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A b s t r a c t - - W e  analyze a two-level method of discretizing the stream function form of the Navier- 
Stokes equations. This report presents the two-level algorithm and error analysis for the case of 
conforming eltements. The two-level algorithm consists of solving a small nonlinear system on the 
coarse mesh, then solving a linear system on the fine mesh. The basic result states that the error 
between the coarse and fine meshes are related superlinearly via: 

As an example, if the Clough-Tocher triangles or the Bogner-Fox-Schmit rectangles are used, then 
the coarse aJld fine meshes are related by h = O(H3/211nHI1/4 ). © 1998 Elsevier Science Ltd. All 
rights reserve. 
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1.  I N T R O D U C T I O N  

Convergence analysis for finite-element approximation of the primitive variable formulation of 
the Navier-Stokes equations have been extensively developed in the last 20 years, see, for ex- 
ample, [1-4]. The  analogous theory for the s t ream function formulation for t h e  Navier-Stokes 
equations has received much less attention. The at t ract ions of the s t ream function formulation 

are tha t  the incompressibility constraint is automatically satisfied, the pressure is not present in 
the weak form, and there is only one scalar unknown to solve for. The standard weak formulation 
of the s t ream function version first appeared in 1979 in [2]. In this direction, Cayco and Nico- 
laides [5,6] studied a general analysis of convergence for this s tandard weak formulation of the 
Navier-Stokes equations. The standard weak form is unsuitable for derivation or analysis of non- 
conforming finite-element approximations. For a nonconforming finite-element method,  Baker 
and Jureidini [7] investigated the use of elements which are required only to be continuous and 
are not required to satisfy the boundary conditions with a nonstandard weak formulation. Their  
weak formulation extends the standard one by including appropriate integrals on interelement 
boundaries arLd on the boundary of the problem domain. Cayco and Nicolaides [6] presented 
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118 F. FAIP, J~G 

and discussed a new weak form, which is suitable for analysis of nonconforming finite-element 
approximations. They discussed this weak form and applied it to three specific nonconforming 
finite-element schemes. 

The discretization of the stream function formulation still leads to a problem of solving a large 
and ill-conditioned nonlinear systems of algebraic equations. Two-level finite-element discretiza, 
tions are presently a very promising approach for approximating the Navier-Stokes equations, 
see [8]. The computational attractions of the methods are that they require the solution of only 
a small system of nonlinear equations on coarse mesh and one linear system of equations on fine 
mesh. These types of methods were pioneered by Xu in [9,10] for semilinear elliptic problems. 
The two-level discretization methods have been recently analyzed for the Navier-Stokes equations 
in [8,11,12] and for the stream function formulation of the Navier-Stokes equations in [13]. The 
methods studied in [13] involve solving a full linearization of the stream function equation on 
the fine mesh. The purpose of this paper is to present and analyze a two-level conforming finite- 
element method of discretizing the stream function formulation of the Navier-Stokes equations 
which requires the solution of a partial linearization of the stream function equation on the fine 
mesh. The use of partial linearization of the stream function equation on the fine mesh is due to 
the possible indefinite matrix resulting from the full linearization. While the partial linearization 
results are due to a positive definite matrix. 

2. N O T A T I O N  A N D  P R E L I M I N A R I E S  

We first need to define some function spaces and associated norms. More details concerning 
these spaces can be found in [14]. Let fl be a bounded, simply connected, polygonal domain 
in R 2. L2(f~) is the Hilbert space of Lebesgue square integrable functions with norm II " I}o 
and L02(ft) is the subspace of La(f~) consisting of functions with zero mean. Let Hm(f~) be the 
usual Sobolev space consisting of functions, which together with their distributional derivatives 
up through order m are in L2(f/). Denote the norm on Hm(~t) by I1" II,n. Let H ~ ( n )  be the 
completion of C~°(~t) under the I1" II,n norm. We equip H~n(ft) with the seminorm I" Hm, which 
is a norm equivalent to I1" II,n. Also, the dual of space H~'(f/) is denoted by H-re(f/),  with norm 
I1" II-m. Let [Hm(f/)] 2 be the space H"~(~) x H'n(l)) and [H~n(~)] 2 be the space H ~ ( ~ )  x H~'(12) 
equipped with the following norm: 

