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Abstract: - The pure-streamfunction equation of Ladyzhenskaya equations is considered which, for specific 
parameters, is identical to the pure-streamfunction equation of the Navier-Stokes equations. We present a weak 
form, a procedure for finite element method approximation and an iterative method for solving the discrete 
nonlinear problems. We solve a 2-D incompressible flow in a driven cavity using the Bogner-Fox-Schmidt 
element and a grid mesh of 16X16. We display the features of the flow by streamfunction contours and a plot 
of differences between the streamfunction of Ladyzhenskaya and that of the Navier-Stokes equations. 
  
Keywords: - Navier-Stokes equations, Ladyzhenskaya model, subgridscale model, finite element, 
streamfunction formulation   
 
1. Introduction 

Understanding turbulent flow is central to many 
important problems including environmental and 
energy related applications (global change, mixing of 
fuel and oxidizer in engines and drag reduction), 
aerodynamics (maneuvering flight of jet aircraft) and 
biophysical applications (blood flow in the heart). 
However, in many situations it is still not clear which 
models are most appropriate, especially in the case of 
turbulent flows.  

The Navier-Stokes equations are generally accepted 
as providing an accurate model for the incompressible 
motion of viscous fluids in practical situations. This 
research will consider one model introduced by 
Ladyzhenskaya [13,14,15]. The study of this model 
may be justified through a variety of physical and 
mathematical arguments. The following paragraphs, 
summarized from [5], address the reasons for 
choosing the Ladyzhenskaya model and the 
attractions of the streamfunction formulation.  

The first reason for the study of the Ladyzhenskaya 
model is from a modeling stand point. The Stokes 
hypothesis which defines an ordinary fluid (water or 
air, for example) leads to a specific mathematical 
form of the nonlinear relation between the stress and 
the velocity fields, see [19] for details. If one requires 
that the relation between the stress and the velocity be 
linear, then one arrives at the Navier-Stokes 
equations. However, if one retains the Stokes 
hypotheses defining a fluid and then retains some of 
the nonlinear terms in the general constitutive relation 
which a Stoksian fluid must satisfy, then one arrives 
at the Ladyzhenskaya model considered here, see 
[14,15]. Thus, from a modeling stand point, the 

Navier-Stokes equations are a special case of the 
Ladyzhenskaya equations. This leads to the 
obvious conclusion that any flow which can be 
accurately described by solutions of the Navier-
Stokes equations can be at least as accurately 
described by solutions of the Ladyzhenskaya 
equations.  

The second reason for the study of the 
Ladyzhenskaya model comes from the field of 
turbulence modeling. For certain values of the 
parameter q, the Ladyzhenskaya equations 
considered here are identical to Smagorinsky model 
[21]. Thus, from a practical engineering point of 
view, the study of Ladyzhenskaya equations and of 
proprieties of their solution is of substantial 
interest.  

The third reason for the study of the 
Ladyzhenskaya model comes from a mathematical 
stand point. Ladyzhenskaya has shown [13,14,15] 
that solutions of the equations in the non-stationary 
case and in three space dominions, are globally 
unique in time. The analogous result for the 
Navier-Stokes equations has not been proved and is 
believed not to be true. The condition derived in [5] 
which guarantees the uniqueness of the solutions of 
the stationary Ladyzhenskaya model is, in some 
sense, less pessimistic than the analogous condition 
for the Navier-Stokes model. Also the analogous 
condition for the stationary Ladyzhenskaya model 
[5,9] generally guarantees uniqueness for the 
higher values of the Reynolds number than that 
predicted for the Navier-Stokes model. So indeed 
from a mathematical point of view, this is a good 
motivation for this study.  



This research also takes the advantage of using the 
streamfunction formulation of a Ladyzhenskaya 
model. The first attraction of the streamfunction 
formulation is that the incompressibility constrain is 
automatically satisfied. The second attraction is that 
the pressure is not present in the weak form, and there 
is only one scalar unknown to solve for.  
 
