King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

CODE 001

Math 102 Final Exam Term 111

CODE 001

Monday, January 9, 2012 Net Time Allowed: 180 minutes

Nan	ne:	 		
ID:		 _ Sec:	 	

Check that this exam has 28 questions.

Important Instructions:

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1.
$$\int_0^3 |4x - 8| \, dx =$$

- (a) 11
- (b) 12
- (c) 10
- (d) 13
- (e) 14

2. The series
$$\sum_{n=1}^{\infty} \left(\frac{6}{4n-1} - \frac{6}{4n+3} \right)$$
 is

- (a) convergent and its sum is 2
- (b) convergent and its sum is 1
- (c) convergent and its sum is 0
- (d) divergent
- (e) convergent and its sum is 6

$$3. \qquad \int_{e}^{3} \frac{1}{x \ln \sqrt{x}} dx =$$

- (a) $\ln(\ln 3) 2$
- (b) $2\ln(\ln 3)$
- (c) $\ln(\sqrt{\ln 3})$
- (d) 1
- (e) $-1 + 2 \ln 3$

4. The first three terms of the Taylor series of $f(x) = \sqrt{1+3x}$ about a=1 are given by

(a)
$$2 + (x-1) + \frac{1}{2}(x-1)^2$$

(b)
$$2 + \frac{3}{4}(x+1) - \frac{9}{64}(x+1)^2$$

(c)
$$2 + \frac{3}{4}(x-1) - \frac{9}{64}(x-1)^2$$

(d)
$$2+3(x-1)-9(x-1)^2$$

(e)
$$1 - 2(x+1) + 3(x+1)^2$$

5. If
$$F(x) = \int_{x}^{0} \sqrt{1+t^3} dt$$
, then $F'(x) =$

- (a) $1 \sqrt{1 + x^3}$
- (b) $-\sqrt{1+x^3}$
- (c) $\sqrt{1-x^3}$
- (d) $\sqrt{1+x^3}$
- (e) $1 + \sqrt{1 + x^3}$

6.
$$\int_0^{\pi/4} \sec^4 \theta \tan^4 \theta d\theta =$$

- (a) 1/6
- (b) 1/12
- (c) 12/35
- (d) 2/57
- (e) 2/7

- 7. The area of the region bounded by the curves $y = e^x$, y = -x + 1, x = 1 is equal to
 - (a) $e \frac{3}{2}$
 - (b) e^{2}
 - (c) 3e-2
 - (d) 2e 1
 - (e) e+2

$$8. \qquad \int \frac{(1+x)^2 - 2x}{\sqrt{x}} dx =$$

- (a) $x^{-1/2} \sqrt{x} + C$
- (b) $2x^{-1/2} + \frac{5}{2}x^{2/5} + C$
- (c) $2\sqrt{x} 5x^{2/5} + C$
- (d) $\sqrt{x} + 5x^{5/2} + C$
- (e) $2\sqrt{x} + \frac{2}{5}x^{5/2} + C$

- 9. The sequence $\left\{\sqrt[n]{2^{3n-1}}\right\}_{n=2}^{\infty}$ is
 - (a) convergent and its limits is 4
 - (b) divergent
 - (c) convergent and its limits is 1/2
 - (d) convergent and its limits is 8
 - (e) convergent and its limits is 2

- 10. The volume of the solid generated by rotating the region enclosed by the curves $y = x^2 x$ and y = 0 about the line x = 1 is equal to
 - (a) $\frac{\pi}{2}$
 - (b) $\frac{\pi}{6}$
 - (c) π
 - (d) 4π
 - (e) $\frac{2\pi}{3}$

- 11. Which one of the following statements is **TRUE**: (C: Convergent; D:Divergent; AC: Absolutely Convergent; CC:Conditionally Convergent)
 - (a) $If \sum_{n=1}^{\infty} a_n$ is C, then $\sum_{n=1}^{\infty} a_n$ is AC.
 - (b) $If \sum_{n=1}^{\infty} a_n$ is CC, then $\sum_{n=1}^{\infty} |a_n|$ is D.
 - (c) $If \sum_{n=1}^{\infty} a_n$ is CC, then $\sum_{n=1}^{\infty} a_n$ is D.
 - (d) $If \sum_{n=1}^{\infty} a_n$ is CC, then $\sum_{n=1}^{\infty} a_n$ is AC.
 - (e) If $\sum_{n=1}^{\infty} a_n$ is AC, then $\sum_{n=1}^{\infty} |a_n|$ is D

- 12. The volume of the cone generated by revolving the triangular region with vertices (0,0),(2,0),(2,3) about the x-axis is equal to
 - (a) 6π
 - (b) π
 - (c) $\frac{\pi}{3}$
 - (d) $\frac{4\pi}{3}$
 - (e) 4π

13. The series
$$\sum_{n=2}^{\infty} 3^{n+1} \cdot 2^{1-2n}$$
 is

- (a) divergent
- (b) convergent and its sum is 27/2
- (c) convergent and its sum is 9/4
- (d) convergent and its sum is 3/2
- (e) convergent and its sum is 27/8

14.
$$\int_0^4 \sqrt{4x - x^2} dx =$$

- (a) π
- (b) 2π
- (c) $\pi/2$
- (d) 3π
- (e) $3\pi/4$

- 15. The sum of the convergent series $\sum_{n=1}^{\infty} \frac{\pi^{n-1}}{n!}$ is equal to
 - (a) $\frac{e^{\pi} \pi}{\pi}$
 - (b) $\frac{e^{\pi}-1}{\pi}$
 - (c) $\frac{e^{\pi}}{\pi} 1$
 - (d) $1 \frac{e^{\pi}}{\pi}$
 - (e) $\frac{e^{\pi}}{\pi}$

