King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

Math 102 Final Exam 092

Saturday, June 12, 2010 Net Time Allowed: 180 minutes

MASTER VERSION

- 1. $\sum_{n=1}^{\infty} \frac{1 + (-2)^n}{3^n} =$
 - (a) 0.1
 - (b) 0.01
 - (c) 0.001
 - (d) 1.1
 - (e) 1.01

- $2. \qquad \int_{\sqrt{\frac{\pi}{2}}}^{\sqrt{\pi}} x^3 \sin(x^2) dx =$
 - (a) $\frac{\pi-1}{2}$
 - (b) $\frac{\pi + 1}{4}$
 - (c) $\frac{\pi}{2}$
 - (d) $\pi + 1$
 - (e) $\pi 1$

- 3. $\int \cot^3 \alpha \csc^3 \alpha \ d\alpha =$
 - (a) $\frac{1}{3}\csc^3\alpha \frac{1}{5}\csc^5\alpha + C$
 - (b) $\frac{1}{3}\csc^3\alpha + \frac{1}{5}\csc^5\alpha + C$
 - (c) $\frac{1}{2}\csc^2\alpha + \frac{1}{4}\csc^4\alpha + C$
 - (d) $\frac{1}{2}\csc^2\alpha \frac{1}{4}\csc^4\alpha + C$
 - (e) $\frac{1}{4}\csc^4\alpha + C$

- 4. The improper integral $\int_{-\infty}^{1} \frac{1}{2} e^{2x} dx$ is
 - (a) convergent and its value is $e^2/4$
 - (b) convergent and its value is $e^3/8$
 - (c) convergent and its value is e/2
 - (d) convergent and its value is e
 - (e) divergent

- 5. The length of the curve $x = \frac{2}{3}y^{3/2}$ from y = 0 to y = 3 is
 - (a) $\frac{14}{3}$
 - (b) $\frac{11}{3}$
 - (c) $\frac{17}{3}$
 - (d) 5
 - (e) 4

- 6. The set of all values of P, in interval notation, for which the series $\sum_{n=1}^{\infty} n(1+n^2)^P$ is convergent, is
 - (a) $(-\infty, -1)$
 - (b) $(0,\infty)$
 - (c) $(-\infty,0)$
 - (d) $(1,\infty)$
 - (e) $(-\infty, 1)$

- 7. The interval on which the curve $y = \int_0^x \frac{1}{1+t+t^2} dt$ is concave upward is
 - (a) $\left(-\infty, -\frac{1}{2}\right)$
 - (b) $(-\infty, \infty)$
 - (c) $\left(\frac{1}{2}, \infty\right)$
 - (d) $(1,\infty)$
 - (e) $(-\infty, 1)$

- 8. If the region bounded by the curves $y = 4(x-1)^2$ and y = 4 is revolved about the line x = -1, then the volume of the solid generated is given by
 - (a) $\int_0^2 2\pi (8x 4x^2)(x+1) dx$
 - (b) $\int_{-1}^{2} 2\pi (8x 4x^2)(x+1) dx$
 - (c) $\int_0^2 16\pi (x-1)^4 dx$
 - (d) $\int_0^2 8\pi (x-1)^2 (x+1) dx$
 - (e) $\int_{-1}^{2} 8\pi (x-1)^2 (x+1) dx$

- 9. The volume of the solid obtained by rotating the region bounded by the curves y = x and $y = \sqrt{x}$ about the line y = 1, is
 - (a) $\frac{\pi}{6}$
 - (b) $\frac{\pi}{3}$
 - (c) $\frac{\pi}{2}$
 - (d) π
 - (e) $\frac{\pi}{4}$

