cf ≤ Sq(
ε0

N
)]. (39)

Then problem (18) has a unique solution.
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Remark 9 It is known that the streamfunction formulation of the Navier-
Stokes equations (22) has a unique solution [see [11,16,17]] whenever

NCf/ε0 < 1. (40)

From the definition of the function Sq, we have

Sq(y) = ε0y + ε1γ
−q
q · yq−1 > ε0y for y > 0, (41)

Sq(y) > ε0y for y > 0. (42)

The monotonicity of Sq and (42) give

Rq(y) < y/ε0.

Equation (39) is less restrictive for ε0 = 1
Re

than (40). In other words, we
can find a value of Re which satisfies (39) meaning that we have a guarantee
for existence of a unique solution for the Ladyzhenskaya equations. Whereas,
the same value of Re does not satisfy (40) meaning that we do not have a
guarantee for existence of a unique solution for the Navier-Stokes equations.

6 Discretization

In this section, we present a discretized version of (18) and some applicable
finite element spaces. We also study the existence and uniqueness of this dis-
cretized version. We start by looking at the streamfunction equation of the
Navier-Stokes equations which has been studied in [5,6,11–13,26].

We shall give some examples of finite element spaces for the streamfunction
formulation. We will impose boundary conditions by setting all the degrees of
freedom at the boundary nodes to be zero and the normal derivative equal to
zero at all vertices and nodes on the boundary. The inclusion Xh ⊂ W 2,q

0 (Ω)
requires the use of finite element functions that are continuously differentiable
over Ω. We list below four finite element spaces which could be used for solving
the streamfunction equation of the Ladyzhenskaya equations.

• Argyis triangle: The functions are quintic polynomials within each trian-
gle and the 21 degrees of freedom are chosen to be the function value and
the first and second derivatives at the vertices, and the normal derivative
at the midsides.

• Clough-Tocher: Here we subdivide each triangle into three triangles by
joining the vertices to the centroid. In each of the smaller triangles, the func-
tions are cubic polynomials. There are then 30 degrees of freedom needed
to determine the three different cubic polynomials associated with the three
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triangles. Eighteen of these are used to ensure that, within the big triangle.
the functions are continuously differentiable. The remaining 12 degrees of
freedom are chosen to be the function values and the first derivatives at the
vertices and the normal derivative at the midsides.

• Bogner-Fox-Schmidt rectangle: The functions are bicubic polynomials
within each rectangle. The degrees of freedom are chosen to be the function
value, the first derivatives, and the mixed second derivative at the vertices.
We set the function and the normal derivative values equal to zero at all
vertices on the boundary.

• Bicubic Spline rectangle: The functions are the product of cubic splines.
These functions are bicubic polynomials within each rectangle, are twice
continuously differentiable over Ω, and their degrees of freedom are the
function values at the nodes (plus some additional ones on the boundary).

Let Xh ⊂ Vq denotes a conforming finite element space. We approximate (18)
by the following discrete problem

Find ψh ∈ Xh such that for all φh ∈ Xh,

a(ψh, ψh, φh) + b(ψh, ψh, φh) = (~f, ~curl φh).
(43)

Then, we introduce the following new constants. We define

Nh := sup
ψ,φ,ξ∈Xh;ψ,φ,ξ 6=0

b(ψ, ψ, φ)

‖ ψ ‖V · ‖ φ ‖V · ‖ ξ ‖V
, (44)

Cfh := sup
φ∈Xh;φ 6=0

(f, curl φ)

‖ φ ‖V
. (45)

Remark 10 By density arguments, it can be shown that

lim
h→0

Nh = N, lim
h→0

Cfh = Cf . (46)

Let us give the following lemma, which will be used later. Lemma (11) can be
proofed using the method of [7]. Now we will show that the problem (43) is
well posed.

