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Abstract
We show that the two dimensional Navier—Stokes equations in the stream function and vorticity form with nonhomo-
geneous boundary conditions have a unique solution with a stream function having two space derivatives.
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1. Introduction

Most of the mathematical literature addressing the analysis of the Navier—Stokes equations has dealt with
the case of homogeneous boundary conditions. The velocity and pressure formulation received much more
attention than the stream function and vorticity formulation. The available mathematical results can mostly
be found in [3,4,7] and in the more recent work in [2].

A variety of mathematical formulations have been studied to understand the Navier—Stokes equations from
analytical as well as numerical point of view. In this work the stream function and vorticity formulation are
studied. This formulation is commonly used in the engineering literature (see for example [1]). Some related
studies of the stationary problem are found in [5,6].

The objective of this work is to examine the existences and uniqueness problems of the Navier—Stokes equa-
tions with nonhomogeneous boundary conditions using the stream function and vorticity formulation. Here
we take the stream function to be in a space of more smoothness conditions than the traditionally taken of
only one weak derivative.

The rest of this paper consists of four sections. Section 2 presents the classical formulation. The properties
of a bilinear operator B that appears in the formulation are discussed in Section 3. An equivalent variational
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formulation is given in Section 4. Finally, our results on the existence and uniqueness of solution of the var-
iational problem are given in Section 5.

2. Problem formulation

In terms of the stream function y and vorticity ¢, the equations governing a time dependent viscous flow
are given by

% 0 0y Op QY
A G it S Wik . A
o M T wy Ty w P (1)
— My =¢ inQ,

where v denotes the kinematic viscosity, ¢ = curlf, f is the body force and  is a bounded region in R* with
finite, Lipschitz continuous boundary Q. We assume that 0Q consists of two parts I';, I'> with positive R’
measure and empty intersection of the interiors.

All treatments of (1) assume at least one derivative of the vorticity function ¢. The second equation means
that the stream function i should have two derivatives. We intend to study the solutions of (1) under the
assumption that y has at least two derivatives. For this purpose, we rewrite the second equation of (1) as

— A%y = Ao, (2)
where the derivatives involved here are understood to be in a weak sense as clarified later.
The following boundary conditions will be considered:

Y= % =0, on I},
(3)
oy
V=g, % ¢=0 on Iy,
where the functions g;, g> are assumed to be compatible with the existence of a stream function (see [4]) and
g1 € HY(r ), & € H 2 »). Initial conditions on the vorticity function ¢ are specified as
?(0) =@y Vix,y) €Q. (4)
In the sequel, the space L*(Q) will be denoted by H and its norm and inner product will be denoted by |||
and (-,") respectively and we introduce a formal bilinear operator B by

Op 0y  0p Oy
Bloy) = — 2 ¥ oW
(¢, ¥) ox Oy + dy Ox

With this operator, Egs. (1), and (2) take the form

0
a—th—VAqD‘f‘B(QD,l,b) =9,

— Ay = Ao.

(5)

Our starting point will be to transform the problem (3)—(5) to an equivalent one with homogeneous bound-
ary conditions. For this purpose we let 1/, be the unique solution in H*(Q) of

0
5 ‘//b:gh%:gZ on I,
A‘//17:07 al/lb (6>
l//b:aTZO Onrl.

With the transformation  — y — i, the system (3)—(5) changes into

d
6_“t” —vAp + B(g, ) — B(p,¥,) =g,

Y+ 49 =0 in Q,
@(0) = qDO)
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oy
=—=0 onoQ
V= ,
=0 onT,. (7)

Note that no boundary values are assumed for the vorticity function ¢ on I';.
The main function spaces we need here are

Vy=Hj(Q),
Ve={{eH(Q):{=0o0nT,}.

In addition to these we also use the standard Bochner spaces such as LZ(O, T, X), #7(0,T,X,Y), ..., etc., the
definitions and properties of which can be found in [4].

3. Properties of the bilinear operator B

In this section and the rest of the paper, ¢ will denote a generic constant that may depend on the properties
of the domain Q but is independent of the functions involved, and may vary from inequality to another, 2(Q)
will denote the space of test functions consisting of infinitely differentiable compactly supported (in Q) func-
tions, and V” will denote the dual space, of a space V, consisting of generalized functions.

We now discuss some properties of the bilinear operator B that will be used extensively in this work. To
begin with we notice that the operator B has the simple property

B(n,n) = 0.

Further properties of B are given in the following lemmas.