2 "1/2 
I1~11,.,, = (11,.,~11~ + Ilu211~) v2  and I,Zl,.,, = (I,.,,1~ + ,.,2 ,,,) , w h e r e 6 = ( u l )  " u 2  

For each ¢ e H 1 (fl), define 

For each E e [Hi(f/)] 2, define 

curl ~ = - -  9u2 Dul where ~ = ( u l )  
Ox Oy ' u~ " 

Consider the Navier-Stokes equations describing the flow of an incompressible fluid: 

- P,e-~ A,~ + (,~. V),i + Vp = / ,  in~, 
V .  ~ = O, in ~, 

= O, on o')f~, 

fnp d~ = O. 

(1) 
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Later, we will state conditions on f and Re -~ guaranteeing the solution to (I). Any divergence- 
free velocity vector ~ e [H~(f/)] ~ has a unique stream function [2, Theorem 3.1, p. 22] 0 e H0~(f/), 
defined by 

Moreover, the stre~n function 0 satisfies 

Re-~ A20 - 0~A0= + 0=A0~ = cu~l ~ inf / ,  

0 = o, on oft, (~) 

00 = 0, on 0f~, 
o~ 

where fi represent~ the outward unit normal to fL 

3. T W O  W E A K  F O R M U L A T I O N S  

The standard weak form of equation (1) is: 

find g E [H~] 2 , p E L~o(ft), such that  V~7 E [H~(f/)] 2 , q E Lo2(ft), 

~(~,q) 

where 

(3) 

a (~, 5) = ~ V~ : V~, 

(,z; ,7,,~) = f~ ((,z. v)  .-3. ~, (4) 

fi(~' q) = fn  q div 5, 

and (., .) denot~ the duality pairing in L2(ft). The standard weak form of eqUation (2) is: 

find 0 E H02(ft) such that, for all 4' E H~(ft), a(0, 4') + b(0; 0, 4') = I(4'), (5) 

where 

a(O, 4') = P,~-~ fn 'x 0 .  ,x 4', 

b(~; 0, 4') = fn A ~(0~4'~ - ,/,~4'~,), (6) 

Another equivalent formulation of equation (2), introduced by Cayco and Nicolaides [6], is: 

find 0 ~ H02(a) such that, for all 4' ~ Hi(a),  
ao(O, 4') + bo(O; 0, 4') = Z(4'), (7) 

where 

ao(0, 4') = ~ - 1  ~ 0~,4'~ + 2%~4'~ + 0~4'~,  

bo(~; 0 ,  4') = fn(~ ,O.a ,  - ~..0~,)4'~, - (~0..~,  - ~,0,,,~)4'~, (8) 

Conforming elements can be used with either (5) or (7); in this case, the two weak formula- 
tions produce identical results because a(0,4') = ao(0,4') and b(~;0,4') = bo(~;0,4'), for all 
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~, ~, ~ E H02(f/). However, when using nonconforming approximating subspaces, (7) and (5) gen- 
erate different finite-element methods. Nonconforming elements should be used only with (7). 
To illustrate the reason, suppose we solve the Stokes problem with the nonconforming Morley 
triangle, i.e., the quadratic element whose degrees of freedom are function values at the vertices 
and normal derivatives at the midsides. Boundary conditions are imposed by setting all the 
degrees of freedom at the boundary to be zero. Observe that a necessary and su~cient condition 
for the existence of a unique solution to the discrete biharmonic equation is that the bilinear 
induces a norm on the trial space. This is not the case for the Morley space [5]. The following 
theorem states that the forms (3) and (5) are equivalent in the sense of having identical solu- 
tions. The reason for this is that the space of curls of H02(ft) functions coincides with the space 
of divergence-free functions in [H0 z (f/)]2. 

