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Abstract

We show that the two dimensional Navier–Stokes equations in the stream function and vorticity form with nonhomo-
geneous boundary conditions have a unique solution with a stream function having two space derivatives.
� 2005 Published by Elsevier Inc.
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1. Introduction

Most of the mathematical literature addressing the analysis of the Navier–Stokes equations has dealt with
the case of homogeneous boundary conditions. The velocity and pressure formulation received much more
attention than the stream function and vorticity formulation. The available mathematical results can mostly
be found in [3,4,7] and in the more recent work in [2].

A variety of mathematical formulations have been studied to understand the Navier–Stokes equations from
analytical as well as numerical point of view. In this work the stream function and vorticity formulation are
studied. This formulation is commonly used in the engineering literature (see for example [1]). Some related
studies of the stationary problem are found in [5,6].

The objective of this work is to examine the existences and uniqueness problems of the Navier–Stokes equa-
tions with nonhomogeneous boundary conditions using the stream function and vorticity formulation. Here
we take the stream function to be in a space of more smoothness conditions than the traditionally taken of
only one weak derivative.

The rest of this paper consists of four sections. Section 2 presents the classical formulation. The properties
of a bilinear operator B that appears in the formulation are discussed in Section 3. An equivalent variational
0096-3003/$ - see front matter � 2005 Published by Elsevier Inc.
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formulation is given in Section 4. Finally, our results on the existence and uniqueness of solution of the var-
iational problem are given in Section 5.

2. Problem formulation

In terms of the stream function w and vorticity u, the equations governing a time dependent viscous flow
are given by
ou
ot

� mDu� ou
ox

ow
oy

þ ou
oy

ow
ox

¼ q;

� Dw ¼ u in X;
ð1Þ
where m denotes the kinematic viscosity, q = curl f, f is the body force and X is a bounded region in R2 with
finite, Lipschitz continuous boundary oX. We assume that oX consists of two parts C1, C2 with positive R1

measure and empty intersection of the interiors.
All treatments of (1) assume at least one derivative of the vorticity function u. The second equation means

that the stream function w should have two derivatives. We intend to study the solutions of (1) under the
assumption that w has at least two derivatives. For this purpose, we rewrite the second equation of (1) as
�D2w ¼ Du; ð2Þ

where the derivatives involved here are understood to be in a weak sense as clarified later.

The following boundary conditions will be considered:
w ¼ ow
on

¼ 0; on C1;

w ¼ g1;
ow
on

¼ g2; u ¼ 0 on C2;

ð3Þ
where the functions g1, g2 are assumed to be compatible with the existence of a stream function (see [4]) and
g1 2 H3/2(C2), g2 2 H1/2(C2). Initial conditions on the vorticity function u are specified as
uð0Þ ¼ u0 8ðx; yÞ 2 X. ð4Þ

In the sequel, the space L2(X) will be denoted by H and its norm and inner product will be denoted by kÆk

and (Æ, Æ) respectively and we introduce a formal bilinear operator B by
Bðu;wÞ ¼ � ou
ox

ow
oy

þ ou
oy

ow
ox

.

With this operator, Eqs. (1), and (2) take the form
ou
ot

� mDuþ Bðu;wÞ ¼ q;

� D2w ¼ Du.
ð5Þ
Our starting point will be to transform the problem (3)–(5) to an equivalent one with homogeneous bound-
ary conditions. For this purpose we let wb be the unique solution in H2(X) of
D2wb ¼ 0;
wb ¼ g1;

owb

on
¼ g2 on C2;

wb ¼
owb

on
¼ 0 on C1.

ð6Þ
With the transformation w # w � wb the system (3)–(5) changes into
ou
ot

� mDuþ Bðu;wÞ � Bðu;wbÞ ¼ q;

D2wþ Du ¼ 0 in X;

uð0Þ ¼ u0;
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w ¼ ow
on

¼ 0 on oX;

u ¼ 0 on C2. ð7Þ
Note that no boundary values are assumed for the vorticity function u on C1.
The main function spaces we need here are
V w ¼ H 2
0ðXÞ;

V u ¼ ff 2 H 1ðXÞ : f ¼ 0 on C2g.
In addition to these we also use the standard Bochner spaces such as L2(0,T;X), Hcð0; T ;X ; Y Þ, . . . , etc., the
definitions and properties of which can be found in [4].

