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Check that this exam has 28 questions.

Important Instructions:

1. All types of calculators, pagers or mobile phones are NOT allowed
during the examination.

2. Use HB 2.5 pencils only.
3. Use a good eraser. DO NOT use the erasers attached to the pencil.

4. Write your name, ID number and Section number on the examination
paper and in the upper left corner of the answer sheet.

5. When bubbling your ID number and Section number, be sure that the
bubbles match with the numbers that you write.

6. The Test Code Number is already bubbled in your answer sheet. Make
sure that it is the same as that printed on your question paper.

7. When bubbling, make sure that the bubbled space is fully covered.

8. When erasing a bubble, make sure that you do not leave any trace of

penciling.
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1. /03|4:1;—8|d:1:=

0 6 6
2. Th i : - 1
e series :/'::1 (4n 7 3> is

(a) convergent and its sum is 2
(b) convergent and its sum is1
(c) convergent and its sum is0
(d) divergent

(e) convergent and its sum is6
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w

/3 1 dz =
e zlny/T =

(a) In(ln3) —2
(b) 2In(ln3)

(¢) In(vIn3)

4.  The first three terms of the Taylor series of f(z) = +/1 + 3z about
a = 1 are given by

(a) 2+(a:——1)+—;-(:c—1)2

3 9 .
(b) 2—|—Z(x+1)——a(w+l)
3 9 )
(c) 2-1—1(:1:——1)—61(3:—1)

(d) 24+3(xz—1)-9(=x—1)*

(e) 1—2(z+1)+3(z+1)?

001]



Math 102, Final Exam, Term 111

5. If F(z) = [ VI+Bdt,then F'(z) =

(a) 1—+v1+428
(b) —\/TJF'
() V1—a3

(d) V1+a8

(e) 1++V1+ad

6. / /A sec? @ tan* 6df =
0

(a) 1/6
(b) 1/12
(c) 12/35
(d) 2/57

(e) 2/7
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7.

The area of the region bounded by the curves y = €%,y =
—z+ 1,z =1 is equal to

(a) e—=
(0)

(¢c) 3e—2
(d) 2e-—1

(e) e+2

/(1+x)2—2x

dx =
\/E X

(a) 272~z +C
(b) 22724 gx2/5 +C
(¢) 2vz —52¥5+C
(d) vz +52°2+C

(e) 2vz+ —i—xwz +C

001
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The sequence {\/n 23”‘1}00 is

9.

10.

The volume of the solid generated by rotating the region
enclosed by the curves y = 2 — z and y = 0 about the line

n=2

convergent and its limits is 4
divergent

convergent and its limits is 1/2
convergent and its limits is 8

convergent and its limits is 2

z = 1 is equal to

(a)

bl

o3
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11.  Which one of the following statements is TRUE: (C: Con-
vergent;D:Divergent; AC: Absolutely Convergent; CC:Conditionally
Convergent)

(a) If 3 anisC,then Y a,is AC.
n=1

n=1

(b) If > anis CC,then Y |a,|is D.
n=1

n=1

(¢c) If> a,is CC,then 3 a,is D.

n=1 n=1

(d) If > a,is CC,then a, is AC.

n=1 n=1

(e) If > anis AC,then Y |a,|is D
n=1

n=1

12.  The volume of the cone generated by revolving the triangu-
lar region with vertices (0, 0), (2,0), (2, 3) about the z-axis
is equal to

=
3

—~
O
S
Wl

w| &
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13.

x
The series 3 3" . 217" is

(a)

n=2

divergent

convergent and its sum is27/2
convergent and its sum is9/4
convergent and its sum is 3/2

convergent and its sum is27/8
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o0
15.  The sum of the convergent series

n=1

16.

(¢c) Inlz—2|+Injz+1/+C
(d) 1n’w2—-:1:-—2|—i—C

(e) Inlz—2|+4ln|lz+1|+C

Page 8 of 14

n—1

n!

is equal to
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17. /—\/—E{de=

() vz—2¢z+4ln|Vz+1|+C
(b) 4vz +tan"(¥z) + C

(¢) 2z —4Vz3+C

(d) 2vZ+4¥z+4In|vz—1]+C

(e) 4vz+tan (V) + 2|z +1|+C

18.  The series i(—l)"ﬂ is

(a) divergent by the comparison test
(b) divergent by the test for divergence
(c) divergent by the ratio test

(d) convergent by the ratio test

(e) a series with which the ratio test is inconclusive
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19.

20.

. ® (2 1)"
The interval of convergence of the power series > (—QH_—)——
n=1 n

1S

' e 4n
In trying to apply the integral test to the series > ——,
ying to apply g ngl 1172

we conclude that

(a) the series is divergent.

(b) the series may converge or diverge.
(c) the series is convergent.

(d) the integral test is not applicable.

(e) the series is convergent and its sum is 1.
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e (=) .
21.  The series ) sin is

n=1 n

(a) divergent by the Comparison Test.

(b) divergent by the Alternating Series Test.-
(¢) divergent by the Test for Divergence.

(d) convergent by the Limit Comparison Test.

(e) convergent by the Alternating Series Test.

1
22.  The length of the curve y = :c4+—?;2—332, 1 <z <2, isequal

to

193
(a) 64

(0) &

9
(c) 64

5

(d) 6

©
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23.

If the curve x = 24/4 —y,0 < y < 1 is rotated about the
y—axis, then the surface area of the generated solid is

equal to

%”(5%5 —8)

(b) &(8-5v5)
(©) S(6vE-2)
81
—3—(5\/5—4)

© D05,

="

©) X G - @+ 3

(="

e
3
108

(2n+ 1! (3n+2)

= (1)
() 2 o)
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25. A power series representation for f(z) is given

by (for |z| < 2)

= 16 — 24

x4n

(&) 3 -

n=01 "

(b) Z 24n+4

26. /2 L In (E—l) dz = (Hint: Make the substitution

(1—-2z)2 \z-1
z+1
u:x—l')
(a) 1

(b) 2—2In2+1n3
1
(c) 5(31n3—21n2—-1)

(d) In2— gln3

() 1+In2+1n3
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28.

(c) 2w +2
(d) —4m

(e) 2w

Fill in the blank: In applying the Comparison Test to

. X sin“n

the series ) :
n=1 'ﬂ\/ﬁ )

. X sinn

that the series ) _

n=1 n\/ﬁ

o 1
(a) > o divergent .

n=1

x© 1
(b) > —373> convergent.

n=1

3

o0 .
(c) 21—7{2—; convergent.
=

(d) > ——1—; divergent .

n=1 n

o 1 .
(e) Elw; divergent.

1S

we use the series

--------
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and conclude
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