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Abstract. In this paper, we present a new method for solving Partial Differential Equations
(PDE). This method combines the use of features of both Finite Element Methods (FEM) and Finite
Difference methods (FDM). Similar to the FEM, this method uses the triangulation technique and
function approximation. Moreover, it uses direct discretization of the PDE, similar to the FDM. The
basic idea starts by selecting a finite difference representation of the PDE and a triangular element.
The selected representation involves nodal point and non-nodal points. Then, the selected triangular
element is used to approximate the function values of the non-nodal points. This method can be seen
as a finite difference method when an irregular nodal arrangement is appropriate for a given problem.
Derivation of the method with remarks is presented as well as several computational examples with
their graphs and tables.
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1. Introduction. Scientists often model physical systems with PDE’s. However,
analytic solutions exist only for few of them. The rest must be tackled with numerical
methods. There are many methods to solve PDE’s numerically. For example, Finite
Element Methods (FEM), Finite Difference methods (FDM), Finite Volume Method
(FVM), Boundary Element Method (BEM) and others. The main popular and com-
monly used methods are FDM and FEM. In this paper, we present a method that
combines features from both FDM and FEM. There are many motivations behind the
study of this method. Firstly, the use of the triangulation technique which is one of
the main features of the FEM. The triangulation technique eases the handling of any
complex geometry.

Secondly, FDM starts by deriving the finite difference equations directly from the
PDE by replacing the derivatives with differences. There are many high order schemes
for derivatives, which generate a large number of high order schemes discretizing the
most important PDE’s. This provides a selection of high order schemes to suite any
one’s needs. The method presented here gives flexibility for choosing from high order
schemes for discretizing PDE.

Finally, FEM are widely used in engineering and applications which cause a gen-
eration of huge number of mesh information (node coordinates and element node
locations) for many physical problems. The method presented here has an advantage,
from the computational point of view, that if one owns mesh information, this method
can be easily used after adding a small code.

This method can be seen as a finite difference method on irregular grid. The
majority of FDM have been devoted to the rectangular grid. There are many dif-
ficulties in applying rectangular grids on irregular domain. The major difficulties
encountered when using grids with fixed rectangular problem domain is that of cov-
ering a non-rectangular problem domain. A second difficulty arising from the use
of general rectangular grid is the need for substantially more nodes in the grid than
is actually necessary to achieve a particular accuracy in the solution. The method
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presented here will eliminate this inefficiency by dropping the requirement that the
grid be rectangular. The first attempts to apply FDM on irregular grids were pub-
lished in [6, 11, 16, 17]. The basic idea was considered as an approximation method
and published in [8, 10]. The several applications of the method have been done in
[7, 11, 12, 16]. Various researchers consider those previous works as a one method of
big class of methods recently rediscovered. This big class of methods is called Mesh-
less Methods. Meshless Methods are developed to remove the problems of traditional
meshing. These methods start by sprinkling points through the domain without re-
quiring any pre-specified connectivity of these points or any structure. The meshless
idea has been rediscovered and several meshless methods of numerical PDE solution
have been presented in [13, 1, 2, 4, 3, 15]. Most of these works are based on the Moving
Least Square (MLS) Method. A detailed presentation for MLS can be found in [8].
Recently, the work of Duarte and Oden [4] and Babuska and Melenk [13] add more
to the understanding of these methods. They recognized that the methods based on
Moving Least Square are specific instance of partitions of unity.

This paper is divided into 7 sections. We derive the method in Section 2. The
solvability of the linear system is presented in Section 3. The interpolation with
piecewise polynomial functions is introduced in Section 4. Some remarks are displayed
in Section 5. Two computational examples are presented in Section 6. The conclusion
is presented in Section 7.

2. Derivation of the Method. In this section, we provide a description of a
new method applied to a simple Poisson’s equation in two dimensions. This serves as
an introduction to the method presented here and illustrates some of the computa-
tional aspects in its implementation.

