1. If
$$F(x) = \int_1^{x^3} \frac{t}{t^2 + 1} dt$$
, then $F'(x) =$

- (a) $\frac{3x^5}{x^6+1}$
- (b) $\frac{x^3}{x^6+1}$
- (c) $\frac{x^3}{x^6+1} \frac{1}{2}$
- $(d) \quad \frac{x}{x^2 + 1}$
- (e) $\frac{x^3}{x^2+1}$

$$2. \qquad \int_0^{\frac{\pi}{2}} \sin^{3/2} x \, \cos^3 x \, dx =$$

- (a) $\frac{8}{45}$
- (b) $\frac{5}{9}$
- (c) $\frac{4}{5}$
- (d) $\frac{11}{45}$
- (e) $\frac{13}{45}$

- 3. If f is continuous and $\int_0^2 f(x)dx = 6$, then $\int_{\frac{1}{3}}^1 f(3x-1) dx =$
 - (a) 2
 - (b) 18
 - (c) 17
 - (d) $\frac{19}{3}$
 - (e) $\frac{13}{3}$

- 4. The series $\sum_{n=1}^{\infty} \frac{3^{n-1}}{2^{2n+1}}$ is
 - (a) convergent and its sum is $\frac{1}{2}$
 - (b) convergent and its sum is 4
 - (c) convergent and its sum is $\frac{3}{14}$
 - (d) convergent and its sum is $\frac{3}{28}$
 - (e) divergent

$$5. \qquad \int \frac{x^2}{\sqrt{1-x^2}} \, dx =$$

(a)
$$\frac{1}{2}\sin^{-1}x - \frac{1}{2}x\sqrt{1-x^2} + c$$

(b)
$$\frac{1}{2}x\sqrt{1-x^2}\sin^{-1}x + c$$

(c)
$$\sin^{-1} x + \frac{3}{2} x \sqrt{1 - x^2} + c$$

(d)
$$\frac{1}{2}\sin^{-1}x - \frac{1}{6}x\sqrt{1-x^2} + c$$

(e)
$$\frac{\sin^{-1} x}{2\sqrt{1-x^2}} + c$$

6.
$$\int_{2}^{3} x(x-2)^{3/2} dx =$$

- (a) $\frac{38}{35}$
- (b) $\frac{37}{35}$
- (c) $\frac{36}{35}$
- (d) $\frac{34}{35}$
- (e) $\frac{32}{35}$

- 7. The series $\sum_{n=0}^{\infty} \frac{e^n}{n!}$
 - (a) converges by the ratio test
 - (b) diverges by the ratio test
 - (c) divergence by the comparison test
 - (d) diverges by the *nth* term test of divergence
 - (e) diverges by the integral test

- 8. The volume of the solid obtained by rotating the region enclosed by the curves $y = \sqrt{x-4}$, y = 0 and x = 8 about the x-axis is given by
 - (a) 8π
 - (b) 10π
 - (c) 12π
 - (d) 6π
 - (e) 4π

9. The sum of the series

$$1 - (\ln 3) + \frac{(\ln 3)^2}{2!} - \frac{(\ln 3)^3}{3!} + \frac{(\ln 3)^4}{4!} - \dots$$

is

- (a) $\frac{1}{3}$
- (b) -3
- (c) e^{-3}
- (d) 3
- (e) $\frac{1}{1 + \ln 3}$

- 10. The area of the surface generated by revolving the curve of $y = \cosh x$, $0 \le x \le 1$, about the x-axis is given by
 - (a) $\int_0^1 2\pi \cosh^2 x \, dx$
 - (b) $\int_0^1 2\pi \sinh^2 x \, dx$
 - (c) $\int_0^1 2\pi \cosh x \sqrt{1 + \cosh^2 x} \, dx$
 - (d) $\int_0^1 2\pi \sinh x \sqrt{1 + \cosh^2 x} \, dx$
 - (e) $\int_0^1 2\pi \cosh x \, dx$

- 11. The volume of the solid obtained by rotating the region bounded by $y = x^2 x^3$ and y = 0 about the y-axis is
 - (a) $\frac{\pi}{10}$
 - (b) $\frac{\pi}{20}$
 - (c) $\frac{\pi}{5}$
 - (d) $\frac{2\pi}{5}$
 - (e) $\frac{\pi}{4}$

- 12. If $\{S_n\}_{n=1}^{\infty}$ is the sequence of partial sums of the series $\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)}$, then $S_n =$
 - (a) $\frac{1}{2} \frac{1}{n+2}$
 - (b) $\frac{1}{n+1} \frac{1}{n+2}$
 - (c) $\frac{1}{2}$
 - (d) $1 \frac{1}{n+2}$
 - (e) $1 \frac{1}{n+1}$

13. The first three nonzero terms of the Taylor series of $f(x) = \ln x$ about a = 1 are given by

(a)
$$(x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3$$

(b)
$$(x-1) + \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3$$

(c)
$$(x-1) + (x-1)^2 - \frac{1}{3}(x-1)^3$$

(d)
$$(x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{6}(x-1)^3$$

(e)
$$\frac{1}{2}(x-1) - \frac{1}{4}(x-1)^2 + \frac{1}{3}(x-1)^3$$

- 14. The improper integral $\int_{-1}^{\infty} \frac{1}{(4+3x)^{3/2}} dx$ is
 - (a) equal to $\frac{2}{3}$
 - (b) equal to 1
 - (c) equal to $\frac{4}{3}$
 - (d) equal to $\frac{3}{4}$
 - (e) divergent