3. Properties of the bilinear operator B

In this section and the rest of the paper, c will denote a generic constant that may depend on the properties
of the domain X but is independent of the functions involved, and may vary from inequality to another, DðXÞ
will denote the space of test functions consisting of infinitely differentiable compactly supported (in X) func-
tions, and V 0 will denote the dual space, of a space V, consisting of generalized functions.

We now discuss some properties of the bilinear operator B that will be used extensively in this work. To
begin with we notice that the operator B has the simple property
Bðg; gÞ ¼ 0.
Further properties of B are given in the following lemmas.

Lemma 1. Vu is continuously embedded in L4(X). Moreover, we have the inequality
kvk4 6 ckrvk1=2kvk1=2;
for every v 2 Vu, where kÆk4 denotes the norm in L4(X).

Proof. See [4, p. 156]. h

Lemma 2. Vw is continuously embedded in L4(X). Moreover, we have the inequality
krvk4 6 ckDvk1=2krvk1=2 � �1=4
for every v 2 Vw. Here, krvk4 ¼
R
X

ov
ox

�� ��4 þ ov
oy

��� ���4 dX .

Proof. Assume first that v 2 DðXÞ. Since ov
ox ;

ov
oy 2 V u, we have by Lemma 1
Z

ov
ox

���� ����4 6 c r ov
ox

���� ����2 ov
ox

���� ����2;Z
ov
oy

���� ����4 6 c r ov
oy

���� ����2 ov
oy

���� ����2.

On the other hand,
r ov
ox

���� ����2 ¼ Z o2v
ox2

þ o2v
oxoy

���� ����2 6 c
Z

o2v
ox2

� �2

þ
Z

o2v
oxoy

� �2
 !

6 cjvj22;X ¼ ckDvk2.
Similarly,
r ov
oy

���� ����2 6 ckDvk2.
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Hence,
krvk44 6 ckDvk2 ov
ox

���� ����2 þ ov
oy

���� ����2
 !

¼ ckDvk2krvk2.
The result now follows by the density of DðXÞ in Vw. h

Lemma 3. hB(u,w),vi = �hB(v,w),ui, "u,v 2 H1(X), w 2 Vw.

Proof. It suffices to prove the statement for u,v 2 C1(X), w 2 DðXÞ.
hBðu;wÞ; vi ¼
Z

� ou
ox

ow
oy

þ ou
oy

ow
ox

� �
v ¼

Z
ou
oy

ow
ox

v�
Z

ou
ox

ow
oy

v

¼ �
Z

u
o2w
oy ox

vþ ow
ox

ov
oy

� �
þ
Z

u
o2w
oxoy

vþ ov
oy

ow
ox

� �
¼ �

Z
� ov
ox

ow
oy

þ ov
oy

ow
ox

� �
u

¼ �hBðv;wÞ;ui. �
Lemma 4. B : V u � V w ! V 0
u continuously. Moreover,
kBðu;wÞkV 0
u
6 ckrukkDwk. ð8Þ
Proof. For u, v 2 Vu, w 2 DðXÞ we have, using Lemmas 1 and 2 and the inequality k$wk 6 ckDwk,
jhBðu;wÞ; vij ¼
Z

� ou
ox

ow
oy

þ ou
oy

ow
ox

� �
v

���� ���� 6 Z jrujjrwjjvj 6 krukkrwk4kvk4

6 ckrukkrwk4krvk1=2kvk1=2 6 ckrukkrwk4krvk 6 ckrukkDwk1=2krwk1=2krvk
6 ckrukkDwkkrvk. �
Corollary 5. Suppose that w 2 Vw and u 2 Vu satisfy u = Dw, then
jhBðu;wÞ; vij 6 ckrvkkruk2.
Proof. This follows from Lemma 4 and the inequality kuk 6 ck$uk. h

Lemma 6. Bð�;wbÞ : V u ! V 0
u continuously. Furthermore, kBðu;wbÞkV 0

u
6 krukkwbk1.

