Name:		ID:		Sec:	14
	MATH-101	Term-131	IN-Class-QUIZ-15		

(show all your work and circle one letter to get a full mark or you will get zero)

1) which one of the following statements is FALSE about the function

$$
f(x)=(x-2) x^{2}(x+2)
$$

(a) The function f is concave up on the interval $(1,2)$
(b) The function f is concave down on $(-0.5,0.5)$
(c) The function f has no inflection point
(d) f has only one local maximum
(e) The function f is concave up on the interval $(-2,-1)$
(f) The function f has local minimum at $\mathrm{x}=\sqrt{2}$
(g) none of the above
2)

If the function $f(x)=a x^{3}+b x+c \quad$ has a local maximum value of 2 at $\mathrm{x}=1$ then which of the following is TRUE for the function (you may select more than one)
(a) $a b c>0$
(b) $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$
(c) f concave up on $(-10,-5)$
(d) $\quad f$ is increasing on $(-1,-0.5)$
(e) $\quad x=0$ is an inflection point.
(f) none of the above
3) If $f(x)=\frac{x^{3}+2 x^{2}-1}{(x+1)^{2}}$, then an equation of the oblique asymptote for the graph of f is
(a) $y-x=0$
(b) $y-x-1=0$
(c) $y+x=0$
(d) $y-x+1=0$
(e) f does not have an oblique asymptote
(f) none of the above