- 15. The area of the region enclosed by the curves $x = y^2 + 2$ and $x = 4 y^2$ in the first quadrant is equal to
 - (a) $\frac{4}{3}$
 - (b) $\frac{2}{3}$
 - (c) $\frac{3}{4}$
 - (d) $\frac{4}{5}$
 - (e) $\frac{2\sqrt{2}}{3}$

- 16. The sequence $a_n = \left(\frac{n+1}{3n}\right)^n \left(1 \frac{1}{n}\right)$
 - (a) converges to 0
 - (b) converges to $\frac{1}{3}$
 - (c) diverges
 - (d) converges to 3
 - (e) converges to $\frac{2}{3}$

17.
$$\int \frac{-x^2 + x + 1}{x^3 + x} \, dx =$$

- (a) $\ln|x| \ln(x^2 + 1) + \tan^{-1} x + c$
- (b) $\ln|x| + 2\ln(x^2 + 1) + \tan^{-1}x + c$
- (c) $\ln 2x + \ln(x^2 + 1) \tan^{-1} x + c$
- (d) $\ln 2x \ln(x^2 + 1) + \tan^{-1} x + c$
- (e) $\ln|x| + \ln(x^2 + 1) 2\tan^{-1}x + c$

- 18. The improper integral $\int_{-1}^{1} \frac{1}{\sqrt{|x|}} dx$ is
 - (a) equal to 4
 - (b) equal to 0
 - (c) equal to $\frac{1}{2}$
 - (d) equal to 1
 - (e) divergent

- 19. The length of the curve $y = \ln \sqrt{\sec 2x}$, $0 \le x \le \frac{\pi}{6}$ is
 - (a) $\ln \sqrt{2 + \sqrt{3}}$
 - (b) $\ln \frac{\sqrt{3}}{2}$
 - (c) ln 3
 - (d) $\ln(4 + 2\sqrt{3})$
 - (e) 2

- $20. \quad \frac{d}{dx}(\sinh x \tan^{-1}(\sinh x)) =$
 - (a) $(\tanh x)(\sinh x)$
 - (b) $(\coth x)(\cosh x)$
 - (c) $(\cosh x) (\sinh x)$
 - (d) $\tanh^2 x$
 - (e) $\sinh^2 x \tanh^2 x$

21. $\int \operatorname{sech} x \, dx =$

- (a) $2 \tan^{-1}(e^x) + c$
- (b) $2\sin^{-1}(e^x) + c$
- (c) $\frac{1}{2}\operatorname{sech} x \tanh x + c$
- (d) $\ln(e^x + e^{-x}) + c$
- (e) $\ln(e^{2x} + 1) + c$

22. The sequence $a_n = \frac{1}{n} \int_1^{n^2} \frac{1}{x} dx$

- (a) converges to 0
- (b) converges to 1
- (c) diverges
- (d) converges to e
- (e) converges to 2

23.
$$\int e^{-\theta} \cos(2\theta) d\theta =$$

(a)
$$\frac{2}{5}e^{-\theta}\sin(2\theta) - \frac{1}{5}e^{-\theta}\cos(2\theta) + c$$

(b)
$$\frac{1}{5}e^{-\theta}\sin(2\theta) - \frac{1}{5}e^{-\theta}\cos(2\theta) + c$$

(c)
$$\frac{1}{5}e^{-\theta}\sin(2\theta) - \frac{2}{5}e^{-\theta}\cos(2\theta) + c$$

(d)
$$\frac{2}{5}e^{-\theta}\sin(2\theta) - \frac{2}{5}e^{-\theta}\cos(2\theta) + c$$

(e)
$$\frac{2}{5}e^{-\theta}\sin(2\theta) + \frac{1}{5}e^{-\theta}\cos(2\theta) + c$$

24. The series
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}(\sqrt{n}+1)}$$

- (a) diverges by the limit comparison test
- (b) diverges by the ratio test
- (c) converges by the ratio test
- (d) converges by the root test
- (e) converges by the integral test

- 25. The series $\sum_{n=2}^{\infty} (-1)^n \frac{1}{n \ln n}$ is
 - (a) conditionally convergent
 - (b) absolutely convergent
 - (c) convergent and its sum is zero
 - (d) convergent and its sum is ln 2
 - (e) divergent

- 26. The interval of convergent of the series $\sum_{n=1}^{\infty} \frac{(x+1)^n}{n \cdot 2^n}$ is
 - (a) [-3,1)
 - (b) (-3,1]
 - (c) [-3, 1]
 - $(d) \quad \left[-\frac{1}{2}, \frac{1}{2} \right]$
 - (e) $\left[-\frac{1}{2}, \frac{1}{2}\right)$

- 27. Let p(x) be the sum of the first five nonzero terms of the Maclaurin series of $(1+x)\cos(2x)$, then p(1)=
 - (a) $-\frac{4}{3}$
 - (b) 2
 - (c) $-\frac{1}{3}$
 - (d) 0
 - (e) $-\frac{2}{3}$

- 28. The series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2 + 4^n}$ is
 - (a) absolutely convergent
 - (b) conditionally convergent
 - (c) divergent
 - (d) divergent by the alternating series test
 - (e) convergent by the integral test