Lemma 1. V, is continuously embedded in L*(Q). Moreover, we have the inequality
1201 11/2
il < ellVall"lll"2,
for every y € V., where ||||4 denotes the norm in L*(Q).

Proof. See [4, p. 156]. O

Lemma 2. V,, is continuously embedded in L*(Q). Moreover, we have the inequality

1/2 1/2
IV xlls < ell Azl V)

1/4
: 4 4
Jor every y € V,. Here, |V, = (fg 12" + 2—; dQ) .
Proof. Assume first that y € 2(Q). Since %,% € V,, we have by Lemma 1
oyl IRIEA
i A1 2L
/ ox \CHvax ox
ay[* SR
/ U < ol [ ||
oy oyl [lay

On the other hand,

2
6;(2
v _/

aZX 627 2 627 az}l 2 , ,

™ v < _v . < " _ )

axﬁaxay‘ s¢ / (a> + / (M) < cltlhg = clly]
Oy 2

vl <ellaz)”.
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2 2
0
dy

The result now follows by the density of Z(Q) in V,,. O

Hence,

4
4 2
V2l < ellaz) (Ha

2 2
) = cllaxll IVl

Lemma 3. (B(o,¥),7) = —(B(¥).0), Yo,z € H(Q), Y € Vy.

Proof. It suffices to prove the statement for ¢,y € C(Q), ¥ € 2(Q).

o O Oy Op oY Op Oy Op Oy
<B<(”"p)">_/< ax oy 3y ox Dt ) o op”

Yy oYy Oy oy oy
N _/q[)(@y@xl—’_ Ox 6y> +/(p<6x6y1+6y 5)

(o aw
B Ox Oy Oy Ox ¢

—B(y) ). O

Lemma 4. B:V, x Vy — V|, continuously. Moreover,
1B(@, ¥)lly, < cllVollll 4wl (8)

Proof. For ¢, y € V,, Y € 2(2) we have, using Lemmas 1 and 2 and the inequality ||Vy/|| < c[|4y]|,

Op Oy agoalp
\B( ‘ / <—aa—y = a)] / Vol [Vl < Vol 2l

eIVl Vel IVl Il < el Vel Vel IVl < el Vollll w2 V)V
Vol ag(lIvzll. O

NN

Corollary 5. Suppose that y € Vy, and ¢ €V, satisfy ¢ = Ay, then

2
[(B(@.¥). 0| < clVllIVell™.
Proof. This follows from Lemma 4 and the inequality ||¢|| < ¢||Ve||. O
Lemma 6. B(-,y,) : V, — V', continuously. Furthermore, HB((/),!/J,;)HV;J < Vol -
Proof. By restricting ¢ € V, to functions with continuous two derivatives that vanish in a neighborhood of

I'5, taking into account the boundary conditions of i/, and the continuous embedding H?(Q)—C(Q), we have,
for all y € V,,

[(B(@, ), 0] = [(B(@, 1) ¥i) | < Vol Vall I, ] - 9)
The result follows by density. [
4. Variational formulation

In this section we give an equivalent variational formulation of (7). We will use the notations
®0,7) = L*0,T; Vo), Y(0,7) = L*0,T; V). The variational formulation of (7) is stated as follows:
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For g € L*(0,T; V'), o € H, find a pair (¢, ) with
@ € ®(0,T)NL*(0,T;H), € ¥(0,T)NL*(0,T;Hy(Q))

such that

& 0002 +¥(T 00, V) + Blo(0), W(0),7) + Blo(0) 1), 7) = {g(0), 7). )
V1 €V, 0(0) = o,
and
(A9 (1), 48) = (Vo(1),VE) =0 VEe V. (11)
The system of Egs. (10) and (11) will be referred to as Problem (P).

Theorem 7. If ¢ € (0, T) N L0, T; H), Y € ¥(0,T) N L>(0, T; H}(Q)) solve Problem (P) then

i—f ELZ(O, T; V;)).

Proof. For y € V,, we have

[(B(o (1), (1), )| = [(B(1, ¥ (1)), @(1))] < Ollalle@ll4
< VAl A O IV o1 Ve O o)

so that

1/2
(/ 18600 I, 8 ) < cllolallile Wl o7 9l

ie.. B(p().¥() € L*(0, T3 V7).
Similarly, noting that s, possesses enough smoothness to allow the switch in the first equation below, we
have, for y € V,, sufficiently smooth,

(B (), ¥,), )| = [(B(2,¥,), 0 ()] <
<Vl A, 1 IV eI 21Vl (]2
<Vl @l VoI o]

lallo(@)]l4

so that

12
([ 18to0005,00) < clolallbulenormorin

which shows that B(¢(:),¥,) € L*(0, T; V). Our assumption that q € L*0,T; V,) then gives
Ler0,r;v). O

Corollary 8. Problem (P) is equivalent to (7).

