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2 1
3. If f is continuous 8md/0 f(z)dxr = 6, then A fBx—1)dx =

(a) 2
(b) 18
(c) 17

19
1) =2
@

13
(e) 3

00 3n—1
4.  The series nz::l oot is

(a) convergent and its sum is 5

(b) convergent and its sum is 4

(¢) convergent and its sum is —

14

(d) convergent and its sum is —

28

(e) divergent
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o0 en
7. The series > —
n=0 n!

8. The volume of the solid obtained by rotating the region
enclosed by the curves y = /x — 4, y = Oand x = 8 about

converges by the ratio test

diverges by the ratio test

divergence by the comparison test

diverges by the nth term test of divergence

diverges by the integral test

the z-axis is given by

81

107

127

6

4
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9.

10.

The sum of the series

T

1S

The area of the surface generated by revolving the curve of
y =coshz, 0 < x <1, about the z-axis is given by

1
(a) /0 2 cosh? x dx
1
(b) /0 2 sinh? x da
1 2
(c) /0 27 cosh xy1 + cosh” z dx

1
(d) /0 27 sinh /1 + cosh? z dx

1
(e) /o 27 cosh x dx
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11.  The volume of the solid obtained by rotating the region
bounded by y = 22 — 23 and y = 0 about the y-axis is
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12, If {S,},—, is the sequence of partial sums of the series
o

then S, =
n; CERCES)




Math 102, Final Exam, Term 131

13.  The first three nonzero terms of the Taylor series of f(z) =
Inz about a = 1 are given by
1 5 1 3
(&) (z=1)—-ge-1)"+3(z-1)
2 3
1 2, 1 3
(b) (:1:—1)+§(m—1) +§(x—1)
g 1 3
(c) (@-1+(@-1)"-2(@-1)
@ (r—1) - s@— 12+ 1)
2 6
1 1 1
(@ =1 4= 17+ (e~ 1)
14. The improper integral /OO b dz is

2
(a) equal to =
3
(b) equal to 1
4
(¢) equal to =
3
3
(d) equal to B

(e) divergent
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15.  The area of the region enclosed by the curves z = 32 + 2
and z = 4 — y? in the first quadrant is equal to

W W~
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1\" 1
16.  The sequence a, = (n i ) (1 — )
3n n

(a) converges to 0

(b) converges to —
(c) diverges
(d) converges to 3

(e) converges to —
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2
- — 1
17. :1:3—|—a:+ dr =
2+ x

(a) Inl|z| —In(z*+1) +tan’

r+c
(b) In|z|+2In(z* +1) +tan 'z + ¢
() m2z+1In(z®+1)—tan ' z+c
(d) In2x —In(2? +1)+tan ' 24 ¢

(e) In|z|+In(z*+1) —2tan ' z + ¢

11
18.  The improper integral / ——dx is
1yl

(a) equal to 4
(b) equal to 0

1
(c) equal to 5
(d) equal to 1

(e) divergent
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19.  The length of the curve y = In+/sec2z, 0 <z < 76T is

(a) InvV2++3

V3
(b) In >

(¢) In3

(d) In(4+2v3)
(e) 2

d
20. d—(sinh r — tan ' (sinh x))

X

(a) (tanhz)(sinhz)
(b) (cothz)(coshz)
(¢) (coshz)— (sinhz)
(d) tanh®z

(e) sinh?x — tanh®z
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21. /Secha:dx =

(a) 2tan~'(e”) +c

(b) 2sin'(e”) + ¢
1
(c) 5 sechz tanhx 4 ¢

(d) In(e"+e")+c

(e) In(e* +1)+c

1 m*1
22.  The sequence a,, = — / —dx
nJl x

(a) converges to 0
(b) converges to 1
(¢) diverges

(d) converges to e

(e) converges to 2
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23. /670 cos(26) df =

2 1

(a) 56_9 sin(260) — 56_0 cos(20) + ¢
1, . 1,

(b) =€ sin(20) -z cos(20) + ¢
L o 2

(c) =€ 811’1(29)—56 cos(20) + ¢
2 2,

(d) =€ sin(26) - e cos(260) + ¢

2 1
(e) 569 sin(26) + 560 cos(20) + ¢

o0 1
24.  The series
nz::l n(vn+1)

(a) diverges by the limit comparison test
(b) diverges by the ratio test

(c) converges by the ratio test

(d) converges by the root test

(e) converges by the integral test
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o0 1
25.  The series > (—1)"

1s
g nlnn

(a) conditionally convergent

(b) absolutely convergent

(c) convergent and its sum is zero
(d) convergent and its sum is In 2

(e) divergent

. X (r+ 1)
26.  The interval of convergent of the series > o on 1S
n=1 M-

(a) [_371)
(b) (_371]
(c) [=3,1]

11
@ | ~59]
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27.  Let p(z) be the sum of the first five nonzero terms of the
Maclaurin series of (1 + x) cos(2z), thenp(1) =

2 (-
1S
' n2 + qn

28. The series

(a) absolutely convergent

(b) conditionally convergent

(c¢) divergent

(d) divergent by the alternating series test

(e) convergent by the integral test