- 10. The average value of the function $f(x) = \frac{1}{2} \sin x \sin 2x$ on the interval $\left[-\frac{\pi}{2}, \frac{\pi}{4}\right]$ is
 - (a) $\frac{\sqrt{2}+4}{9\pi}$
 - (b) $\frac{\sqrt{2}-4}{9\pi}$
 - (c) $\frac{\sqrt{2}+4}{3\pi}$
 - (d) $\frac{\sqrt{3}+4}{3\pi}$
 - (e) $\frac{2\sqrt{3}+4}{3\pi}$

$$11. \qquad \int \frac{dx}{x(x^2+1)} =$$

(a)
$$\ln\left(\frac{|x|}{\sqrt{x^2+1}}\right) + C$$

(b)
$$\ln\left(|x|\sqrt{x^2+1}\right) + C$$

(c)
$$\ln\left(\frac{\sqrt{x^2+1}}{|x|}\right) + C$$

(d)
$$\ln(|x|(x^2+1)) + C$$

(e)
$$\ln\left(\frac{x^2+1}{|x|}\right)+C$$

12. The area of the surface obtained by rotating the curve $y = \sqrt{x}$, $2 \le x \le 6$, about the x-axis, is equal to

(a)
$$\frac{49\pi}{3}$$

(b)
$$\frac{79\pi}{3}$$

(c)
$$49\pi$$

(d)
$$79\pi$$

(e)
$$\frac{101\pi}{6}$$

13. The radius of convergence of the power series

$$\sum_{n=0}^{\infty} 2^n n^p (x+1)^n$$
, where p is a constant,

is

- (a) $\frac{1}{2}$
- (b) 2
- (c) 1
- (d) 4
- (e) $\frac{1}{4}$

- 14. The series $\sum_{n=1}^{\infty} \frac{1 + \sin^2 n}{n + n\sqrt{n}}$
 - (a) converges by the comparison test
 - (b) diverges by the integral test
 - (c) is a convergent geometric series
 - (d) is a convergent p-series
 - (e) diverges by the root test

- $15. \qquad \sum_{n=1}^{\infty} \frac{3}{n(n+3)} =$
 - (a) $\frac{11}{6}$
 - (b) $\frac{3}{2}$
 - (c) $\frac{4}{3}$
 - (d) $\frac{5}{3}$
 - (e) 1

- 16. The error of using the sum of the first 10 terms to approximate the sum of the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^4+1}}$ can be estimated as a number in the interval
 - (a) (0,0.1)
 - (b) (0.1, 0.2)
 - (c) (0.2, 0.3)
 - (d) (0.3, 0.6)
 - (e) (0.4, 0.5)

- 17. The smallest number of terms, needed in order to find the sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{3/2}}$ with |error| less than 0.001, is
 - (a) 100
 - (b) 50
 - (c) 10
 - (d) 150
 - (e) 200

- 18. The series $\sum_{n=2}^{\infty} \frac{(-1)^n}{\ln n}$
 - (a) converges conditionally
 - (b) converges absolutely
 - (c) diverges
 - (d) is a convergent geometric series
 - (e) is a divergent geometric series

- 19. The interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(4x+1)^n}{n^2}$
 - (a) $\left[-\frac{1}{2},0\right]$
 - (b) $\left[\frac{1}{4}, 1\right]$
 - (c) $\left(-\frac{1}{2},0\right)$
 - (d) $\left(\frac{1}{4}, 1\right]$
 - (e) $\left[-\frac{1}{2},0\right)$

- 20. The power series representation for the function $f(x) = \frac{x}{9+x^2}$ is
 - (a) $\frac{1}{3} \sum_{n=0}^{\infty} (-1)^n \left(\frac{x}{3}\right)^{2n+1}$
 - (b) $\sum_{n=0}^{\infty} (-1)^n \left(\frac{x}{3}\right)^{2n}$
 - (c) $\frac{1}{3} \sum_{n=0}^{\infty} (-1)^{n-1} \left(\frac{x}{3}\right)^{2n+1}$
 - (d) $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{9^n}$
 - (e) $\frac{1}{3} \sum_{n=0}^{\infty} (-1)^n \left(\frac{x}{9}\right)^{2n+1}$