Our model boundary value problem is the following:

Find u such that

4 u = f in Ω, (2.1)

u = g on ∂Ω, (2.2)

where 4 = ∂2

∂x2 + ∂2

∂y2 and Ω is a bounded, simply connected, polygonal domain in R2

and ∂Ω is its boundary. Let f and g be functions defined on Ω = Ω ∪ ∂Ω. We start
by subdividing the domain Ω into triangles Ωj , j = 1, 2, 3, . . . , NT such that

Ω = ∪N
j=1Ωj ,

where the triangles, Ωj , have pairwise disjoint interiors Ωj . This mesh yields a col-

lection of elements {Ωj}
NT

j=1 and nodes {Ni = (xi, yi)}
M
i=1. The nodes are the vertices

of the triangles. These nodes are numbered globally and their x − y coordinates are
stored. These nodes can be classified into interior nodes {N1, N2, · · · , Nm} and nodes
on the boundary {Nm+1, Nm+2, · · · , NM}.

Now the values of u(Nm), u(Nm+1), · · · , u(NM ) are known but the values of
u(N1), u(N2), · · · , u(Nm) are unknowns and the proposed method will give an ap-
proximation for these values. Those approximated values will be denoted by

U(N1), U(N2), · · · , U(Nm).

This will be done by solving an m linear system of algebraic equations in m

unknowns

U(N1), U(N2), · · · , U(Nm). (2.3)
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Fig. 2.1. Node Ni and its associated four points

For each node Ni, we generate one equation for this node in the following way. For
the sake of simplicity, let us consider the node Ni in Figure (2.1).

We define Gi, direct neighbor triangles set associated with the node Ni, to be the
set of all triangles whose one of their vertices is the node Ni. For each node Ni, we
associate four points Neast

i = (xi + δ, yi), Nnorth
i = (xi + yi, δ), Nwest

i = (xi − δ, yi)
and Nsouth

i = (xi, yi−δ), where δ is chosen so that each point out of these four points
belongs to at least one triangle from the set Gi. It is necessary to store the label of
these four triangles. This is stored in an array T (m× 4). Specifically,

T (i, 1) := the triangle number where Neast
i belongs,

T (i, 2) := the triangle number where Nnorth
i belongs,

T (i, 3) := the triangle number where Nwest
i belongs,

T (i, 4) := the triangle number where Nsouth
i belongs.

Now, the points Neast
i , Nnorth

i , Nwest
i , Nsouth

i belong to triangles ΩT (i,1), ΩT (i,2),

ΩT (i,3), ΩT (i,4) respectively.
To generate the i-th equation in the m × m linear system, we use the five-point

scheme (Figure (5.1a)) which yields

4U(Ni) − [ U(Neast
i ) + U(Nnorth

i ) + U(Nwest
i ) + U(Nsouth

i ) ]

δ2
= f(Ni). (2.4)

In equation (2.4), U(Ni) is one of the unknowns in equation (2.3) but U(Neast
i ),

U(Nnorth
i ), U(Nwest

i ) and U(Nsouth
i ) are not in the set of unknowns. Next, we need

to express each of these values in terms of the unknowns U(N1), U(N2), · · · , U(Nm).
Since the node Neast

i belongs to the triangle ΩT (i,1), U(Neast
i ) can be expressed

in terms of U(Ni), U(Ns), and U(Nj) as follows

U(Neast
i ) = U(Ni) φi(N

east
i ) + U(Ns) φs(N

east
i ) + U(Nj) φj(N

east
i ), (2.5)

where φi, φs, φj are the local basis functions for the triangle ΩT (i,1). These functions
φi, φs, φj are of the form

φ(x, y) = c1 + c2x + c3y,
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with the following conditions

φi(Ni) = 1 , φi(Ns) = 0 , φi(Nj) = 0 ,

φs(Ni) = 0 , φs(Ns) = 1 , φs(Nj) = 0 ,

φj(Ni) = 0 , φj(Ns) = 0 , φj(Nj) = 1 .