Proof. By restricting u 2 Vu to functions with continuous two derivatives that vanish in a neighborhood of
C2, taking into account the boundary conditions of wb and the continuous embedding H 2ðXÞ,!CðXÞ, we have,
for all v 2 Vu,
jhBðu;wbÞ; vij ¼ jhBðu; vÞ;wbij 6 krukkrvkkwbk1. ð9Þ
The result follows by density. h
4. Variational formulation

In this section we give an equivalent variational formulation of (7). We will use the notations
U(0,T) = L2(0,T;Vu), W(0,T) = L2(0,T;Vw). The variational formulation of (7) is stated as follows:
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For q 2 L2ð0; T ; V 0
uÞ, u0 2 H, find a pair (u,w) with
u 2 Uð0; T Þ \ L1ð0; T ;HÞ; w 2 Wð0; T Þ \ L1 0; T ;H 1
0ðXÞ

� �

such that
d

dt
huðtÞ; vi þ mðruðtÞ;rvÞ þ hBðuðtÞ;wðtÞÞ; vi þ hBðuðtÞ;wbÞ; vi ¼ hqðtÞ; vi;

8v 2 V u;uð0Þ ¼ u0;

ð10Þ
and
ðDwðtÞ;DnÞ � ðruðtÞ;rnÞ ¼ 0 8n 2 V w. ð11Þ
The system of Eqs. (10) and (11) will be referred to as Problem (P).

Theorem 7. If u 2 U(0,T) \ L1(0,T;H), w 2 Wð0; T Þ \ L1ð0; T ;H 1
0ðXÞÞ solve Problem (P) then
du
dt

2 L2 0; T ; V 0
u

� �
.

Proof. For v 2 Vu we have
jhBðuðtÞ;wðtÞÞ; vij ¼ jhBðv;wðtÞÞ;uðtÞij 6 ckrvkkrwðtÞk4kuðtÞk4
6 ckrvkkDwðtÞk1=2kruðtÞk1=2krwðtÞk1=2kuðtÞk1=2
so that
Z T

0

kBðuðtÞ;wðtÞÞk2V u
dt

� �1=2

6 ckukUkwkWkwkL1 0;T ;H1
0
ðXÞð ÞkukL1ð0;T ;HÞ;
i.e., Bðuð�Þ;wð�ÞÞ 2 L2ð0; T ; V 0
uÞ.

Similarly, noting that wb possesses enough smoothness to allow the switch in the first equation below, we
have, for v 2 Vu sufficiently smooth,
jhBðuðtÞ;wbÞ; vij ¼ jhBðv;wbÞ;uðtÞij 6 ckrvkkrwbk4kuðtÞk4
6 ckrvkkDwbk

1=2kruðtÞk1=2krwbk
1=2kuðtÞk1=2

6 ckrvkkwbkH2ðXÞkruðtÞk1=2kuðtÞk1=2
so that
Z T

0

kBðuðtÞ;wbÞk
2
V u

dt
� �1=2

6 ckukUkwbkH2ðXÞkuL1ð0;T ;HÞ;
which shows that Bðuð�Þ;wbÞ 2 L2ð0; T ; V 0
uÞ. Our assumption that q 2 L2ð0; T ; V 0

uÞ then gives
du
dt 2 L2ð0; T ; V 0

uÞ. h

Corollary 8. Problem (P) is equivalent to (7).
5. Existence, uniqueness for Problem (P)

In this section we show that Problem (P) has a unique solution. This is the content of Theorems 13 and 14
at the end of this section. Our main tool is a standard Galerkin argument. What may come as a surprise in this
section is that the same argument used for the proof of existence and uniqueness of the Navier–Stokes equa-
tion in the velocity–pressure formulation can be modified to work for the stream function and vorticity one.
This modification, however, is not trivial since it relies heavily on the properties of the underlying spaces and
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the operator B introduced in the previous two sections as well as on the isomorphic features of the operators D
and D2.