5. Existence, uniqueness for Problem (P)

In this section we show that Problem (P) has a unique solution. This is the content of Theorems 13 and 14
at the end of this section. Our main tool is a standard Galerkin argument. What may come as a surprise in this
section is that the same argument used for the proof of existence and uniqueness of the Navier—Stokes equa-
tion in the velocity—pressure formulation can be modified to work for the stream function and vorticity one.
This modification, however, is not trivial since it relies heavily on the properties of the underlying spaces and
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the operator B introduced in the previous two sections as well as on the isomorphic features of the operators A
and 4°,

We begin by discretizing the space V,,. Let (¢,,),»>1 be a basis for V,, (i.e., V,, is the closure of finite linear
combinations of the functions ¢,,). Let (¥,,),,>1 be the unique solutions in V,, of

2 _ : !
=AY, =4, nV,.
Notice that, since in the mappings
v, H A (),
A is an isomorphism, we have

Ay, =@, inH. (12)

m

Set Vi = span(ey, ¢, ..., @,), V= span(y, ¥, ..., ¥,,). Consider the following discretized problem:
Find functions (gy,,(¢), g2,(?), - - - » &mm(?)) such that

- J_fljg,.mm(p,-, (13)
=3 g0, (149

are solutions of
C 0n0.0) + (Y000, T0) + (Blon (001, 0) + Bl0n0). ). 0) = g, 0. 0

(pm(o) = Qom € V(P
and

(Alpm(t)aAlrbi)+(v§0m(t)vvwi) =0, i=12,...,m, (16)

where @, is chosen such that ¢, — ¢ in H.
Notice that, from Eq. (16) above, we get

— A7y, (1) = A9, (1) Zg]m A, == g, (04
=

and since 47 is an isometry in Vy we have

0= g0

In other words, our definition (14) of the functions ,,(¢) is compatible with the solution of the discretized
equation (16). Therefore, if we use Eq. (15) to determine the functions g;,(f), j=1,2,...,m then Eq. (16) will
automatically be satisfied. Also, it follows from Eq. (12) that

M, (1) = ¢,(t) in H. (17)

m

Since (¢;);-

DPom = Zg?m(pi' (18)
i=1

, 18 a basis for V,,, we may write

The system of Eqgs. (15) and (16) will be labelled Problem (P.,).
Lemma 9. If g,,.(0), 22,(0), . - ., &um(?) are found such that Eq. (16) are satisfied, then
[ 4, ()]l < [V, (1]
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and

1, (O < ell @ D).

Proof. Multiplying both sides of Eq. (16) by g;,(f) and summing from 1 to m we obtain

14, (I = =V, (1), Vir,, (1)) < IV, OV, (0)l| < cll Ve, (1)l 4%, (1)
The second statement follows from (17) and the fact that |[y,.(¢)|| < c||[4y(2)]]. O

Lemma 10. Problem (P.,) has a unique solution, i.e., there exists a unique set of functions

glm(t)7g2m([)v ce 7gmm(t) € Lw(ov T)
such that the functions ¢,(t), ,,(t) defined by (13) and (14) satisfy (Py). Moreover,

¢, €L*(0,T;V,)NL>(0,T; H), Y, €L7(0,T; V)

with norms bounded uniformly in m.

Proof. Using the definitions (13) and (14) of the functions ¢,,(¢), ¥,,(¢) in (15), we see that the functions g;,(?),

j=1,2,...,m must satisfy the system of ordinary differential equations
m d m m
> (0500 3 &t +VZ (Vo V)2t +Z Z (@ Wi)s @8 (1)1 (1)
J=1 J=1 J=

+ Z (0> ¥8), 91) (1)

:<q7§0i>7 gim(o):gjma i=1,2,....m
which may be written in a matrix form as

€ Galt) = A (1(G(0). Gul) + ). (19)