The following theorem states that problems (1) and (2) are equivalent in the sense of having 
identical solutions. 

THEOREM 3.1. (See [2, Theorem 2.6, p. 120].) Problems (3) and (5,) are equivalent in the sense 
that if  (~,p) is a solution of (3), then the stream-function ~ of ~ satisfies (5); conversely, if  ¢ is a 
solution of  (5), then there exists exact]y one element p of  L~(f~ ) such that the pair ( ~ = c~r1¢,p) 
satisfies (3). 

The following lemma states some basic bound for the bilinear a, the trilinear b, and the func- 
tional I. 

LEMMA 3.1. Given ~ ,~ ,~  E H~(fl) and f E  [L2(~)] 2, there ex/sts a C > 0 such that 

~(~, ~) = R e-1 I~I~, (9) 

a(~, ~) < P~-1 I~12" I~h, (10) 

[b(~, ~, ~)[ ~ 2C2[~12 • [~12" [¢[2' (11) 

Ib0(~, ','¢', ¢)1 < Cl,~[2" ICb" 1¢12, (12) 

Ir l .  (13) 
I 11'11o  of,, <'") 

where Ce is a Sobolev embedding constant and Cp is a Poincar~ constant. 

PROOF. For ¢, ~, ¢ e H02(ft), we have by direct computation, equations (10)-(14). Our task is 
now to prove (9). We have, by definition, 

,~('¢', e) = I~',/'1o ~ = ~ * \ 0~2 / + ~'~"~ oy~ ' 

1~12 

Clearly, it suffices to prove (9) with '¢' ~ l)(~t); for such a function, 

as a double application of Green's formula, and thus (9) is proved. | 

Let N denote the finite constant 

N := sup Ib(~,¢,¢)1 
~,~,~o'(~) I~l~ I'¢'b l¢12' 

and If]* denote the dual norm: 

(f, curl ¢) 
Ill, := sup 

~exSc~) J¢12 
Then we have the following theorem that can be proved using the method of [2]. 
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THEOREM 3.2. (See [2].) For NIl[, Re ~ < 1 and f E {H-I(~'~)] 2, problem (5) has a un/que 
solution ~b. Moreow~r, there is a unique p E L~(f~) such that (cu~l ~,p) solves problem (3). 

To study (5) when the uniqueness condition N]][ .  Re 2 < 1 is not valid, then we need to 
introduce the concept of a nousingular solution of (2). 

DEFINITION 3.1. T~t X and Y be two Banach spaces, F a differentiable mapping from X into Y, 
F ~ its derivative, and let ~b E X be a solution of the equation F(¢)  = O. We say that Ib is a 
nonsin~ular solution if there exists a constant 7 > 0 such that 

,c IIF'(' , / ,) • '~llY, > 711,/,llx, v ~  ¢ x .  

In the stream function equation case, the mapping F : H~(ft) --+ [H2(f/)] ' is defined by 

(F(,p), #,) = a(,p, ~,) + b(,h, ~,  ~) - (I, curl~,), V~  e n(~(fl). 

The nonlinear map F is quadratic and can be shown to be everywhere differentiable in Ho~(~) 
and its derivative F'(@) E £(Ho2(f~), [Ho2(~t)] ') is given by 

(F'(~') • @, ~) = a(@, ~) + b(~,, @, ~) + b(@, ~, ~). 

Hence, ~ E H~(~'.) is a nonsingular solution of (2), if and only if there exists a constant ~/> 0 
such that 

sup a(~,@)+b(~b,~,d~)+b(~,~b,d~) >~'1{1~, v~E~o2(r0. 
~,=.o~(n) 1@12 

4. TWO-LEVEL M E T H O D  

We consider the approximate solution of (2) by a two-level, finite-element procedure. Let X h, 
X/f  C Ho2(~) denote two conforming finite-element meshes with H >~ h. The method we consider 
computes an approximate solution ~h in the finite-element space X ~ by solving one linear system 
for the degrees of freedom in X h. This particular linear problem requires the construction of a 
finite-element space X / / u p o n  a very coarse mesh of width 'H  ~> h', and then the solution of a 
much smaller sy~tem of nonlinear equations for an approximation in X H. The solution procedure 
is then given as follows. 