We begin by discretizing the space Vu. Let (um)mP1 be a basis for Vu (i.e., Vu is the closure of finite linear
combinations of the functions um). Let (wm)mP1 be the unique solutions in Vw of
�D2wm ¼ Dum in V 0
w.
Notice that, since in the mappings
V w !
D
H !D H�2ðXÞ;
D is an isomorphism, we have
Dwm ¼ um in H . ð12Þ

Set V m

u ¼ spanðu1;u2; . . . ;umÞ, V m
w ¼ spanðw1;w2; . . . ;wmÞ. Consider the following discretized problem:

Find functions (g1m(t),g2m(t), . . . ,gmm(t)) such that
umðtÞ ¼
Xm
j¼1

gjmðtÞuj; ð13Þ

wmðtÞ ¼
Xm
j¼1

gjmðtÞwj; ð14Þ
are solutions of
d

dt
humðtÞ;uii þ mðrumðtÞ;ruiÞ þ hBðumðtÞ;wmðtÞÞ;uii þ hBðumðtÞ;wbÞ;uii ¼ hq;uii;

umð0Þ ¼ u0m 2 V u

ð15Þ
and
ðDwmðtÞ;DwiÞ þ ðrumðtÞ;rwiÞ ¼ 0; i ¼ 1; 2; . . . ;m; ð16Þ

where u0m is chosen such that u0m ! u0 in H.

Notice that, from Eq. (16) above, we get
�D2wmðtÞ ¼ DumðtÞ ¼
Xm
j¼1

gjmðtÞDuj ¼ �
Xm
j¼1

gjmðtÞD2wj
and since D2 is an isometry in Vw we have
wmðtÞ ¼
Xm
j¼1

gjmðtÞwj.
In other words, our definition (14) of the functions wm(t) is compatible with the solution of the discretized
equation (16). Therefore, if we use Eq. (15) to determine the functions gjm(t), j = 1,2, . . . ,m then Eq. (16) will
automatically be satisfied. Also, it follows from Eq. (12) that
DwmðtÞ ¼ umðtÞ in H . ð17Þ

Since ðuiÞ

m
i¼1 is a basis for Vu, we may write
u0m ¼
Xm
i¼1

g0imui. ð18Þ
The system of Eqs. (15) and (16) will be labelled Problem (Pm).

Lemma 9. If g1m(t), g2m(t), . . . , gmm(t) are found such that Eq. (16) are satisfied, then
kDwmðtÞk 6 ckrumðtÞk
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and
kwmðtÞk 6 ckumðtÞk.
Proof. Multiplying both sides of Eq. (16) by gim(t) and summing from 1 to m we obtain
kDwmðtÞk
2 ¼ �ðrumðtÞ;rwmðtÞÞ 6 krumðtÞkkrwmðtÞk 6 ckrumðtÞkkDwmðtÞk.
The second statement follows from (17) and the fact that kwm(t)k 6 ckDwm(t)k. h

Lemma 10. Problem (Pm) has a unique solution, i.e., there exists a unique set of functions
g1mðtÞ; g2mðtÞ; . . . ; gmmðtÞ 2 L1ð0; T Þ

such that the functions um(t), wm(t) defined by (13) and (14) satisfy (Pm). Moreover,
um 2 L2ð0; T ; V uÞ \ L1ð0; T ;HÞ; wm 2 L1ð0; T ; V wÞ

with norms bounded uniformly in m.

Proof. Using the definitions (13) and (14) of the functions um(t), wm(t) in (15), we see that the functions gjm(t),
j = 1,2, . . . ,m must satisfy the system of ordinary differential equations
Xm

j¼1

huj;uii
d

dt
gjmðtÞ þ m

Xm
j¼1

ðruj;ruiÞgjmðtÞ þ
Xm
j¼1

Xm
k¼1

hBðuj;wkÞ;uiigjmðtÞgkmðtÞ

þ
Xm
j¼1

hBðuj;wbÞ;uiigjmðtÞ

¼ hq;uii; gimð0Þ ¼ g0im; i ¼ 1; 2; . . . ;m;
which may be written in a matrix form as
d

dt
GmðtÞ ¼ K�1ðf ðGmðtÞ;GmðtÞÞ þ f0Þ; ð19Þ

Gmð0Þ ¼ G0; ð20Þ
where
GmðtÞ ¼ g1mðtÞ � � � gmmðtÞ½ �T;
K ¼ ½huj;uii�;