In the same way, we can write U(Nnorth
i ), U(Nwest

i ) and U(Nsouth
i ) as follows

U(Nnorth
i ) = U(Ni) φ̂i(N

north
i ) + U(Nk) φ̂k(Nnorth

i ) + U(Nl) φ̂l(N
north
i ), (2.6)

U(Nwest
i ) = U(Ni) φ̃i(N

west
i ) + U(Nm) φ̃m(Nwest

i ) + U(Nn) φ̃n(Nwest
i ), (2.7)

U(Nsouth
i ) = U(Ni) φi(N

south
i ) + U(Np) φp(N

south
i ) + U(Nq) φq(N

south
i ), (2.8)

where
{
φ̂i, φ̂k, φ̂l

}
,
{

φ̃i, φ̃m, φ̃n

}
and

{
φi, φp, φq

}
are the local basis functions for the

triangles ΩT (i,2), ΩT (i,3) and ΩT (i,4) respectively.
Using (2.5-2.8) in equation (2.4) give

∑

r∈V

crU(Nr) = δ2f(Ni), (2.9)

where

V = {i, j, k, l, m, o, p, q, s},

ci = 4 − {φi(N
east
i ) + φ̂i(N

north
i ) + φ̃i(N

west
i ) + φi(N

south
i )},

cj = −φj(N
east
i ), ck = −φ̂k(Nnorth

i ), cl = −φ̂l(N
north
i ), cm= − φ̃m(Nwest

i ),

co = −φ̃o(N
west
i ), cp= −φp(N

south
i ), cq = −φq(N

south
i ), cs = − φs(N

east
i ).

Now, Equation (2.9) is the associated equation for the node Ni in Figure (2.1).
In general, for each node Ni where i = 1, 2, · · · , m, we can generate an equation

similar to (2.9). We obtain the following equation

∑

Nr∈Vi

ai,rU(Nr) = δ2f(Ni) i = 1, 2, · · · , m (2.10)

where Vi = {Nr : Nr is a vertex in one of the triangles ΩT (i,1) , ΩT (i,2) , ΩT (i,3) ,

ΩT (i,4)}. Equation (2.10) is an m × m linear system of equations in the unknowns

U(N1), U(N2), · · · , U(Nm). (2.11)

This m × m linear system can be written as

A U = b, (2.12)

where U = [ U(N1), U(N2), · · · , U(Nm) ]T , b = [ δ2f(N1), δ
2f(N2), · · · , δ2f(Nm) ]T

and Ai,r = ai,r i, r = 1, 2, 3, · · · , m. The matrix A is sparse since number of non-
zero entries in the i-th row is less than or equal to number of nodes in Vi. Note that
the number of non-zero entries in the matrix A is less than or equal to 9m where m

is the number of interior nodes.
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3. The Solvability of the Linear System. In this section, we show that the
linear system (2.12) has a unique solution. This can be done by proving that the
matrix A is diagonally dominant with strict inequality for several rows, which implies
that it has an inverse.

Let Ne, Nn, Nw, Ns are the four points associated with the node N where

Ne ∈ Ω1, Nn ∈ Ω2, Nw ∈ Ω3, Ns ∈ Ω4,

and {φ1, φ2, φ3}, {φ̂1, φ̂2, φ̂3}, {φ1, φ2, φ3}, {φ̃1, φ̃2, φ̃3} are local basis functions for
the triangles Ω1, Ω2, Ω3, Ω4 respectively.