ALGORITHM 4.]~, 

Step 1. Solve the nonlinear system on coarse mesh for ~ E XH: 

a (~H, @") + b (~H, ~", q~/~) = (f, cu~l ~bH), for all @ H E X " .  (18) 

Step 2. Solve the linear system on fine mesh for ~b h E Xh: 

a e )  + b (V/', = for all (19) 

We shall give :~me examples of finite-element spaces for the stream function formulation. We 
will impose boundary conditions by setting all the degrees of freedom at the boundary nodes 
to be zero and the normal derivative equal to zero at all vertices and nodes on the boundary. 
The inclusion X ~ C /~0(f~) requires the use of finite-element functions that are continuously 
differentiable crier fL 

ARGYIS TRIANGLE. The functions are quintic polynomials within each triangle and the 21 de- 
grees of freedom are chosen to be the function value, the first and second derivatives at the 
vertices, and the normal derivative at the midsides. 
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CLOUGH-TOCHER. Here we subdivide each triangle into three triangles by joining the vertices 
to the centroid. In each of the smaller triangles, the functions are cubic polynomials. There are 
then 30 degrees of freedom needed to determine the three different cubic polynomials associated 
with the three triangles. Eighteen of these are used to ensure that,  within the big triangle, the 
functions are continuously differentiable. The remaining 12 degrees of freedom are chosen to 
be the function values and the first derivatives at the vertices and the normal derivative at the 
midsides. 

BOGNER-Fox-SCHMIDT RECTANGLE. The functions are bicubic polynomials within each rec- 
tangle. The degrees of freedom are chosen to be the function value, the first derivatives, and the 
mixed second derivative at the vertices. We set the function and the n ~ m a l  derivative values 
equal to zero at all vertices on the boundary. 

BICUBIC SPLINE RECTANGLE. The functions are the product of cubic splines. These functions 
are bicubic polynomials within each rectangle, are twice continuously differentiable over 12, and 
their degrees of freedom are the function values at the nodes (plus some additional ones on the 
boundary). 

Below we prove that  ¢ H and O h exist in Steps 1 and 2. Also we will prove that  Algorithm 4.1 
produces an approximate solution which satisfies the error bound 

< c ~ inf 10- whl2 + Ilnhll/~ • 10-  0"11~. ~ o - ¢ %  (20) 
I, wh~X h ) 

As an example, consider the case of the Clough-Toeher triangle. For this element (see [1,2,15]) 
we have the following inequalities: 

IO - O h[j <- C h 4 - i  (j -- 0,1, 2), 

1 0 -  0~Ij  < CH 4.j  (j = 0,1,2). 

Thus, if we seek an approximate solution O h with the same asymptotic accuracy as O h in I • Is, 
the above error bound shows that  the superlinear scaling, between coarse and fine meshes, 

h = o (~ /~ l  ln~l ~/~) (21) 
suffices. Analogous scalings between coarse and fine meshes can be calculated from (20) by 
balancing error terms on the right-hand side of (20) in the same way. For each of the elements 
described above we give, in Table 1, the scaling between coarse and fine meshes. 

Table 1. 

Element 1¢ - 0H[2 {¢ -- ¢HJl  Scaling 

Argyris Triangle 

Clough-Tocher Triangle 

Bogner-Fox-Schmit Rectangle 

Bicubic Spline Rectangle 

H 4 

H 2 

H ~ 

H ~. 

