1) Let $y=g(x)=x^{2}-\frac{1}{x}$. Use limits to find the instantaneous rate of change of y with respect to x at $x=1$.

$$
\begin{aligned}
& \text { Inst, rale of charge }=g^{\prime}(1) \\
& \begin{aligned}
g^{\prime}(1)= & \lim _{h \rightarrow 0} \frac{g(1+h)-g(1)}{h}=\lim _{h \rightarrow 0} \frac{(1+h)^{2}-\frac{1}{1+h}-0}{h} \\
= & \lim _{h \rightarrow 0} \frac{(1+h)^{3}-1}{h(1+h)}=\lim _{h \rightarrow 0} \frac{h^{3}+3 h^{2}+3 h+1-1}{h(1+h)} \\
= & \lim _{h \rightarrow 0} \frac{h\left(h^{2}+3 h+3\right)}{h(1+h)}=\frac{0+0+3}{1+0}=3
\end{aligned}
\end{aligned}
$$

2) For what values of a, b, and c is $f(x)$ continuous on the closed interval [2, 4].

$$
f(x)=\left\{\begin{array}{ccc}
c & \text { if } & x=2 \\
a x-b & \text { if } & 2<x<3 \\
2 & \text { if } & x=3 \\
\frac{a}{3} x+b & \text { if } & 3<x \leq 4
\end{array}\right.
$$

For $f(x)$ to he cont. on $[2,4]$ we need;
(*) $f(x)$ cont at $x=3$
(*) $f(x)$ cont. from right at end point $x=2$
This means:
(1)
(2) $\left.\lim _{x \rightarrow 3^{-}} f(x)=2 \rightarrow 3 a-b=2\right\} \Rightarrow b=1$
(3) $\lim _{x \rightarrow 2^{+}} f(x)=c \rightarrow 2 a-b=c \Rightarrow c=1$