G (0) = Go, (20)
where

Gult) = [81(0) ()],

A= [, 9],

Go=[gh, -~ &l

f(,7) is a bilinear function and f; is a constant vector. A has an inverse because it is the Gramian of a system of
linearly independent functions. The system (19) and (20) has a unique solution defined in a maximal interval

t, < T. Correspondingly, we have a unique solution ¢,,(z) of (15) defined by (13) in [0,¢,,]. A standard argu-
ment (see [4]), which involves multiplying both sides of Eq. (15) by g;,(¢) and summing from 1 to m, is used to
show that ¢,,(-) € L*(0, T; V,,)) N L*(0, T; H). Eq. (17) gives (") € L0, T;V,). O

We remark that L>°(0,T; V) C LX0,T; V). The definition of the space #7(0, T; X, Y) for 0 <y and Hilbert
spaces X, Y used in the following lemma can be found in [4].

Lemma 11. The sequence (¢,(")) is bounded in #7(0,T;V ,,H) for 0 <y < %.

Proof. Denote by ¢,,(+), Jm(), ¢(+) the extensions of the functions ¢,,(*), ¥,.(*), ¢(*) by zero outside [0, T]. Then
(15) becomes

%@m(f), 0) +V(V5,(1), Vo) + (B(7,(0),1,(1), @) + (B($,,(1).1,), 0,)
=(q(), 9:;) + (Pom> #:)00 — (9,,(T), 9,)07, i=1,2,....m
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where 0y and 7 denote the Dirac delta functions at 1 =0 and ¢ = T, respectively. Denote by ¢,,(1), @m(t),

B,,(1), and (1) the Fourier transforms of @,,(¢), ¥,,(t), B($,,(t), ¥,,(t)), and §(¢) respectively. The Fourier
transform of the above system is

2mit(9,,(1), 9,) + V(V$,(1), Vo) + (Bu(1),0,) + (B(3,(1):¥,), .)
= <ZI\(T)’ ¢i> + (QDOInv (pi) - ((pm(T), (pi)eizmﬂv i=1,2,...,m

Hence,
2mit]|3,,(0)|* + VI @ ()17, + (Bu(2), Bn(2)) = (@), (1)) + (@0s Dn(7)) = (@ (T), B (x))e >
The imaginary part of this equality yields

20lt)18, (I < (GO, + 1Bu()lly,)|B(2)

v, T (leonll + len (T)DI@H (DI

Now from (8), Lemmas 9 and 10, we get
[ee) - T T
Ba(ell, < [ M@Amwmmmw<cA|w%mwummmw<cluv%mww<a

e e]
Gy, < [ 130l d < T alsorr, <

o0

Hence, we have the following bound for all T € R.

718, (D1 < cUIBu@lly, + 18-

Following an argument similar to [4, p. 165] we get

| ipa@ra<e o

o0

Corollary 12. The sequence (\,,) is bounded in #7(0,T;V,, V) for 0 <y <1
Proof. This follows from Lemma 9 and Parseval’s identity. [

Theorem 13. Problem (P) has at least one solution pair (p,\) where
o(-) € L*(0,T;V,)NL¥(0,T; H), Y() € LX(0,T; V).
Proof. By virtue of Lemmas 10 and 11 and Corollary 12 there exists a subsequence of (¢,,, {/,,) (we still denote
it by (¢, ¥,»)) such that
(Pus W) = (@) in L2(0,T;V,) x L*(0, T V),
(@ Y) = (@, 0)  in LX(0,T; H) x L(0,T; V), (21)
(@us ) = (@ 0) in A7(0, T3V, H) x A7(0,T5Vy, V).
Since the compact embedding of a Hilbert space X into a Hilbert space Y implies the compact embedding of
#7(0,T;X,Y) into L*0, T; Y), we have
(Pus W) = (@) in L2(0, T3 H) x L*(0, T H'(Q)). (22)

Without loss of generality, we may assume that the basis functions (¢;) are in 2(Q). Let 0 € C'([0, T7) be such
that 6(T) = 0. The weak convergence in L*(0, T; V) % L*0,T;V,) gives

Vo, (1), Vi) = (Vo(1), Vi),
(A, (1), An) — (A (2), An).
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For almost all 7 € [0, 7] and all # in V. Hence,
—((4y (), 4n) + (Vo (1), Vi) =0,

and Eq. (11) follows. To show the validity of Eq. (10) we first multiply both sides by 0 and integrate over [0, T
and use Green’s formula; this gives

- / (1), 0)0 (1)t + / (T (6). T 0,) + (Bl (6), U (1)), 0)0(0) it + / (Blon (1), 1), 9)0(1) e

T
= [ 000000t + (pu. 0)000),
i=1,2,...,m. Hence, for a fixed my and any & € V:’;", we have

- / (1) )0 (1)di + / (T (6), V) + (B(on(t). (1)), E))0(0) i + / (Blon(0), 1), )0(1) dr

- /0 T<q(t)7 )0(r) d + (g, £)0(0).