H 5 

H s 

H s 

H 3 

hi In hi -114 = 0 (H 512) 

hi lnh1-1/4 = O (H s/2) 

hi In hi -1/4 --- O (H s/2) 

hi lnh{ -1/4 = O (H s/2) 

5. T H E  E R R O R  B O U N D  

The basic bound on b(,, ) and b0(,, ), given in Lemma 3.1 

Ib(0,¢,~)I -< NI0]2" 1¢}2" 1~]2, 

Ibo(¢,¢,~)[ < N[¢12" 1¢12" 1~12, 

can be improved. For our purpose, we shall be bounding [b(¢, ¢, ~)J with ¢ or ~ in a finite-element 
space X h or X •. Since X h and X H are subspaces of X,  then they satisfy the following discrete 
Sobolev inequality: for all oh E X h (similarly for x H ) ,  

IJVOhHL~ _< clln(h)ll/2 Johl2. 
Using the above inequality and Lemma 3.1, we can prove the following lemma. 
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LEMMA 5.1. For any Ch ~ X h, the following inequalities: 

lb (¢', ¢",,~)I < e l t n ( h ) f ' / 2 l ¢ 1 2  • I¢11. I¢'%, 
Ib (¢',,+,¢")I <- Cltn(h)la]21¢12" I,~I," I¢"12, 

hold. 

LEMMA 5.2. 

123 

The ~)lution to (I8) exists and satisfies I¢nl2 < Re Ill,. Suppose 

R e 2 N J f L  < 1. 

Then, the solution ,•H to (18) is unique. 

PROOF. Set Cs = ~b s in (18). This gives 

thus Icnl2 < Re I/I . .  This bound implies the existence of the solution to (18) by a compactness 
argument in X H. Let ¢ ~  and ~ be two solutions to (18), and z H = ~b~ - ¢~ .  Then, 

= b(,~g,,~g,z") - b ( ~ , , p g , ~ " )  
= -b ( z~ I , ¢g , z  ")  

which implies uniqueness of solutions for (1 - N Re 2 I[I,) > o as 

Re-' 0 -  NRe2 VI,) I '1: <_ o. 
The next theorem gives the basic error bound after Step 1 in the I" 12-seminorm. Before we 

state the theorem, we need the following lemma. 

LEMMA 5.3. Let ¢ be a nonsiagular solution of(2) and provided I¢ - 0sl2 <- 7/2N, then there 
is a constant ~* := 7* (¢) such that 

sup a(¢, ¢) + b (¢H, ¢, ¢) + b(¢, ¢, ¢) 
Ce~o~(n) 1¢12 t> 7"1~12, V~ 6 Ho~(ft). (22) 

PROOF. From (3), simply follows that for I~b - ¢~[2 small enough (which is the case with 0 < 
H <go)  

f a({~, ¢) + b (¢/~, ~, ¢) + b(~, ¢, ¢) 
+,s.,.+,+(n)sup [ I¢12 

But it follows from i l l )  that 

a(~, ¢) + b (¢H, ~, ¢) + b(~, ¢, ¢) 
s u p  

+,~.o+(n) 1¢12 

sup 
+ellS(n) 1¢12 

a(¢, ¢) + b (¢n,  ¢, ¢) + b(¢, ¢, ¢) 

+ b (¢ - Cs ,  ~, ¢) ~ > 

I¢12 j 
v,, e H~(a). 

+ N I~b - ~b'12.1¢12 >_ ~1~12, v¢ e H02(n), 

> ( 7 -  N I¢ -* '12 )  1~12, v~ e no~(n). 

or  

Hence, we have (3). | 
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THEOREM 5. i. 

(a) I f  the global uniqueness condition Re 2 N[ f l .  < 1 holds, 42 and 42H both exist maiquely. 
The error [42 - cH  [, satisfies 

142-42"1,<C(Re) inf I¢ -~ '1 , ,  
-- wHEXn 

where C(Re) = (1 + 2NIfl ." Re') (1 - Nlf l .  Re') -1 < C ( ~ ) .  
(b) If  the uvdqueness condition fa//s, suppose 42 is no ,  singular solution of (5). Then, there is 

an H0 = Ho(¢, f, Re) and c = c(42, f ,  Re, N)  such that for H < Ho, 

142-42nl2 <c(42, f, Re, N ) i n f  142-~'12, (23) 
w H E X  h 

where c(42, f, Re, N) = 7-1(Re -1 + N .  Re Ill.) + 1. 