Now from the proprieties of the local basis functions, we have

3∑

i=1

φi(N
e) = 1 ,

3∑

i=1

φ̂i(N
n) = 1 ,

3∑

i=1

φi(N
w) = 1 ,

3∑

i=1

φ̃i(N
s) = 1 ,

(3.1)

and

0 ≤ φi(N
e) ≤ 1 , 0 ≤ φ̂i(N

n) ≤ 1 ,

0 ≤ φi(N
w) ≤ 1 , 0 ≤ φ̃i(N

s) ≤ 1 ,
i = 1, 2, 3 . (3.2)

Assume that the local labeling for the node N in the four triangles Ω1, Ω2, Ω3, Ω4 are
j1, j2, j3, j4 respectively. This yields the following
Firstly, we have

1 − φj1 (N
e) =

3∑

i=1,i6=j1

φi(N
e), 1 − φ̂j2(N

n) =

3∑

i=1,i6=j2

φ̂i(N
n),

1 − φj3
(Nw) =

3∑

i=1,i6=j3

φi(N
w), 1 − φ̃j4 (N

s) =

3∑

i=1,i6=j4

φ̃i(N
s),

(3.3)

Secondly, using the five-point scheme (5.3a), we can show that

aii = 4 − [φj1 (N
e) + φ̂j2 (N

n) + φj3(N
w) + φ̃j4(N

s)]. (3.4)

Equations (3.4) and (3.2) imply that aii is a positive quantity.
Thirdly, from the five-point scheme (2.4) and (3.2), all the nonzero entries in the row
i excluding the diagonal entry (aii) are negatives.
Finally, by using the five-point scheme (2.4) we have

m∑

i=1,i6=j

(−aij) ≤

3∑

i=1,i6=j

φi(N
e) +

3∑

i=1,i6=j2

φ̂i(N
n) +

3∑

i=1,i6=j3

φi(N
w) +

3∑

i=1,i6=j4

φ̃i(N
s).

(3.5)
Equation (3.5) will have strict inequality if one of the nodes of the four triangles
associated with the node N lies on the boundary. Equations (3.3) and (3.5) imply
that

m∑

i=1,i6=j

−aij ≤ aii,

which shows that the matrix A is strictly diagonally dominanent.
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4. Interpolation with Piecewise Polynomial Functions. There are two ma-
jor sources of error in using the studied method: approximation error due to approx-
imating the function values at the four points (Ne, Nn, Nw, Ns); and discretization
error due to replacing derivatives by differences. The aim of this section is to study
the interpolation error which is related to the approximation of the function values.
the Lemma and Remarks of this section will be later used in Section 5.

Let K be a triangle with vertices a(i), i = 1, 2, 3. We define

hK = the diameter of K = the largest side of K,

σK = the diameter of the circle inscribed in K,

h = max
K∈Ωh

hK , Ωh be a given triangulation of Ω.

Given u ∈ C◦(K), we define the interpolant IKu ∈ P1(K), where P1(K) is the space
of linear functions defined on K, by

IKu(a(i)) = u(a(i)) i = 1, 2, 3.

Thus IKu is the linear function agreeing with u at the vertices a(1), a(2), a(3). The
following Lemma estimates the interpolation error u − IKu on the triangle K.

Lemma 4.1. Let K ∈ Ωh be a triangle with vertices a(i), i = 1, 2, 3. Given

u ∈ C2(K). Let the interpolant IKu ∈ P1(K), where P1(K) is the space of linear

functions defined on K, be defined by

IKu(a(i)) = u(a(i)) i = 1, 2, 3.

Then there exist a positive constant C1 such that

| u(z) − IKu(z) |≤ 2C1h
2
K ∀ z ∈ K.

Proof. Let φi, i = 1, 2, 3, be the basis functions for P1(K). The basis functions
satisfy

φi(a
(i)) = δij =

{
1 i = j

0 i 6= j
i, j = 1, 2, 3.

The interpolant Iku has the representation

IKu(z) =

3∑

i=1

u(a(i))φi(z) z ∈ K. (4.1)

Taylor expansion of the function u at z̃ = (x̃, ỹ) ∈ K is

u(z) = u(z̃) + ux(z̃)(x − x̃) + uy(z̃)(y − ỹ) + R(x, y), (4.2)

where

R(x, y) =
1

2
[uxx(z)(x − x̃)2 + 2uxy(z)(x − x̃)(y − ỹ)

+uyy(z)(y − ỹ)2],
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is the reminder term of order 2 and z is a point on the line segment between z and z̃.
Setting z = a(i) in (4.2) gives

u(a(i)) = u(z̃) + Pi(z̃) + Ri(z̃), (4.3)

where

Pi(z̃) = ux(z̃)(x(i) − x̃) + uy(z̃)(y(i) − ỹ),

Ri(x) = R(x, a(i)).