 
2. Model Equation 

The model we work with is as follows, consider the 
motion of stationary ideal incompressible viscous 
fluids in a bounded domain Ω  in 2R  with Lipshitz 
boundary ∂Ω , and let u  denote the velocity field, p  
the pressure, φ  the streamfunction, and f  the body 
force per unit mass. Then the model is given by [SL]:  
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with 0 11 / Re)  (ε ε= , where Re is the Reynolds number 
and 2 0q − > . We also consider the Ladyzhenskaya 
equation [L]  
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The Ladyzhenskaya equations, (5-7), have been 
proposed in [13,14,15]. Finite element error analysis 
of this model was carried out in Du and Gunzburger 
[4,5] under a global uniqueness (small data) 
condition. Layton gave in [16] an error analysis for 
high Re number also he provides a formula for 
choosing q  and 1ε  so that one can construct a higher-
order method which is just as stable as a first-order 
upwind methods. Iterative method for solving the 

discrete nonlinear problems (5-7) is given in [4]. If 
we set 1 0ε = , equation [SL] reduces to the 
streamfunction form of the Navier-Stokes 
equations [SNS]  

2
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The standard weak formulation of [SNS] first 
appeared in 1979 in [10]. Finite element analysis 
for [SNS] can be found in [10,11,12]. Cayco and 
Nicolaides [3] studied a general analysis of 
convergence for the weak form of (10-12). Fairag 
in [6,7,8] studied two-level finite element analysis 
of (10-12) and some computational aspects.  
 
 
3. Notations, Function Spaces, and 
Variational Formulation 

We first need to define some function spaces and 
associated norms. More details concerning these 
spaces can be found in [1]. Let Ω  be a bounded, 
simply connected, polygonal domain in 2R . 

2 ( )L Ω is the Hilbert space of Lebesgue square 
integrable functions with norm 0�i�  and 2

0 ( )L Ω  is 

the subspace of 2 ( )L Ω  consisting of functions with 
zero mean. Let ( )mH Ω  be the usual Sobolev space 
consisting of functions which together with their 
distributional derivatives up through order m are 
in 2 ( )L Ω . Denote the norm on ( )mH Ω  by m�i� . Let 

0 ( )mH Ω  be the completion of 0 ( )C∞ Ω  under the 
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We now present the weak formulation for problem 

[SL] which can be obtained through the standard 
procedure, e.g. multiplying the original equation by 
test functions and integrating by parts [WSL]:  
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If we set 1 0ε = , equation (14) reduces to the standard 
weak form of the streamfunction of the Navier-Stokes 
equations. Existence and uniqueness and finite 
element error analysis of the weak form [WSL] were 
carried out in [9]. Equation (14) has a unique solution 
under a certain condition depending on its parameters. 
This uniqueness property has been proved in [9].  

Exact solutions obtained through theoretical 
analysis are very limited. Thus, solving the problem 
by numerical methods becomes very important. In 
this paper, we focus our attention toward finite 
element approximations of the model problem [WSL] 
described above.  
 
 
4. Discretization: 

For simplicity, we assume that Ω  is a polygonal 
domain. Let hΩ  be a regular finite element 
triangulation where h  is a discretization parameter 
that tends to zero. We define a finite-dimensional 
space hX  such that 2,

0 ( )h qX W⊂ Ω . Then, we 
approximate [WSL] by the following discrete 
problem:  

Find such that for allh h h hX Xψ φ∈ , ∈ ,   
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h h h h h

h h h h
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Existence and uniqueness of the solution to (19) 
can be found in [9]. The inclusion 2,

0 ( )h qX W⊂ Ω  
requires the use of finite-element functions that are 
continuously differentiable over Ω . Argyis 
Triangle, Clough-Tocher Triangle, Bogner-Fox-
Schmidt Rectangle, Bicubic Spline Rectangle (see 
[8]) are examples of finite-element spaces for the 
streamfunction formulation of the Ladyzhenskaya 
model. We will impose boundary conditions by 
setting all the degrees of freedom at the boundary 
nodes to be zero and the normal derivative equal to 
zero at all vertices and nodes on the boundary.  