PROOF. Detailed proof of Part (a) can be found in [5]. It remains to show Part (b). Subtract- 
ing (18) from (5), gives the following error equation for (18): 

a (42 -- ¢ " ,  ¢H) + b (O, 42, dpH) -- b (42", 42H, ¢n )  =0 .  

Adding the following terms b(42H, 42, CH) -- b(42H, 42, ¢" )  gives 

a ( 42 -- 42H, ¢ " )  + b ( 42 -- 42H, 42, ¢ H) + b ( 42H, 42 -- 42H, ¢ n)  = O. 

Let w h E X h be an approximation to 42 in X h and define ~h = !bh _ w h and r} h = ¢ - w h, then 
the above inequality becomes 

a (~H, ¢ " )  ÷ b (~H, 42, ¢ H) + b (42", ¢H, * H) = a (rI", ¢ H) ÷ b (r]",42, ¢ " )  ÷ b (42H, riH, , " )  . 

Using (22) gives 

~1~'1, -< sup {1~"1;' (a(,".¢') +b(,",42,~') +b(¢",,".~,"))}. 
CH~Xn 

In view of (10),(11), we have 

1~'12 -< *-' (Re-1 + Y  (14212 + 142"1,))I,'l,. 
The triangle inequality (142 - ¢h12 < 15hi, + 10hb) implies (23). | 

LEMMA 5.4. Given a solution 42n to (18), then the solution to the following problem: 

find ~l, e g~(f~) such that, for all ¢ e Hg(fl),  
(24) 

exist tmiquel¥ and satisfies II~ll, -< Re lYl.. 
PROOF. Introducing the continuous bilinear form B : H02(f~) × H~(~) -~ R given by 

B(¢, ¢) = a(¢, ¢) + b (¢n,  42, ¢) ,  

B is continuous and coercive. Hence, ¢ exists uniquely. Setting ¢ = ¢ in (24) implies that 

Re-1 ]1 11: ) , 

< R e  sup ~(4') 
- ,eHg(a) I1¢11, 
- -  Re }/I.. | 
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LEMMA 5.5. Given a solution ¢~r to (I8), then the solution to (19) exists uniquely and satisfies 

11¢112 <- Re Ifl,. 

PROOF. The bilineex form B is continuous and coercive on X h. Hence, ~b exists uniquely. Setting 
Ch = ¢ in (19) implies that  

~ - x  I1~11~ -- t(¢) 

= Re l(¢) 
11~112 

<_ Re sup /(¢) 

= Re lYl,. ! 

By Green's formula, we obtain the following lemma. 

LEMMA 5.6. For ~),~,~b 6 H~o(f~), we have 

b(¢,~,¢)=bo(~,¢,~b)-bo(¢,~,¢) .  (25) 

PROOF. Applying Green's formula to the left-hand side of (25) gives 

b(¢, ~, ¢) = f n  A ¢ (~¢x  - ~z¢~) dfl 

= - f .  Cx (~¢~ - {~¢~)x + ¢~ (~¢x - ~x¢~)~ 

+ L ~-~ • ('~¢~ -'~¢~) 

= fn (~x~¢v + ~¢~x - ~w¢~ - ~v¢~) ¢~ 

- fn (Q~¢x + ~ ¢ ~  - ~ ¢ Y  - ~ ¢ ~ )  ¢~ 

= fn ( ~ ¢ ~  + ~ ¢ ~  - ~Y~¢~ - ¢ ~ Y )  ¢~ 

- f .  ( ~ ¢ ~  + ¢ ~  - ¢~G~ - ~ ¢ ~ )  ¢~ 

= f~ (¢~x~ - ¢ ~ ) ¢ ~  - ( ¢ ~  - ¢ ~ )  ~ 

- f~ ( ~ ¢ ~  - ~¢~) ¢~ - (~x¢~ - ~¢~) ¢~ 
-- bo (~, ¢ ,¢ )  - bo(¢,~, ¢). 