Since

| x(i) − x̃ |, | y(i) − ỹ |≤ hK i = 1, 2, 3 ,

we have the following estimate of the reminder term

Ri(x) ≤ 2h2
KC1 i = 1, 2, 3 , (4.4)

where

C1 = max
|α|=2

‖ Dαu ‖L∞(K) .

Now (4.1) and (4.3) give

IKu(z̃) = u(z̃)

3∑

i=1

φi(z̃) +

3∑

i=1

Pi(z̃)φi(z̃) +

3∑

i=1

Ri(z̃)φi(z̃), z̃ ∈ K. (4.5)

From the properties of the basis functions, we have

3∑

i=1

φi(z̃) = 1, (4.6)

3∑

i=1

Pi(z̃)φi(z̃) = 0. (4.7)

Now, (4.5), (4.6) and(4.7) give

IKu(z̃) = u(z̃) +

3∑

i=1

Ri(z̃)φi(z̃),

which gives us the following representation of the interpolation error

u(z) − IKu(z) = −
3∑

i=1

Ri(z)φi(z),

which implies that

| u(z) − IKu(z) |≤

3∑

i=1

| Ri(z) || φi(z) | .
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(a) 5-point scheme (b) × scheme (c) 9-point scheme

Fig. 5.1. Three finite different schemes for Laplace operator

Since 0 ≤ φi(z) ≤ 1, if z ∈ K, i = 1, 2, 3, we have

| u(z) − IKu(z) | ≤
3∑

i=1

| Ri(z) | φi(z),

≤ max
i

| Ri(z) |
3∑

i=1

φi(z),

≤ max
i

| Ri(z) | .

Using (4.4) gives

| u(z)− IKu(z) |≤ 2C1h
2
K z ∈ K.

Remark 4.1. If we work with polynomials of degree r ≥ 1 on triangle K, we

have the following estimate

| u(z)− IKu(z) |≤ Chr+1
K z ∈ K.

5. Remarks. In this section, we will present some remarks and comments on
the presented method. These remarks may lead to further research and investigation.
It also give more details on this method where one may discover more features.

1. The selection of a specific finite difference scheme with a specific triangular
element will generate a numerical algorithm to solve a PDE. In section 2, we
consider the five-point scheme with C0-piecewise linear in triangle. Instead of
using the five-point scheme (2.4) , one may use the nine-point scheme or any
higher order scheme for the Laplace operator (Figure (5.1)). Also, instead of
using C0-piecewise linear element one can use the C0-quadratic element on
triangle or any other element.

2. There are two major sources of error in using the studied method: approxi-
mation error due to approximating the function values at the four points (Ne,

Nn, Nw, Ns); and discretization error due to replacing derivatives by differ-
ences. Using the standard five-point scheme, and Taylor Series expansions
about the point N , we can develop the approximate relationship

4u(N) − [u(Ne) + u(Nn) + u(Nw) + u(Ns)]

δ2
−4u = C δ2. (5.1)
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Fig. 5.2. A case where the point Nnorth
i

belongs to two triangles

By using polynomial of degree r on the triangle K as an approximation
method and Remark 4.1, we can write

Ue := U(Ne) = u(Ne) + Ce hr+1
K , (5.2)

Un := U(Nn) = u(Nn) + Cn hr+1
K , (5.3)

Uw := U(Nw) = u(Nw) + Cw hr+1
K , (5.4)

Us := U(Ns) = u(Ns) + Cs hr+1
K . (5.5)

By using (5.2-5.5) , we can rewrite (5.1) as

4 U − [Ue + Un + Uw + Us] + C̃hr+1
K

δ2
−4u = C δ2.