Lemma 11 For a given number q > 2, let a(·, ·, ·) be as defined in (28). Then,

∃ α > 0, ∀ ψ, φ ∈W 2,q
0 (Ω), a(ψ, ψ, ψ − φ) − a(φ, φ, ψ − φ) ≥ α ‖ ψ − φ ‖qVq

,
(47)

∃ M > 0, ∀ ψ, φ ∈W 2,q
0 (Ω),

| a(ψ, ψ, ξ)− a(φ, φ, ξ) |≤M ‖ ψ − φ ‖Vq

(

‖ ψ ‖Vq
+ ‖ φ ‖Vq

)q−2
‖ ξ ‖Vq

,

(48)
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Proof Let us introduce the auxiliary function

γ1 : (ξ̂, η̂) ∈ O =
{

(ξ̂, η̂) ∈ R4 ×R4 : ξ̂ 6= η̂
}

γ1 : (ξ̂, η̂) =

(

‖ ξ̂ ‖q−2 ξ̂− ‖ η̂ ‖q−2 η̂
)

·
(

ξ̂ − η̂
)

‖ ξ̂ − η̂ ‖q
,

(49)

where · denotes the Euclidean inner-product in the space R4, it has been shown
in [[7], pages 319-320] for the case R2 that

∃ α > 0, ∀ (ξ̂, η̂) ∈ O, γ1(ξ̂, η̂) ≥ α. (50)

Equation (50) remains valid in the case of R4. However, its proof requires more
technicalities.
Setting ξ̂ = ~4φ in (50) and using the definition of the function γ1 in (49),
imply (47).

To prove the second relation (48), we introduce the auxiliary function

γ2 : (ξ̂, η̂) ∈ O =
{

(ξ̂, η̂) ∈ R4 ×R4 : ξ̂ 6= η̂
}

γ2 : (ξ̂, η̂) =

(

‖ η̂ ‖q−2 η̂− ‖ ξ̂ ‖q−2 ξ̂
)

·
(

ξ̂ − η̂
)

‖ η̂ − ξ̂
(

‖ η̂ ‖ + ‖ ξ̂ ‖
)q−2 ,

(51)

and it has been shown in [[7], pages 320-321] for the case of R2 that

∃ M > 0, ∀ (ξ̂, η̂) ∈ O, γ2(ξ̂, η̂) ≤M. (52)

Equation (52) remains valid in the case of R4. However, its proof requires more
technicalities.
As a consequence of (52), we have

∀ξ̂, η̂ ∈ R4, ‖ η̂ ‖q−2 η̂− ‖ ξ̂ ‖q−2 ξ̂ ‖≤M ‖ η̂− ξ̂ ‖
(

‖ η̂ ‖ + ‖ ξ̂ ‖
)q−2

. (53)

Now, the left-hand side of the inequality (48) can be written as

| a(ψ, ψ, ξ)− a(φ, φ, ξ) | =|
∫

Ω

(

‖ ~4ψ ‖q−2 ~4ψ− ‖ ~4φ ‖q−2 ~4φ
)

· ~4ξdΩ |,

≤
∫

Ω
‖ ~4ψ ‖q−2 ~4ψ− ‖ ~4φ ‖q−2 ~4φ ‖ ~4ξ ‖ dΩ.

Using the inequality (53) gives

≤M
∫

Ω
‖ ~4− ~4φ ‖

(

‖ ~4ψ ‖ + ‖ ~4φ ‖
)q−2

‖ ~4ξ ‖ dΩ,

≤M ‖ ψ − φ ‖Vq

{∫

Ω

(

‖ ~4ψ ‖ + ‖ ~4φ ‖
)q
dΩ

}
q−2

q

‖ ξ ‖Vq
,

≤M ‖ ψ − φ ‖Vq

(

‖ ψ ‖Vq
+ ‖ φ ‖Vq

)q−2
‖ ξ ‖Vq

. �
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Theorem 12 The solution to (43) exists and satisfies

‖ ψh ‖V ≤ Rq(Cfh), (54)

‖ ψh ‖Vq
≤ (Cfhγqε

−1
1 )

1

q−1 . (55)

Suppose
NhRq(Cfh) ≤ ε0 [or Cfh ≤ Sq(ε0/Nh)]. (56)

Then, the solution ψh to (43) is unique.

