King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics Math 260 Exam-1 Semester II, 2010- (092)

Name:		
ID:	Serial no:	

Section

1
7:00-7:50
Dr. Fairag

Ī	2
Ī	8:00-8:50
Ī	Dr. Fairag

	3	
	9:00-9:50	
Ī	Dr. Laradji	

4
10:00-10:50
Dr. Fairag

Q	FORM: A	Points
1		12
2		9
3		10
4		10
5		9
6		22
7		7
8		7
9		7
10		7
Total		100

Say Bismillah & Good luck

(1) Consider the homogeneous linear system of equations

$$x_1 + x_2 + 3x_3 + 3x_4 = 0$$

$$-x_1 - 2x_3 - x_4 + x_5 = 0$$

$$2x_1 + 3x_2 + 7x_3 + 8x_4 + x_5 = 0$$

- (a) Find the solution space W.
- (b) Find a basis for W.
- (c) Find dim(W).

(2) Given that:
$$u = \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}$$
, $v = \begin{bmatrix} 4 \\ 1 \\ -1 \end{bmatrix}$, $w = \begin{bmatrix} 1 \\ 1 \\ 5 \end{bmatrix}$ and $t = \begin{bmatrix} 2 \\ 5 \\ 3 \end{bmatrix}$,

Express u as a linear combination of the vectors v, w, t.

(3) Compute A^{-1} if $A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$.

(4) Let W be the set of all vectors $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ in \mathbb{R}^3 such that $x_3 = -2x_1$. Is

W a subspace of R^3 ? (either prove it is or show that it is not a subspace of R^3).

(5) Determine for what values of k the set S is linearly independent in \mathbb{R}^4 .

$$S = \left\{ \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 100\\1\\2\\-1 \end{bmatrix}, \begin{bmatrix} 3\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} -9\\1\\1\\k \end{bmatrix} \right\}$$

(6) True or False.

[1]	The inverse of any invertible matrix is unique.	(T)	(F)
[2]	The determinant of a matrix is equal to the determinant of its transpose.	(T)	(F)
[3]	Any subset of a linearly independent set $S = \{v_1, v_2, \dots, v_k\}$ is a linearly independent set of vectors.	(T)	(F)
[4]	Let A be an nxn matrix. If A has nonzero determinant then A is row equivalent to the identity matrix I .	(T)	(F)
[5]	Any set of more than n vectors in \mathbb{R}^n is linearly dependent	(T)	(F)
[6]	The vectors v_1, v_2, \dots, v_k are linearly dependent if and only if one of them is a linear combination of the others	(T)	(F)
[7]	If u , v and w in R^3 are linearly independent, then they constitute a basis for R^3 .	(T)	(F)
[8]	The set $S = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \end{bmatrix} \right\}$ is a basis for R^2	(T)	(F)
[9]	The set $S = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \end{bmatrix} \right\}$ is a basis for \mathbb{R}^2	(T)	(F)
[10]	The set $S = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 5 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} 3 \\ 4 \\ 1 \\ 9 \end{bmatrix} \right\}$ is linearly independent in \mathbb{R}^4	(T)	(F)
[11]	The set $S = \left\{ \begin{bmatrix} 6 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}$ spans \mathbb{R}^2	(T)	(F)

c

(7) Which of the following subsets of R^4 is linearly independent?

(a)
$$\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \\ 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 3 \\ 4 \\ 1 \\ 2 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ -2 \\ -5 \\ -4 \end{bmatrix}, \begin{bmatrix} 4 \\ 2 \\ -4 \\ 0 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}, \begin{bmatrix} -1 \\ 2 \\ -3 \\ 4 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \\ -3 \\ 4 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

(e)
$$\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 4 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 4 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

(c) $\begin{bmatrix} 1 \\ 2 \\ 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 4 \end{bmatrix}, \begin{bmatrix} 3 \\ 4 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$

(8) The value of k for which the system

$$x + y + 2z = 1$$

$$x - y + z = 2$$

$$-x-2y+z=3$$

$$2x - y + 2z = k$$

has a unique solution is

- (a) 5
- (b) 4
- (c) 3
- (d) 2

(e) 1

(9) The augmented coefficient matrix of a linear system of equations has reduced row echelon form

$$\begin{bmatrix} 1 & 2 & 0 & 0 & -3 & 0 & 0 \\ 0 & 0 & 1 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Then the number of free variables is

- (a) 0
- (b) 1
- (c) 2
- (d) 3
- (e) 4

$$\begin{vmatrix}
1 & -2 & 3 & 1 \\
5 & -9 & 6 & 3 \\
-1 & 2 & -6 & -2 \\
2 & 8 & 6 & 1
\end{vmatrix} =$$

- (a) -39
- (b) -36
- (c) 0
- (d) 39
- (e) 36