After some arrangement, we get

4 U − [Ue + Un + Uw + Us]

δ2
−4u = C1 δ2 + C2

hr+1
K

δ2
. (5.6)

The right hand side of equation (5.6) consists of two terms. The first term
results from the discretization of the PDE. The second term results from the
approximation method that has been used.

3. In section 2, we present a case where all the four points (Neast, Nnorth, Nwest,
Nsouth) are interior points of their associated triangles. It may happen that
one of the four points is not an interior point of any triangle meaning that it
lies on a common side of two triangles such as in Figure (5.2). The question
that arises here is which of the two triangles we should associate. There
are some suggested approaches to deal with this case. The first approach
is by associating any one of the two triangles. The second approach is by
approximating the function value of the point using the two triangles and
then taking the average. The third approach is by generating two equations
for this node which leads to an over determinant system of equations where
number of equations is greater than number of unknowns.

4. In section 2, we present a case where δ is fixed. However, δ may vary for each
node Ni. In the case of varying δ equation (5.6) can be rewritten as

4 U − [Ue + Un + Uw + Us]

δ2
−4u = C1 δ2

K + C2
hr+1

K

δ2
K

. (5.7)
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(a) (b)

Fig. 5.3. (a) FD net with unequal spacing (b) FD for unequal five-point spacing where α0 =
2

δeδw
+ 2

δnδs
, α1 = −2

δe(δe+δw)
, α2 = −2

δn(δn+δs)
, α3 = −2

δw(δw+δe)
, α4 = −2

δs(δs+δn)
.

Equation (5.7) suggests a relationship between hK and δ. This relationship
is due to balancing the two terms in the right hand side. This relationship
can be expressed as

hr+1
K ≈ δ4

K .

5. Also, the value of δ could be different in each direction, see Figure (5.3a).
In this case, the suggested FD scheme shown in Figure (5.3b) which can be
found in any FDM textbook such as [5, 9]

6. We mentioned in section 2 that the matrix A is sparse and the number of
non-zero entries is less than or equal to 9m where m is the number of interior
nodes. This is because we use the five-point scheme with C0-piecewise linear
in triangle. In general, if we use the five-point scheme with any other element,
then the number of non-zero entries is less than or equal to (4n− 3)m where
n is the number of degrees of freedom per triangle.

7. The extension of 2-dimensional derivation to 3-dimensional (or more if de-
sired) is straightforward. Analogous to the five-point scheme, see Figure
(5.1a) in two space variables, we will have a seven-point scheme. In the same
manner, as the nine-point scheme, see Figure (5.1c) for two space variables
was developed, we will have a 19-point scheme in three space variables. These
schemes can be found in any standard FDM textbook, such as [14, 9].

6. Computational Examples. To demonstrate that the method described in
this paper generates a good approximation, we apply the method to the solution of
the Poisson equation in Ω = [0, 1] × [0, 1] with exact solution given by

(a) u(x, y) = x(x − 1)y(y − 1),

(b) u(x, y) = ex+y.
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Fig. 6.1. Two different meshes for C0-piecewise linear

6.1. Example 1. We consider the following problem

Find u such that

4 u = f in Ω, (6.1)

u = g on ∂Ω, (6.2)

where f(x, y) = 2 (x2 + y2 − x − y), g(x, y) = 0 and Ω = (0, 1) × (0, 1) . The exact
solution for this problem is u(x, y) = x(x − 1)y(y − 1) . We use C0- piecewise linear
on triangles. We solve the problem for two different meshes, see Figures 6.1(a-b). The
algorithm for this example is as follows

Algorithm 6.1.