- 21. The first three nonzero terms of the Taylor series of $f(x) = \sin(2x)$ about $a = \frac{\pi}{2}$ are given by
 - (a) $-2\left(x-\frac{\pi}{2}\right) + \frac{4}{3}\left(x-\frac{\pi}{2}\right)^3 \frac{4}{15}\left(x-\frac{\pi}{2}\right)^5$
 - (b) $1-2\left(x-\frac{\pi}{2}\right)+\frac{4}{3}\left(x-\frac{\pi}{2}\right)^3$
 - (c) $-2\left(x-\frac{\pi}{2}\right)+\frac{4}{3}\left(x-\frac{\pi}{2}\right)^2-\frac{4}{15}\left(x-\frac{\pi}{2}\right)^3$
 - (d) $2\left(x-\frac{\pi}{2}\right) + \frac{4}{3}\left(x-\frac{\pi}{2}\right)^3 \frac{4}{15}\left(x-\frac{\pi}{2}\right)^5$
 - (e) $-2\left(x-\frac{\pi}{2}\right)+4\left(x-\frac{\pi}{2}\right)^2-4\left(x-\frac{\pi}{2}\right)^5$

22. If the Maclaurin series of $(1+x)^{3/2}$ is

$$A + Bx + Cx^2 + Dx^3 + Ex^4 + \cdots,$$

then D + E =

- (a) $-\frac{5}{128}$
- (b) $\frac{9}{128}$
- (c) $\frac{7}{16}$
- (d) $-\frac{7}{16}$
- (e) $-\frac{7}{128}$

23. $\int_{-1}^{1} \frac{1 + \tan x + x^2}{1 + x^2} \, dx =$

- (a) 2
- (b) 0
- (c) 1
- (d) 3
- (e) 4

24. The area of the triangle bounded by the lines

$$y = x$$
, $y = -3x$ and $y = -x + 2$

is equal to

- (a) 2
- (b) 3
- (c) 4
- (d) $\frac{1}{2}$
- (e) $\frac{4}{3}$

$$25. \qquad \int \frac{x}{\sqrt{3-2x-x^2}} \, dx =$$

(a)
$$-\sqrt{3-2x-x^2} - \sin^{-1}\left(\frac{x+1}{2}\right) + C$$

(b)
$$\sqrt{3-2x-x^2} + \cos^{-1}\left(\frac{x+1}{2}\right) + C$$

(c)
$$-\sqrt{3-2x-x^2} + \sin\left(\frac{x+1}{2}\right) + C$$

(d)
$$\sqrt{3-2x+x^2} + \cos^{-1}\left(\frac{x+1}{2}\right) + C$$

(e)
$$\sqrt{3-2x-x^2}+C$$

- 26. The improper integral $\int_0^3 \frac{3 dx}{x^2 5x + 4}$ is
 - (a) divergent
 - (b) convergent and its value is ln 4
 - (c) convergent and its value is ln 3
 - (d) convergent and its value is ln 2
 - (e) convergent and its value is 0

27. The limit of the sequence defined by $s_n = \frac{1}{n} \sin\left(\frac{n\pi}{4}\right) + \frac{(2n+6)}{(n+1)}$

- (a) is equal to 2
- (b) is equal to 0
- (c) is equal to 1
- (d) oscillates between -1 and 1
- (e) is ∞

28. The series $\sum_{n=1}^{\infty} (-1)^n \frac{n! + n}{(n+1)!}$

- (a) converges conditionally
- (b) converges absolutely
- (c) diverges by alternating series test
- (d) diverges because $\sum_{n=1}^{\infty} \frac{n! + n}{(n+1)!}$ diverges
- (e) converges because $\sum_{n=1}^{\infty} \frac{n! + n}{(n+1)!}$ converges