In our computations, we use the Bogner-Fox-
Schmidt Rectangle. In this element, the functions 
are bicubic polynomials within each rectangle. The 
degrees of freedom are chosen to be the function 
value, the first derivatives, and the mixed second 
derivative at the vertices. We set the function and 
the normal derivative values equal to zero at all 
vertices on the boundary.  

In [9], we established the error bound given in the 
following theorem. This theorem and its proof can 
also be found in [9].  
Theorem: Let 2,

0 ( )h qX W⊂ Ω be a finite element 

space. Let ψ be the solution to (14) and hψ  be 
solution to (19). Then for h  sufficiently small, 

hψ satisfies 
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where Re( )C  is a positive constant and depends 
on the Reynolds number. 
  As an example, if the Bogner-Fox-Schmidt 
Rectangles are used, then there exist a positive 
constant C such that 2

2
h Chψ ψ− ≤ . For each of 

the elements mentioned above, Table (1) shows the 
error estimates. 
Element Estimate 

Argyis Triangle 4
2

( )h O hψ ψ− ≤

Clough-Tocher Triangle 2
2

( )h O hψ ψ− ≤

Bogner-Fox-Schmidt 
Rectangle 

2
2

( )h O hψ ψ− ≤

Bicubic Spline Rectangle 2
2

( )h O hψ ψ− ≤

Table(1): Accuracy of Finite Elements for the 
Straemfunction Formulation.  



5. Iterative method and Algorithm 
We have formulated the discrete approximation 

problems for our model in previous sections. In 
addition, many finite-element spaces applicable for 
the approximation procedures have been discussed. 
Now, the discrete formulation (19) may be converted 
into a system of nonlinear algebraic equations by 
explicitly choosing bases for hX . In this section, we 
will describe an iterative method for the nonlinear 
system resulting from the discretization.  

To construct an iterative method, we first start with 
an initial guess, then use an approximate nonlinear 
system as an iterative scheme to produce a sequence 
of solutions that is expected to converge to the exact 
solution of the original system.  

In this method, we linearize the added nonlinear 
term and then solve the nonlinear system of 
equations. Let (0) hXψ ∈  be given; then we define 
the sequence ( )n hXψ ∈  for 1 2 3n = , , , ..., to be the 
solution of the following nonlinear discrete system:  

( )Find such that for alln h hX Xψ φ, ,∈ ∈  
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This method requires small modification on the 
stiffness matrix which results from the approximation 
procedure of the Navier-Stokes equations. The 
resulting system from this method is nonlinear system 
and if we use Newton’s method to solve this 
nonlinear system, then the resulting matrix from each 
iteration is nonsymmetric whose symmetric part is 
positive definite. Moreover, the resulting matrix is 
sparse. The suggested linear solver for such system is 
any Conjugate Gradient alike method. Some of them 
are Generalized Minimal Residual (GMRES), Bi 
Conjugate Gradient (BiCG), Conjugate Gradient 
Square Method (CGS) and Bi Conjugate Gradient 
Stabilized (Bi-CGSTAB), (see Templates [18]). It is 
known that the (n+1)-th error is proportional to the 
square of the n-th error. So that the convergence is 
very rapid once the errors are small. So we need to 
pick a good initial guess to solve the nonlinear system 
of equations. Choosing ( 1)nψ −  to be the initial guess 
in solving the nonlinear system (20) is considered to 
be a good choice because as n  increases ( )nψ  going 
closer and closer to the exact solution. For the first 
iteration we will choose (0) 0ψ =  this will lead us to 
solve the streamfunction equation of the Navier-
Stokes equations. Therefore, the approximate solution 
for [SNS] will be the initial guess for the second 
iteration in (20). One requirement which may be 
imposed upon any iterative method is that it is norm-

reducing in sense that  
( 1) ( )  0 1n nresidual residual k+ ≤ , = , , ,� � � � �  

holds in some norm. The Newton method does not 
necessarily satisfy this requirement. One simple 
modification of Newton method is adding the 
following IF statement  
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If (    ) then
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+
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≥
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   Discussion of this modification and other 
techniques for solving nonlinear system of 
equations can be found in [17].  
 