1. Read the mesh, then calculate and store the data information needed.

2. Assemble the linear system Ax = b.

3. Solve the linear system.

The first step in Algorithm (6.1) is detailed as follows:
After the reading of the mesh data information, the code is to perform the following

1. For i = 1, · · · , m, where m = the number of interior nodes
(a) identify the associated four triangles ΩT (i,1), ΩT (i,2), ΩT (i,3), ΩT (i,4)

for the node Ni.
(b) calculate δ

(e)
i , δ

(n)
i , δ

(w)
i , δ

(s)
i where

i. δ
(e)
i = the distance between the node Ni and the intersection point

between the opposite side and the line y = yi as shown in Figure

(6.2); and δ
(w)
i is calculated similarly.

ii. δ
(n)
i = the distance between the node Ni and the intersection point

between the opposite side and the line x = xi; and δ
(s)
i is calculated

similarly.

(c) calculate δi = min{δ
(e)
i , δ

(n)
i , δ

(w)
i , δ

(s)
i }.

2. calculate δmesh = min
1,··· ,M

δi.

We solve the problem with the following options:
• FIXD: we use the standard five-point scheme with a fixed value of δ for all

nodes ( where δ = δmesh ).
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Fig. 6.2. The triangle Ω
(1)
i

.

Table 6.1

The exact values and the computed values using FIXD, VD, VDS and FEM for mesh (a)

x y FIXD VD VDS Exact FEM
0.4613 0.5008 0.0712 0.0444 0.0509 0.0621 0.0548
0.2875 0.5008 0.0509 0.0352 0.0401 0.0430 0.0390
0.2459 0.5008 0.0500 0.0316 0.0385 0.0423 0.0405
0.6274 0.5008 0.0513 0.0340 0.0420 0.0458 0.0437
0.6735 0.5008 0.0535 0.0393 0.0450 0.0476 0.0478

Errors 3.3e-3 5.3e-3 2.6e-3 0 1.8e-3

• VD: we use the standard five-point scheme with varying value of δ for each
node ( where δ = δi, i = 1, 2, · · · , M).

• VDS: we use the unequal five-point spacing scheme in Figure (5.3b) with
varying value of δ for each node and direction.

• FEM: FEM using C0- piecewise linear on triangles.
For the four options listed above, Table (6.1) and Table (6.2) show the computed
function values performed on the meshes shown in Figure (6.1a) and (6.1b), respec-
tively. In addition, Figure (6.3a) and (6.3b) show a comparison of the u-values along
the line x = 0.5 for the meshes shown in Figure (6.1a) and (6.1b), respectively. The
results show that the VDS gives better approximation than VD, which in turns shows
better approximation than FIXD. Among all of these methods, FEM shows the best
approximation.

6.2. Example 2. We consider the following problem where f(x, y) = −2ex+y

, g(x, y) = ex+y and Ω = (0, 1) × (0, 1) . The exact solution for this problem
is u(x, y) = ex+y . We use the five-point scheme with C0- piecewise quadratic on
triangles. The mesh we use is shown in Figure (6.4a). This mesh consists of 5 interior
nodes and 8 nodes on the boundary. We solve the problem with different values for
δ. Table (6.3) displays the computed values and the exact values for δ = 0.25, 0.15 .
This table shows good approximation of the function values with such a mesh of few
nodes.

A numerical program is performed for a series of different choices of δ. Each time
we calculate the difference between the computed solution and the exact solution.
Then, we plot the result from these cases to obtain the graph in Figure (6.5). This
Figure shows more clearly that the error decreases as the value of δ increases. The
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Table 6.2

The exact values and the computed values using FIXD, VD, VDS and FEM for mesh (b)