The main result of this paper is the following theorem. It gives the error bound after Step 2. 

THEOREM 5.2. Let X h'H E H~(f~) be two linite-element spaces. Let ¢ be the solution to (2) 
and 0 h the solution to (19). Then 0 h satis~es 

- -  whEX a 

where C1 = 2 + NI/{, Re 2 and C2 = 2N.  Re 2 If[,c. 

PROOF. Subtracting (19) from (2) yields 

a (~b - Ca, ch) + b (¢, ¢,  ¢) - b (~b ~,  ch,  CA) _ 0, V ~b h e X h. 
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Using Lemma 5.6 gives 

~ ( o -  ~h,~ h) + ~o (o, ~ ,  o) -~o (~h, o, o) 
- bo (oh, oh, o ' )  + ~o (¢", o h, o ' )  = o, 

Adding the following terms: 

gives 

V¢ h e X h. 

a ( O -  Oh, O h) + bo ( 0 -  Oh,Oh,0) + ~0 (~h, Oh -- O, 0) 
+ bo (O h, Oh, O - ¢ ' )  + ~o (Oh, Oh, ¢ .  _ ¢) = o. 

Let w h E X h be an approximation to 0 in X h and define ~h = oh _ w h and ~h = 0 -- w h, then 
the above inequality becomes 

a (,h,~ h) +bo (~h, ~h, o) -bo (~h, ~h, o) 
+ bo ( o h , ~ , o - o  - )  + bo (~h, O h , 0 " -  ~) 

Setting oh = ~h implies 

+ bo (¢~,~h, ¢ _ ¢ . )  + bo (~h, oh, ¢ .  _ ¢).  

Using Lemma 5.6 gives 

o (~h, ~h) = ~ (,h, ~h) + b (o,,h, ~h) 
+ bo (o h, ~h, o - O' )  + bo (~h, Oh, o "  - ¢) .  

We will bound the right-hand side of the above inequality as follows: 

(,h,~h) < Re-, I ,h l .  I~%, 
b (~,,h,~ h) _< NI01~" {,h{~" {~h{:, 

bo (oh ,~  h, O -- O H) <-- N . clOh{2 • {¢hl2. l¢ -- 0HI, • VII lnh{, 

bo (~h, oh, o~  _ o) _< Y.  clVhl~. I¢~1~. i0 - O~{~ • ~/I lnhl. 

Using these bounds gives 

l ~  -1 lChl~ _< ~-~ (~ + NIO{2. Re){,Jh{2. {~h{2 

+ 2NclOhl~ • l~h}2 • }¢-0HI, • ~/{ Inh{. 

Using the bounds on {O{2 and {0h{2 gives 

l~hI~ _< (~ + NRe2I/I,){,hi 2 + (2NRe2lSI.c) {,~z{i~ilo- o'I, 
The triangle inequality (I¢ - 0hi2 ~ {~h}2 + I~h{~) implies 

lO-Ohlo <_ (2-4-NI:temlS{,)lr/hl2-+-(2NRe~lSl,c) {Iv/'(-l'n-ff{{lO-¢~l,. (26) 

Hence, we have the following estimates: 

}¢ -- 0h{2 <:: C 1 inf  {0 -- wh}2 -{- C2 ~y/~-h{" {0 - ~H{I. 
- -  w a ~ X  ~ 

COROLLARY 5.1. Let X h ' H  be the C1ough-Tocher elements. Then ¢ h satis/ies 

}O- oh{2 --< C,h  ~ + C~ ~lv/~-~g 3. 
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6.  S U M M A R Y  

Two-level method for the stream function formulation of the Navier-Stokes equations was 
discussed. The method is important because of the superlinear scaling between the coarse and 
fine grids. 
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