 
6. Computational Experiments 

We consider the driven cavity problem in the 
two-dimensional box [0 1] [0 1], × ,  with no-slip 
boundary conditions, i.e, 1 2 0u u= =  in all 
boundaries except 1y = , where 1 1u = . This 
problem have been studied and addressed by many 
researchers including Ghia, Ghia, Shin [20], and 
Betts-Haroutunian [2]. The numerical 
computational in this section was obtained using a 
TOSHIBA Satellite Pro with Intel Mobile CPU 
1.7GHz running Windows XP. Bogner-Fox-Schmit 
elements are used with 16 16×  grid points. We pick 
two values of the Reynolds number. We used the 
iterative method (20) and applied Newton's method 
to solve the nonlinear system. We choose the Bi 
Conjugate Gradient Stabilized method (Bi-
CGSTAB), (see Templates [18]), to solve the linear 
system resulting from each Newton's iterate. The 
stopping criteria for the problem is 

( 1) ( )
  

5

   and   

with 10

n n TOL residual TOL

TOL

ψ ψ+

−

− ≤ ≤

=

� � � �

where the above two norms are in the discrete 
2L norm− .  
We performed two computational tests. The first 

computational test was performed for different 
values of the second viscosity parameter 1ε  and 
fixed values of q and Re, where q = 4 and Re = 2. 
For each value of 1ε , we calculate h

N
h
L ψψ −  

where h
Lψ  is the approximate solution of the 

streamfunction equation of the Ladyzhenskaya 
model and h

Nψ  is the approximate solution of the 
streamfunction equation of the Navier-Stokes 
model. Then we interpolate the results from these 



cases to obtain the plot in Figure (1). This plot is 
produced in the logarithmic coordinate system. It 
shows more clearly the fact that the difference in the 
discrete 2L -norm does tend to zero as 1ε  tends to 
zero. 

In the second computational test, we choose 
1 1.0 20Eε = −  and 4q = , where Re takes different 

values. We compute an approximate solution for Re 
=1, 20, 40, 60, 80 and 100. Figures (2-7) display 
streamfunction contours. Our computations show that 
we get a stable approximation of the solution for the 
Ladyzhenskaya model.  As seen in Figures (2-7), the 
top right corner (where the moving wall moves 
towards the stationary wall) shows that the 
streamfunction contours are very smooth even with 
high Reynolds numbers. It is also seen that the 
number of vortices in the bottom right and left corners 
increases as the Reynolds number increases. The 
biggest vortex in the bottom left corner gets bigger as 
the Reynolds number increases.  

 
 

7. Conclusions 
The streamfunction equation of the Ladyzhenskaya 
equations and its weak formulation are presented. An 
algorithm for solving the discrete form is given with 
some applicable finite elements. This algorithm is 
used to solve a driven cavity problem in a square. 
Detailed solutions are presented.  
    There are three parameters in the Ladyzhenskaya 
equations:   , ,1 qε and Re. In section (6), we perform 
two computational tests by fixing two parameters and 
varying the third one. In these two tests, q is fixed to 
equals 4 making it identical to the Smagorinsky 
model, which is widely used in engineering as a 
turbulence model. The third test considering varying 

 q values has not been performed. This may be taken 
as a future study. 
    There are many other nonlinear models for viscous 
incompressible flows other than the Ladyzhenskaya 
model. Our future study may also lead to perform 
computations and comparisons on such models.  
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Figure (1): Differences between the approximate 
solution of the streamfunction equation of a 
Ladyzhenskaya and NSE. 
 
 



 

Figure(2): Streamfunction Contours Re=1 

Figure(3): Streamfunction Contours Re=20 

Figure(4): Streamfunction Contours Re=40 
 
 

 

Figure(5): Streamfunction Contours Re=60 

Figure(6): Streamfunction Contours Re=80 

Figure(7): Streamfunction Contours Re=100 
 