G0 ¼ g01m � � � g0mm
	 
T

;

f(Æ, Æ) is a bilinear function and f0 is a constant vector. K has an inverse because it is the Gramian of a system of
linearly independent functions. The system (19) and (20) has a unique solution defined in a maximal interval
tm 6 T. Correspondingly, we have a unique solution um(t) of (15) defined by (13) in [0, tm]. A standard argu-
ment (see [4]), which involves multiplying both sides of Eq. (15) by gim(t) and summing from 1 to m, is used to
show that um(Æ) 2 L2(0,T;Vu) \ L1(0,T;H). Eq. (17) gives wm(Æ) 2 L1(0,T;Vw). h

We remark that L1(0,T;Vw) � L2(0,T;Vw). The definition of the space Hcð0; T ;X ; Y Þ for 0 < c and Hilbert
spaces X,Y used in the following lemma can be found in [4].

Lemma 11. The sequence (um(Æ)) is bounded in Hcð0; T ; V u;HÞ for 0 < c < 1
4.

Proof. Denote by eumð�Þ, ewmð�Þ, eqð�Þ the extensions of the functions um(Æ), wm(Æ), q(Æ) by zero outside [0,T]. Then
(15) becomes
d

dt
heumðtÞ;uii þ mðreumðtÞ;ruiÞ þ hBðeumðtÞ; ewmðtÞÞ;uii þ hBðeumðtÞ;wbÞ;uii

¼ heqðtÞ;uii þ ðu0m;uiÞd0 � ðumðT Þ;uiÞdT ; i ¼ 1; 2; . . . ;m;
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where d0 and dT denote the Dirac delta functions at t = 0 and t = T, respectively. Denote by bumðsÞ, bwmðsÞ,bBmðsÞ, and bqðsÞ the Fourier transforms of eumðtÞ, ewmðtÞ, BðeumðtÞ, ewmðtÞÞ, and eqðtÞ respectively. The Fourier
transform of the above system is
2pisðbumðsÞ;ujÞ þ mðrbumðsÞ;rujÞ þ hbBmðsÞ;uji þ hBðbumðsÞ;wbÞ;uii
¼ hbqðsÞ;uii þ ðu0m;uiÞ � ðumðT Þ;uiÞe�2pisT ; i ¼ 1; 2; . . . ;m.
Hence,
2piskbumðsÞk
2 þ mkbumðsÞk

2
V u

þ hbBmðsÞ; bumðsÞi ¼ hbqðsÞ; bumðsÞi þ ðu0m; bumðsÞÞ � ðumðT Þ; bumðsÞÞe�2pisT .
The imaginary part of this equality yields
2pjsjkbumðsÞk
2
6 ðkbqðsÞkV 0

u
þ kbBmðsÞkV 0

u
ÞkbumðsÞkV u

þ ðku0mk þ kumðT ÞkÞkbumðsÞk.
Now from (8), Lemmas 9 and 10, we get
kbBmðsÞkV u
6

Z 1

�1
kBðeumðtÞ; ewmðtÞÞkV u

dt 6 c
Z T

0

krumðtÞkkDwmðtÞkdt 6 c
Z T

0

krumðtÞk
2 dt 6 c;

kbqðsÞkV u
6

Z 1

�1
keqðtÞkV u

dt 6 T 1=2kqkL2ð0;T ;V uÞ 6 c.
Hence, we have the following bound for all s 2 R.
jsjkbumðsÞk
2
6 cðkbumðsÞkV u

þ kbumðsÞkÞ.
Following an argument similar to [4, p. 165] we get
Z 1

�1
jsj2ckbumðsÞk

2 ds 6 c. �
Corollary 12. The sequence (wm) is bounded in Hcð0; T ; V w; V wÞ for 0 < c < 1
4
.