Proof For all φh ∈ Xh, let us define a mapping F : Xh → Xh satisfying

(F(φh), ξh) := a(φh, φh, ξh) + b(φh, φh, ξh) − (~f, ~curl ξh).

Taking ξh = φh, we get

(F(φh), φh) = a(φh, φh, φh) − (~f, ~curl φh),

= ε0 ‖ φ
h ‖2

V +ε1 ‖ φ
h ‖qVq

−(~f , ~curl φh),

≥ ε0 ‖ φ
h ‖2

V +ε1γ
−q
q ‖ φh ‖qV −(~f, ~curl φh),

≥ ε0 ‖ φ
h ‖2

V +[ε1γ
−q
q ‖ φh ‖qV −Cfh ‖ φ

h ‖V ],

=‖ φh ‖V [ε0 ‖ φ
h ‖V +ε1γ

−q
q ‖ φh ‖q−1

V −Cfh],

=‖ φh ‖V [Sq(‖ φ
h ‖V ) − Cfh].

Then
(F(φh), φh) > 0 for ‖ φh ‖V< Rq(Cfh).

By a fixed-point theorem (see [16]), there exist an element ψh ∈ Xh such that

(F(φh), φh) = 0 ∀φh ∈ Xh,

which means that ψh solves (43).

Now, let ψh be a solution for the problem (43) and setting φh = ψh in (43)
give

ε0 ‖ ψ
h ‖2

V +ε1 ‖ ψ
h ‖qVq

= (~f, ~curl ψh). (57)

Using (45) and (35) yield

ε0 ‖ ψ
h ‖2

V +ε1γ
−q
q ‖ ψh ‖qV≤ Cfh· ‖ ψ

h ‖V ,

which implies (54).
(57), (45) and (35) imply (55).

Now to show the uniqueness we assume that ψh1 and ψh2 are two solutions to
(43) and set ξh = ψh1 − ψh2 . Then, we have for all φh ∈ Xh

a(ψh1 , ψ
h
1 , φ

h) + b(ψh1 , ψ
h
1 , φ

h)= (~f, ~curl φh), (58)

a(ψh2 , ψ
h
2 , φ

h) + b(ψh2 , ψ
h
2 , φ

h)= (~f, ~curl φh). (59)

14



Let φh = ξh = ψh1 − ψh2 and subtract (59) from (58), then

a(ψh1 , ψ
h
1 , ξ

h) − a(ψh2 , ψ
h
2 , ξ

h)= b(ψh1 , ψ
h
1 , ξ

h) + b(ψh2 , ψ
h
2 , ξ

h),

LHS = RHS.

By (26), we have

RHS = b(ψh1 , ψ
h
1 , ψ

h
2 ) + b(ψh2 , ψ

h
2 , ψ

h
1 ).

By (27), we have

RHS = b(ψh1 , ψ
h
1 , ψ

h
2 ) − b(ψh2 , ψ

h
1 , ψ

h
2 ),

= b(ξh, ψh1 , ψ
h
2 ).

Since b(ξh, ψh2 , ψ
h
2 ) = 0, then we have

RHS = b(ξh, ξh, ψh2 ).

Now, we apply (47) to the LHS to obtain

ε0 ‖ ξ
h ‖2

V +αε1 ‖ ξ
h ‖qVq

≤ b(ξh, ξh, ψh2 ).

By (35) and (44), we have

ε0 ‖ ξ
h ‖2

V +αε1γ
−q
q ‖ ξh ‖qV≤ Nh ‖ ξ

h ‖2
V ‖ ψ

h
2 ‖V .

Using (54) gives

ε0 ‖ ξ
h ‖2

V +αε1γ
−q
q ‖ ξh ‖qV≤ NhRq(Cfh) ‖ ξ

h ‖2
V .

After some arrangements, we have

‖ ξh ‖2
V ·[ε0 −NhRq(Cfh) + αε1γ

−q
q ‖ ξh ‖q−2

V ] ≤ 0,

which implies that

‖ ξh ‖V = 0 or ‖ ξh ‖q−2
V ≤

γ−qq
αε1

[NhRq(Cfh) − ε0].