x y FIXD VD VDS Exact FEM
0.6263 0.2672 0.0544 0.0354 0.0399 0.0458 0.0457
0.6725 0.6835 0.0551 0.0382 0.0425 0.0476 0.0486
0.1515 0.8438 0.0220 0.0140 0.0153 0.0169 0.0164
0.3142 0.8502 0.0349 0.0223 0.0245 0.0274 0.0269
0.1371 0.6838 0.0333 0.0205 0.0227 0.0256 0.0250
0.3955 0.5768 0.0743 0.0452 0.0501 0.0584 0.0570
0.1319 0.1702 0.0203 0.0123 0.0142 0.0162 0.0156
0.2964 0.1606 0.0342 0.0218 0.0243 0.0281 0.0278
0.0854 0.3396 0.0229 0.0129 0.0154 0.0175 0.0173
0.1197 0.5143 0.0342 0.0202 0.0230 0.0263 0.0260
0.3837 0.4485 0.0740 0.0446 0.0498 0.0585 0.0573
0.2649 0.5442 0.0618 0.0375 0.0420 0.0483 0.0474
0.8225 0.1395 0.0213 0.0136 0.0157 0.0175 0.0170
0.6532 0.0933 0.0238 0.0142 0.0168 0.0192 0.0189
0.4724 0.1347 0.0353 0.0220 0.0249 0.0291 0.0288
0.8444 0.8473 0.0196 0.0129 0.0147 0.0170 0.0165

Errors 1.7e-3 1.7e-3 1.0e-3 0 1.4e-4
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Fig. 6.3. Comparisons of u-values along the line x = 0.5.

Table 6.3

Computed and Exact values of u at (x, y) where δ = 0.15, 0.25

x y Exact Computed Computed
δ = 0.15 δ = 0.25

0.5000 0.5000 2.7183 2.6911 2.7017
0.2500 0.2500 1.6487 1.6427 1.6459
0.7500 0.2500 2.7183 2.6975 2.7054
0.7500 0.7500 4.4817 4.4774 4.4813
0.2500 0.7500 2.7183 2.6975 2.7054
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(a) A mesh with 5 interior nodes (b) A mesh with 25 interior nodes

Fig. 6.4. Two meshes for C0-piecewise quadratic
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Fig. 6.5. Error .vs. δ plot

smallest error occurs when δ reaches its maximum value. The same problem has also
been solved but for a varying δ for each node where δ = 0.25 for nodes 2, 3, 4, 5 and
δ = 0.5 for node 1. The error is equal to 0.005 when δ is fixed and is equal to 0.004
when δ varies.

The same problem has also been solved with more fine mesh (Figure (6.4b)).
This mesh consists of 25 interior nodes and 41 nodes on the boundary. We solve the
problem with δ = 0.125. Table (6.4) displays the computed values and the exact
values.

7. Conclusion. In this paper, we present a new method for solving PDE. This
method can be seen as a Finite Difference Method when an irregular nodal arrange-
ment is appropriate for a given problem. Several investigations on the remarks men-
tioned above in addition to error analysis will be considered in future research.
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Table 6.4

Computed and Exact values of u at (x, y) (δ = 0.125)

x y Computed Exact x y Computed Exact

0.5000 0.5000 2.7162 2.7183 0.2500 0.5000 2.1161 2.1170
0.7500 0.5000 3.4892 3.4903 0.1250 0.3750 1.6479 1.6487
0.8750 0.6250 4.4800 4.4817 0.2500 0.2500 1.6477 1.6487
0.7500 0.7500 4.4795 4.4817 0.3750 0.3750 2.1159 2.1170
0.6250 0.6250 3.4889 3.4903 0.1250 0.1250 1.2838 1.2840
0.8750 0.8750 5.7543 5.7546 0.3750 0.1250 1.6479 1.6487
0.6250 0.8750 4.4800 4.4817 0.5000 0.2500 2.1161 2.1170
0.5000 0.7500 3.4892 3.4903 0.6250 0.3750 2.7163 2.7183
0.3750 0.6250 2.7163 2.7183 0.7500 0.2500 2.7168 2.7183
0.2500 0.7500 2.7168 2.7183 0.6250 0.1250 2.1165 2.1170
0.3750 0.8750 3.4899 3.4903 0.8750 0.1250 2.7174 2.7183
0.1250 0.8750 2.7174 2.7183 0.8750 0.3750 3.4899 3.4903
0.1250 0.6250 2.1165 2.1170
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