Proof. This follows from Lemma 9 and Parseval’s identity. h

Theorem 13. Problem (P) has at least one solution pair (u,w) where
uð�Þ 2 L2ð0; T ; V uÞ \ L1ð0; T ;HÞ; wð�Þ 2 L1ð0; T ; V wÞ.
Proof. By virtue of Lemmas 10 and 11 and Corollary 12 there exists a subsequence of (um,wm) (we still denote
it by (um,wm)) such that
ðum;wmÞ * ðu;wÞ in L2ð0; T ; V uÞ � L2ð0; T ; V wÞ;
ðum;wmÞ*

� ðu;wÞ in L1ð0; T ;HÞ � L1ð0; T ; V wÞ;
ðum;wmÞ * ðu;wÞ in Hcð0; T ; V u;HÞ �Hcð0; T ; V w; V uÞ.

ð21Þ
Since the compact embedding of a Hilbert space X into a Hilbert space Y implies the compact embedding of
Hcð0; T ;X ; Y Þ into L2(0,T;Y), we have
ðum;wmÞ ! ðu;wÞ in L2ð0; T ;HÞ � L2ð0; T ;H 1ðXÞÞ. ð22Þ
Without loss of generality, we may assume that the basis functions (ui) are in DðXÞ. Let h 2 C1([0,T]) be such
that h(T) = 0. The weak convergence in L2(0,T;Vu) · L2(0,T;Vw) gives
ðrumðtÞ;rgÞ ! ðruðtÞ;rgÞ;
ðDwmðtÞ;DgÞ ! ðDwðtÞ;DgÞ.
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For almost all t 2 [0,T] and all g in Vw. Hence,
�ððDwðtÞ;DgÞ þ ðruðtÞ;rgÞÞ ¼ 0;
and Eq. (11) follows. To show the validity of Eq. (10) we first multiply both sides by h and integrate over [0,T]
and use Green’s formula; this gives
�
Z T

0

humðtÞ;uiih0ðtÞdt þ
Z T

0

ðmðrumðtÞ;ruiÞ þ hBðumðtÞ;wmðtÞÞ;uiiÞhðtÞdt þ
Z T

0

hBðumðtÞ;wbÞ;uiihðtÞdt

¼
Z T

0

hqðtÞ;uiihðtÞdt þ hu0m;uiihð0Þ;
i = 1,2, . . . ,m. Hence, for a fixed m0 and any n 2 V m0
u , we have
�
Z T

0

ðumðtÞ; nÞh0ðtÞdt þ
Z T

0

ðmðrumðtÞ;rnÞ þ hBðumðtÞ;wmðtÞÞ; niÞhðtÞdt þ
Z T

0

hBðumðtÞ;wbÞ; nihðtÞdt

¼
Z T

0

hqðtÞ; nihðtÞdt þ hu0m; nihð0Þ.
It follows from (21) that
Z T

0

ðumðtÞ; nÞh0ðtÞdt !
Z T

0

ðuðtÞ; nÞh0ðtÞdt;Z T

0

ðrumðtÞ;rnÞhðtÞdt !
Z T

0

ðruðtÞ;rnÞhðtÞdt.
Furthermore, Lemma 3 and the weak convergence
um * u in L2ð0; T ; V uÞ

give
 Z T

0

hBðumðtÞ;wbÞ; nihðtÞdt ¼ �
Z T

0

hBðn;wbÞ;umðtÞihðtÞdt ! �
Z T

0

hBðn;wbÞ;uðtÞihðtÞdt

¼
Z T

0

hBðuðtÞ;wbÞ; nihðtÞdt.
Next using (22) we show that
Z T

0

hBðumðtÞ;wmðtÞÞ; nihðtÞdt !
Z T

0

hBðuðtÞ;wðtÞÞ; nihðtÞdt.
We have
Z T

0

hBðumðtÞ;wmðtÞÞ; nihðtÞdt �
Z T

0

hBðuðtÞ;wðtÞÞ; nihðtÞdt
���� ����

¼
Z T

0

ðhBðumðtÞ � uðtÞ;wmðtÞÞ; ni þ hBðuðtÞ;wmðtÞ � wðtÞÞ; niÞhðtÞdt
���� ����

¼ �
Z T

0

ðhBðn;wmðtÞÞ;umðtÞ � uðtÞi þ hBðn;wmðtÞ � wðtÞÞ;uðtÞiÞhðtÞdt
���� ����

6 krnk1
Z T

0

ðkrwmðtÞkkumðtÞ � uðtÞk þ krwmðtÞ � rwðtÞkkuðtÞkÞjhðtÞjdt

6 krnk1khk1
Z T

0

krwmðtÞk
2

� �1=2 Z T

0

kumðtÞ � uðtÞk2
� �1=2

dt

 