Hence, if NhRq(Cfh) ≤ ε0 [or Cfh ≤ Sq(ε0/Nh)] holds, then (43) has a unique
solution. �

Now Theorem (12) and equation (46) give the following theorem

Theorem 13 Assume that NRq(Cf ) < ε0 holds; then when h is small
enough, problem (43) has a unique solution.
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Remark 14 Moreover, by (46), there exists a constant δ > 0 such that for h
small, we have

ε−1
0 NRq(Cf) ≤ 1 − δ < 1. (60)

7 Error Bound

Now that we know that a unique finite element approximation ψh is defined
by (43), we wish to assess the size of the error ε = ψ − ψh, when ψ is the
solution of problem (18). In this section, we assume that (56) holds and (60)
is valid for h small.

Theorem 15 Let Xh ⊂ Vq be a finite element space. Let ψ be the solution to
(18) and ψh be solution to (43). Then for h sufficiently small, ψh satisfies

‖ ψ − ψh ‖V≤ Ĉ inf
χh∈Xh

‖ ψ − χh ‖V , (61)

where

Ĉ =
ε0 + ε1Mγ−2

q {(Cfqε
−1
1 )

1

q−1 + (Cfhγ
−1
q ε1)

1

q−1 }q−2 + N{Rq(Cf ) + Rq(Cfh)}

ε0 − NRq(Cf )
.

Proof Since Xh ⊂ Vq, (18) holds for all χh ∈ Xh. Now, we have

a(ψ, ψ, χh) + b(ψ, ψ, χh) = (~f, curl χh) ∀ χh ∈ Xh. (62)

Subtracting (43) from (62) gives

a(ψ, ψ, χh) − a(ψ, ψ, χh) + b(ψ, ψ, χh) − b(ψ, ψ, χh) = 0 ∀ χh ∈ Xh. (63)

Setting χh = ψh in (63) gives

a(ψ, ψ, χh − ψh) − a(ψ, ψ, χh − ψh) + b(ψ, ψ, χh − ψh)

− b(ψ, ψ, χh − ψh) = 0 ∀ χh ∈ Xh.
(64)

The first and the second term in (64) can be rewritten as

a(ψ, ψ, χh − ψh) − a(ψ, ψ, χh − ψh) =

ε0[ã(ψ − ψh, ψ − ψh) − ã(ψ − ψh, ψ − χh)]

+ ε1[a(ψ
h, ψh, ψ − χh) − a(ψ, ψ, ψ − χh)

+ a(ψ, ψ, ψ − ψh) − a(ψh, ψh, ψ − ψh)].

(65)
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The third and the fourth term in (64) can be rewritten as

b(ψ, ψ, χh − ψh) − b(ψh, ψh − ψ, χh − ψh) =

b(ψh − ψ, ψ, ψh − ψ) − b(ψh, ψh − ψ, χh − ψ) − b(ψh − ψ, ψ, χh − ψ).
(66)

Rearranging terms after using (65) and (66) in (64) gives

ε0ã(ψ − ψh, ψ − ψh) + ε1[a(ψ, ψ, ψ − χh) − a(ψh, ψh, ψ − χh)]

+ b(ψh − ψ, ψ, ψh − ψ) =

ε0ã(ψ − ψh, ψ − χh) + ε1[a(ψ, ψ, ψ − ψh) − a(ψh, ψh, ψ − χh)]

+ b(ψh, ψh − ψ, χh − ψ) + b(ψh − ψ, ψ, χh − ψ).

(67)

Using (47) in LHS of (67) gives

LHS of (67) ≥ ε0 ‖ ψ − ψh ‖2
V −N ‖ ψ − ψh ‖V ‖ ψ ‖V ,

≥ [ε0 −NRq(Cf)] ‖ ψ − ψh ‖2
V .

(68)

Using (48) in RHS of (67) gives

RHS of (67) ≤ε0 ‖ ψ − ψh ‖V ‖ ψ − χh ‖V

+
ε1M

γ2
q

‖ ψ − ψh ‖V
(

‖ ψ ‖Vq
+ ‖ ψh ‖Vq

)q−2
‖ ψ − χh ‖V

+N
(

‖ ψ ‖Vq
+ ‖ ψh ‖Vq

)

‖ ψ − ψh ‖V ‖ ψ − χh ‖V .