- 16. $\int \frac{x+4}{x^2 x 2} dx =$
 - (a) $\ln \left| \frac{(x-2)^2}{x+1} \right| + C$
 - (b) $\ln \left| \frac{x-2}{x+1} \right| + C$
 - (c) $\ln|x-2| + \ln|x+1| + C$
 - (d) $\ln |x^2 x 2| + C$
 - (e) $\ln |x-2| + 4 \ln |x+1| + C$

$$17. \qquad \int \frac{1}{\sqrt{x} - \sqrt[4]{x}} dx =$$

(a)
$$\sqrt{x} - 2\sqrt[4]{x} + 4 \ln |\sqrt[4]{x} + 1| + C$$

(b)
$$4\sqrt{x} + \tan^{-1}(\sqrt[4]{x}) + C$$

(c)
$$2\sqrt{x} - 4\sqrt[4]{x^3} + C$$

(d)
$$2\sqrt{x} + 4\sqrt[4]{x} + 4\ln|\sqrt[4]{x} - 1| + C$$

(e)
$$4\sqrt[4]{x} + \tan^{-1}(\sqrt{x}) + 2\ln|\sqrt{x} + 1| + C$$

18. The series
$$\sum_{n=1}^{\infty} (-1)^n \frac{(n!)^2}{(2n+1)!}$$
 is

- (a) divergent by the comparison test
- (b) divergent by the test for divergence
- (c) divergent by the ratio test
- (d) convergent by the ratio test
- (e) a series with which the ratio test is inconclusive

- 19. The interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(2x+1)^n}{n}$ is
 - (a) [-1,1)
 - (b) (-1,1]
 - (c) (-1,0]
 - (d) [-1,0]
 - (e) [-1,0)

- 20. In trying to apply the integral test to the series $\sum_{n=1}^{\infty} \frac{4n}{(n^2+1)^2}$, we conclude that
 - (a) the series is divergent.
 - (b) the series may converge or diverge.
 - (c) the series is convergent.
 - (d) the integral test is not applicable.
 - (e) the series is convergent and its sum is 1.

- 21. The series $\sum_{n=1}^{\infty} \sin\left(\frac{(-1)^n}{n}\right)$ is
 - (a) divergent by the Comparison Test.
 - (b) divergent by the Alternating Series Test.
 - (c) divergent by the Test for Divergence.
 - (d) convergent by the Limit Comparison Test.
 - (e) convergent by the Alternating Series Test.

- 22. The length of the curve $y = x^4 + \frac{1}{32x^2}$, $1 \le x \le \sqrt{2}$, is equal to
 - (a) $\frac{193}{64}$
 - (b) $\frac{73}{51}$
 - (c) $\frac{9}{64}$
 - (d) $\frac{5}{16}$
 - (e) $\frac{5}{32}$

- 23. If the curve $x = 2\sqrt{4-y}$, $0 \le y \le 1$ is rotated about the y-axis, then the **surface area** of the generated solid is equal to
 - (a) $\frac{8\pi}{3}(5\sqrt{5}-8)$
 - (b) $\frac{\pi}{6}(8-5\sqrt{5})$
 - (c) $\frac{4\pi}{3}(5\sqrt{5}-2)$
 - (d) $\frac{8\pi}{3}(5\sqrt{5}-4)$
 - (e) $\frac{40\sqrt{5}}{3}\pi$

- $24. \qquad \int_0^1 \sin(x^2) dx =$
 - (a) $\sum_{n=0}^{\infty} \frac{1}{(4n+3)!}$
 - (b) $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)! \cdot (n+1)}$
 - (c) $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)! \cdot (4n+3)}$
 - (d) $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)! \cdot (3n+2)}$
 - (e) $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!}$

- 25. A power series representation for $f(x) = \frac{x}{16 x^4}$ is given by (for |x| < 2)
 - (a) $\sum_{n=0}^{\infty} \frac{x^{4n}}{16^n}$
 - (b) $\sum_{n=0}^{\infty} \frac{x^{4n+1}}{2^{4n+4}}$
 - (c) $\sum_{n=0}^{\infty} (-1)^n \frac{x^{4n+2}}{16^{n+1}}$
 - (d) $\sum_{n=0}^{\infty} \frac{x^{4n+2}}{2^{4n+2}}$
 - (e) $\sum_{n=0}^{\infty} (-1)^n \frac{x^{4n+1}}{16^n}$

- 26. $\int_2^3 \frac{1}{(1-x)^2} \ln\left(\frac{x+1}{x-1}\right) dx = \text{(Hint: Make the substitution}$ $u = \frac{x+1}{x-1}. \text{)}$
 - (a) 1
 - (b) $2 2 \ln 2 + \ln 3$
 - (c) $\frac{1}{2}(3\ln 3 2\ln 2 1)$
 - (d) $\ln 2 \frac{3}{2} \ln 3$
 - (e) $1 + \ln 2 + \ln 3$

$$27. \qquad \int_0^{\pi^2} \cos(\sqrt{t}) dt =$$

- (a) $\pi 3$
- (b) -4
- (c) $2\pi + 2$
- (d) -4π
- (e) 2π

- 28. **Fill in the blank**: In applying the **Comparison Test** to the series $\sum_{n=1}^{\infty} \frac{\sin^2 n}{n\sqrt{n}}$, we use the series...... and conclude that the series $\sum_{n=1}^{\infty} \frac{\sin^2 n}{n\sqrt{n}}$ is......
 - (a) $\sum_{n=1}^{\infty} \frac{1}{n}$; divergent.
 - (b) $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$; convergent.
 - (c) $\sum_{n=1}^{\infty} \frac{1}{n^2}$; convergent.
 - (d) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$; divergent.
 - (e) $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$; divergent.