þ
Z T

0

kuðtÞk2
� �1=2 Z T

0

krwmðtÞ � rwðtÞk2
� �1=2

dt

!
.
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The right hand side of the last inequality converges to 0 since um(Æ) ! u(Æ) strongly in L2(0,T;H) and
wm(Æ) ! w(Æ) strongly in L2(0,T;H1(X)). Finally, by hypothesis, u0m ! u0 in H. Hence, in the limit, we have
�
Z T

0

huðtÞ; nih0ðtÞdt þ
Z T

0

ðmðruðtÞ;rnÞ þ hBðuðtÞ;wðtÞÞ; niÞhðtÞdt þ
Z T

0

hBðuðtÞ;wbÞ; nihðtÞdt

¼
Z T

0

hqðtÞ; nihðtÞdt þ hu0; nihð0Þ; ð23Þ
for all h 2 C1([0,T]) with h(T) = 0. Since m0 is arbitrary and [mP1V m
u is dense in Vu it follows that (23) is also

valid for all n 2 Vu. The first of Eq. (10) now follows by restricting h to DðXÞ.
It remains to check that u(0) = u0. This can be shown by multiplying both sides of the first equation in (10)

by a function h 2 C1([0,T]) with h(T) = 0, integrating from 0 to T, using Green’s formula and comparing with
(23). We get hu(0),ni = hu0,ni, "n 2 Vu. Hence, u(0) = u0 in Vu, and consequently, u(0) = u0 in H, since
u0 2 H. h

Theorem 14. Problem (P) has a unique solution (u,w) where
uð�Þ 2 L2ð0; T ; V uÞ \ L1ð0; T ;HÞ; wð�Þ 2 L1ð0; T ; V wÞ.
Proof. Suppose that (u1(Æ),w1(Æ)), (u2(Æ),w2(Æ)) are solutions. Let f(Æ) = u1(Æ) � u2(Æ), 1(Æ) = w1(Æ) � w2(Æ) then for
all v 2 Vu and all n 2 Vw,
d

dt
hfðtÞ; vi þ mðrfðtÞ;rvÞ þ hBðu1ðtÞ;w1ðtÞÞ; vi � hBðu2ðtÞ;w2ðtÞÞ; vi þ hBðfðtÞ;wbÞ; vi ¼ 0;

ðD1ðtÞ;DnÞ þ ðrfðtÞ;rnÞ ¼ 0.
ð24Þ
The second equation above gives D21(t) = Df(t) or D1(t) = f(t) in H.
If in (24) above we use v = f(t), n = 1(t) then
d

dt
fðtÞ; fðtÞ

 �
þ mkrfðtÞk2 þ hBðu1ðtÞ;w1ðtÞÞ; fðtÞi � hBðu2ðtÞ;w2ðtÞÞ; fðtÞi ¼ 0.
Using the estimates from Lemma 4 and since
hBðu1ðtÞ;w1ðtÞÞ; fðtÞi � hBðu2ðtÞ;w2ðtÞÞ; fðtÞi ¼ hBðfðtÞ; 1ðtÞÞ;u2ðtÞi;
jhBðu1ðtÞ;w1ðtÞÞ; fðtÞi � hBðu2ðtÞ;w2ðtÞÞ; fðtÞij 6 ckrfðtÞkkD1ðtÞkkru2ðtÞk

¼ ckru2ðtÞkkrfðtÞkkfðtÞk 6
m
2
krfðtÞk2 þ c

2m
kru2ðtÞk

2kfðtÞk2.
Hence,
d

dt
kfðtÞk2 6 c

2m
kru2ðtÞk

2kfðtÞk2.
Since kf(0)k2 = ku1(0) � u2(0)k2 = ku0 � u0k2 = 0, then, by Gronwal’s inequality, kfk2 = 0 or f � 0. Then
D1 ¼ 0.
Since 1 satisfies homogeneous boundary conditions we get 1 � 0. h
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