(69)

Now, (67), (68) and (69) imply

[ε0 −NRq(Cf )] ‖ ψ − ψh ‖V ≤ ε0 ‖ ψ − χh ‖V

+
ε1M

γ2
q

(

‖ ψ ‖Vq
+ ‖ ψh ‖Vq

)q−2
‖ ψ − χh ‖V

+N
(

‖ ψ ‖Vq
+ ‖ ψh ‖Vq

)

‖ ψ − χh ‖V .

Using (37), (38), (54), (55) and the condition ε0 < NRq(Cf), we get

‖ ψ − ψh ‖V≤ Ĉ ‖ ψ − χh ‖V for all χh ∈ Xh. (70)

The conclusion is immediate from (70). �

As an example, if the Bogner-Fox-Schmidt Rectangles are used, then there
exist a positive constant C such that ‖ ψ − ψh ‖V≤ Ch2. For each of the
elements mentioned in section 6, Table (1) shows the error estimates.

Element Estimate
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Argyis triangle ‖ ψ − ψh ‖V= O(h4)

Clough-Tocher triangle ‖ ψ − ψh ‖V= O(h2)

Bogner-Fox-Schmidt rectangle ‖ ψ − ψh ‖V= O(h2)

Bicubic Spline rectangle ‖ ψ − ψh ‖V= O(h2)

Table 1: Accuracy of Finite Elements for the Streamfunc-
tion Formulation

8 Computational Experiments

We consider the driven cavity problem in the two-dimensional box [0, 1]×[0, 1]
when the top surface moves with a constant velocity along its length i.e. u =
v = 0 in all boundaries except y = 1, where u = 1. Cavity flows have been
a subject of study for some time [4,12,13,35]. These flows have been widely
used as test cases for validating incompressible fluid dynamics algorithms. The
numerical computational in this example was obtained using an IBM NetVista
PC with 1.6 Ghz Intel Pentium IV processor running Windows 98 SE. Bogner-
Fox-Schmit elements are used with 9×9 grid points and 11×11 grid. We pick
one value for the Reynolds number, Re = 1. The second viscosity coefficient
ε1 is also chosen to be relatively small compared to Re. We choose ε1 =
e−15, e−16, ...., e−45. In the computation of this problem, we use the following
iterative scheme where we linearize the added nonlinear term and then solve
the nonlinear system of equations by using Newton’s method. Let ψ(0) ∈ Xh

be given; then we define the sequence ψ(n) ∈ Xh for n = 1, 2, 3, ..., to be the
solution of the following nonlinear discrete system:

Find ψ(n) ∈ Xh such that , for all φ ∈ Xh, (71)

a(ψ(n), φ) + â(ψ(n−1), ψ(n), φ) + b(ψ(n);ψ(n), φ) = (~f, ~curlφ). (72)

The resulting matrix from each iteration is nonsymmetric whose symmetric
part is positive definite. Moreover, the resulting matrix is sparse. The sug-
gested linear solver for such system is any Conjugate Gradient alike method.
We choose the Bi Conjugate Gradient Stabilized method (Bi-CGSTAB) ,(see
Templates [2]), to solve the linear system resulting from each Newton’s iter-
ate. Bi-CGSTAB was developed to solve nonsymmetric systems. The stopping
criteria for the problem is

‖ ψ(n+1) − ψ(n) ‖≤ TOL and ‖ residual ‖≤ TOL,
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Fig. 1. Differences between the approximate solution of the streamfunction equation
of a Ladyzhenskaya and the streamfunction equation of the NSE. Re = 1.0, q=4.
EL2 = Difference in the L2 norm.

with TOL = 1.0e−5 where the above two norms are in the discrete L2−norm.
Our computations show that we get a stable approximation of the unique so-
lution for (12). The Cavity problem is solved using both the streamfunction
equation of the Navier-Stokes model (13) and the streamfunction equation of
the Ladyzhenskaya model (12). The numerical computations were performed
for different choices of the second viscosity parameter ε1 and different sizes of
triangulations. Each time, we evaluate ‖ ψhL − ψhN ‖ where ψhL is the approxi-
mate solution of the streamfunction equation of the Ladyzhenskaya model and
ψhN is the approximate solution of the streamfunction equation of the Navier-
Stokes model. Then we interpolate the results from these cases to obtain the
graphs in Figure(1a) and Figure(1b). The graphs are produced in the loga-
rithmic coordinate system so that we can see more clearly the fact that the
difference in the discrete L2−norm between solutions does tend to zero as ε1

tends to zero.