It follows from (21) that

/0 (1), )0 (1) dt — / (0(0), )0 (1) dr,

T T
| ou0.va0ma - [ (9o, 7000 ar
0 0
Furthermore, Lemma 3 and the weak convergence
P — @ InL}0,T;V,)

give

/0 (Bln(t), ), E)0(1) dt = / (BE) )00 dt — — [ (BE), 0(0)0(1)de

Next using (22) we show that

/0 (Blon(0) (1), 00 dt — | (Blo(0), (1)), E)0()dr.

0
We have

/0(B(wm(t),lﬂm(t)),@@(t)dt—/0 (B(o(1),y(1)), €)0(¢) dt

/ ((B(@w (1) = @(1):1,,(1)), &) + (B(@(1), ¥, (1) = ¥(2)), £))0(1) dt

= ’—/0 ((B(&, ¥, (1)), @ (1) = @(2)) + (B(E, ¥, (1) = ¥ (2)), 0(2)))0(2) dt

< IIVélloc/o IV, Ol @, (1) = @O + 1V, () = V@ Hle(2)]1)10(2)] dt

< ||Vé||x|0||w<[ [ 1sor] " [ 00— o0 Ca

| votar] 1/2 [ 19w - wuior] N dz).
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The right hand side of the last inequality converges to 0 since @,() — ¢(*) strongly in L*(0,T;H) and
Ym(*) — () strongly in L*(0, T: H'(Q)). Finally, by hypothesis, ¢o,, — ¢o in H. Hence, in the limit, we have
T

- / (1), E)0/(1)de + / ((T(0), V&) + (Blo(0), ¥(1)), E)0(0)di + / (Blo(0), ;). £)0()dr

- / (g(), EY0(1) i + (0, E)0(0). (23)

for all § € C'([0, T7) with 6(T) = 0. Since m, is arbitrary and U, V', 1s dense in V, it follows that (23) is also
valid for all ¢ € V,,. The first of Eq. (10) now follows by restricting 0 to Z(Q).

It remains to check that ¢(0) = ¢o. This can be shown by multiplying both sides of the first equation in (10)
by a function 0 € C'([0, T]) with 0(T) = 0, integrating from 0 to 7, using Green’s formula and comparing with
(23). We get (¢(0),&) = (o, &), VE € V,. Hence, ¢(0) = ¢, in V,, and consequently, ¢(0) = ¢, in H, since
poce H. O

Theorem 14. Problem (P) has a unique solution (¢,yr) where
o(-) € (0, T; Vo) NL*(0,T; H),  Y(-) € L*(0,T; V).

Proof. Suppose that (¢(*), ¥1(*)), (@2(°), ¥2(*)) are solutions. Let {(*) = @1(-) — @a(°), () = ¥1(*) — ¥2(*) then for
all ye V,and all £ €V,
d
a(é(t),}ﬁ +v(VL(@), V) + (Bl (1), 4,(2), 1) — (B(@a2(),¥2(2)), 1) + (B(L(2),¥3), 1) = O, (24)
(Ag(2), 48) + (V{(1),VE) = 0.

The second equation above gives 4%¢(7) = A{(1) or Ac(r) = {(1) in H.
If in (24) above we use y = {(1), £ = ¢g(¢) then

(8020 ) +VIVEOI + (Bor0) 1 (0D, 0) ~ (Bles0) (0, L0) = .

Using the estimates from Lemma 4 and since
(B(1(1),9,(1)), L(1)) — (B (1), 5(1)), {(1)) = (B(L(2),(2)), 0(2)),
[(B(1(2),¥,1(2)), £(2)) — (Boa(1), ¥2(1)), L) < cIVEDII AV (1)

= VoIV < SITEOIF + 5 Vo0 PlcCo)
Hence,
EIe0I < SIVe0P RO

Since [|£(0)]|> = [|@1(0) — @2(0)[|* = ||@o — @ol|* = 0, then, by Gronwal’s inequality, ||||* =0 or { = 0. Then
=0.

Since ¢ satisfies homogeneous boundary conditions we get c=0. [
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