The second computational experiment in this section was obtained using a
TOSHIBA Satellite Pro with Intel Mobile CPU 1.7GHz running Windows
XP. Bogner-Fox-Schmit elements are used with 17x17 grid points. We choose
ε1 = 1e− 20 and q = 4. We compute an approximate solution for Re = 1, 10,
30. Figures (3a,3b,3c) display streamfunction contours. We can see that the
top right corner, where the moving wall moves towards the stationary wall,
shows that the streamfunction contours are very smooth. It is also seen that
the number of vortices in the bottom right corner increases as the Reynolds
number increases.

The third computational experiment in this section was obtained using an
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(a) Re = 1 (b) Re = 10 (c) Re = 30

Fig. 2. Cavity Problem : Streamlines for different values of Reynolds numbers

(a) Left Corners (b) Right Corners

Fig. 3. Streamlines for NSE solutions(bottom) and Ladyzhenskaya solutions(top).

HP Compaq nc8230 with Intel Mobile CPU 1.86GHz running Windows XP.
Bogner-Fox-Schmit elements are used with 17x17 grid points. We choose Re =
30, ε1 = 10−3, and q = 4 to see if there are any differences between the NSE
solution and the Ladyzhenskaya solution. The top corners are presented in
Figure (3). It can be seen from Figure (3) that there are no differences between
the Navier-Stokes solution and the Ladyzhenskaya solution.

9 Conclusion

A weak formulation for the streamfunction equation of the Ladyzhenskaya
equations was discussed. The discretized version was also studied and some
finite element spaces applicable with it are provided. At some specific values of
the parameters, the Ladyzhenskaya equations become the Smagorinsky model
[36]. The Smagorinsky model, which is widely recognized, is the most popu-
lar model in Large Eddy Simulation (LES). LES has received many scientific
development and it is currently viewed as the most accurate and promising
approach to the simulation of turbulence. Then there has been a very ac-
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tive search for better LES models. Recent works on LES are accomplished by
Layton and his group [15,20,21,28]. Further studies using LES, e.g. LES ap-
proach of Hughes called Variational Multiscale Methods (VMM) [19,22,29–31],
are very valuable. Further studies including combinary LES approaches and
streamfunction form, and investigations of solutions, are subject of a forth-
coming study.

In this paper, we consider the two-dimensional streamfunction form of the La-
dyzhenskaya equations. One may think of considering the three-dimensional
version. Before we discuss this consideration, let us look at the three-dimensional
streamfunction form of the Navier-Stokes equations. First, a vector potential
Ψ is to be defined. Next, we let u = curl Ψ. Then, we eliminate the vortic-
ity ω = curl u from the three-dimensional streamfunction-vorticity equations.
Thus we obtain a single vector valued equation for the vector potential Ψ.
Following this way, the incompressibility condition div u = 0 is also automati-
cally satisfied. Moreover, the pressure is not present. So the two features of the
streamfunction form mentioned above are carried over in the three-dimensional
version. On the other hand, for the third feature of using the streamfunction
form, one unknown to solve for, we can notice that the number of unknowns to
solve for is three in the three-dimensional version while there are only four un-
knowns in velocity-pressure form. In addition, some researchers have attacked
three-dimensional vector potential formulation of the Navier-Stokes equations.
Further discussion and details can be found in [3,32,34,37]. All of the above
issues that occur when using three-dimensional streamfunction form of the
Navier-Stokes equations will also occur when considering three-dimensional
streamfunction form of the Ladyzhenskaya equations.
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