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3
DIFFERENTIATION

OVERVIEW In the beginning of Chapter 2 we discussed how to determine the slope of a
curve at a point and how to measure the rate at which a function changes. Now that we
have studied limits, we can define these ideas precisely and see that both are interpreta-
tions of the derivative of a function at a point. We then extend this concept from a single
point to the derivative function, and we develop rules for finding this derivative function
easily, without having to calculate any limits directly. These rules are used to find deriva-
tives of most of the common functions reviewed in Chapter 1, as well as various combina-
tions of them. The derivative is one of the key ideas in calculus, and we use it to solve a
wide range of problems involving tangents and rates of change.

3.1 Tangents and the Derivative at a Point

In this section we define the slope and tangent to a curve at a point, and the derivative
of a function at a point. Later in the chapter we interpret the derivative as the instanta-
neous rate of change of a function, and apply this interpretation to the study of certain
types of motion.

Finding a Tangent to the Graph of a Function

To find a tangent to an arbitrary curve at a point we use the procedure
introduced in Section 2.1. We calculate the slope of the secant through P and a nearby point

We then investigate the limit of the slope as (Figure 3.1). If the
limit exists, we call it the slope of the curve at P and define the tangent at P to be the line
through P having this slope.

h : 0Qsx0 + h, ƒsx0 + hdd .

Psx0 , ƒsx0dd ,y = ƒ(x)

DEFINITIONS The slope of the curve at the point is the
number

(provided the limit exists).

The tangent line to the curve at P is the line through P with this slope.

m = lim
h:0

 
ƒsx0 + hd - ƒsx0d

h
 

Psx0 , ƒsx0ddy = ƒsxd
0

h

y

x

y � f (x)

Q(x0 � h,  f (x0 � h))

f (x0 � h) � f (x0)

P(x0,  f (x0))

x0 � hx0

FIGURE 3.1 The slope of the tangent 

line at P is lim
h:0

 
ƒsx0 + hd - ƒsx0d

h
 .

In Section 2.1, Example 3, we applied these definitions to find the slope of the
parabola at the point P(2, 4) and the tangent line to the parabola at P. Let’s look
at another example.

ƒ(x) = x2
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3.1 Tangents and the Derivative at a Point 123

EXAMPLE 1

(a) Find the slope of the curve at any point What is the slope at the
point 

(b) Where does the slope equal 

(c) What happens to the tangent to the curve at the point (a, ) as a changes?

Solution

(a) Here The slope at (a, ) is

Notice how we had to keep writing before each fraction until the stage
where we could evaluate the limit by substituting The number a may be posi-
tive or negative, but not 0. When the slope is (Figure 3.2).

(b) The slope of at the point where is It will be provided
that

This equation is equivalent to so or The curve has slope
at the two points (2, ) and (Figure 3.3).

(c) The slope is always negative if As the slope approaches 
and the tangent becomes increasingly steep (Figure 3.2). We see this situation again as

As a moves away from the origin in either direction, the slope approaches 
and the tangent levels off to become horizontal.

Rates of Change: Derivative at a Point

The expression

is called the difference quotient of ƒ at with increment h. If the difference quotient
has a limit as h approaches zero, that limit is given a special name and notation.

x0

ƒsx0 + hd - ƒsx0d
h

, h Z 0

0a : 0- .

- qa : 0+,a Z 0.-1>a2

s -2, -1>2d1>2-1>4 a = -2.a = 2a2
= 4,

-
1
a2 = -

1
4

.

-1>4-1>a2.x = ay = 1>x
-1>(-1)2

= -1a = -1,
h = 0.

“limh:0”

 = lim
h:0

  
-h

hasa + hd
= lim

h:0
  

-1
asa + hd

= -
1
a2 .

lim
h:0

 
ƒsa + hd - ƒsad

h
= lim

h:0
 

1
a + h

-
1
a

h
= lim

h:0
  
1
h

 
a - sa + hd

asa + hd

1>aƒsxd = 1>x .

1>a
-1>4?

x = -1?
x = a Z 0.y = 1>x

x

y

2,⎛
⎝

⎛
⎝

y � 1
x

1
2

–2,⎛
⎝

⎛
⎝

1
2

– slope is – 1
4

slope is – 1
4

FIGURE 3.3 The two tangent lines to
having slope (Example 1).-1>4y = 1>x

x

y

y 5 1
x

slope is – 1
a2

slope is –1
at x 5 –1 

a0

FIGURE 3.2 The tangent slopes, steep
near the origin, become more gradual as
the point of tangency moves away
(Example 1).

DEFINITION The derivative of a function ƒ at a point , denoted , is

provided this limit exists.

ƒ¿(x0) = lim
h:0

 
ƒ(x0 + h) - ƒ(x0)

h

ƒ¿(x0)x0

If we interpret the difference quotient as the slope of a secant line, then the deriva-
tive gives the slope of the curve at the point Exercise 31 showsP(x0, ƒ(x0)).y = ƒ(x)
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that the derivative of the linear function at any point is simply the slope
of the line, so

which is consistent with our definition of slope.
If we interpret the difference quotient as an average rate of change (Section 2.1), the

derivative gives the function’s instantaneous rate of change with respect to x at the point
We study this interpretation in Section 3.4.

EXAMPLE 2 In Examples 1 and 2 in Section 2.1, we studied the speed of a rock falling
freely from rest near the surface of the earth. We knew that the rock fell feet dur-
ing the first t sec, and we used a sequence of average rates over increasingly short intervals
to estimate the rock’s speed at the instant What was the rock’s exact speed at this
time?

Solution We let The average speed of the rock over the interval between
and seconds, for was found to be

The rock’s speed at the instant is then

Our original estimate of 32 ft sec in Section 2.1 was right.

Summary

We have been discussing slopes of curves, lines tangent to a curve, the rate of change of a
function, and the derivative of a function at a point. All of these ideas refer to the same
limit.

>
lim
h:0

 16sh + 2d = 16s0 + 2d = 32 ft>sec.

t = 1

ƒs1 + hd - ƒs1d
h

=

16s1 + hd2
- 16s1d2

h
=

16sh2
+ 2hd

h
= 16sh + 2d .

h 7 0,t = 1 + ht = 1
ƒstd = 16t 2 .

t = 1.

y = 16t 2

x = x0 .

ƒ¿(x0) = m,

x0ƒ(x) = mx + b

124 Chapter 3: Differentiation

The following are all interpretations for the limit of the difference quotient,

1. The slope of the graph of at 

2. The slope of the tangent to the curve at 

3. The rate of change of ƒ(x) with respect to x at 

4. The derivative at a pointƒ¿(x0)

x = x0

x = x0y = ƒsxd
x = x0y = ƒsxd

lim
h:0

 
ƒsx0 + hd - ƒsx0d

h
.

In the next sections, we allow the point to vary across the domain of the function ƒ.x0
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3.1 Tangents and the Derivative at a Point 125

Exercises 3.1

Slopes and Tangent Lines
In Exercises 1–4, use the grid and a straight edge to make a rough esti-
mate of the slope of the curve (in y-units per x-unit) at the points 
and 

1. 2.

3. 4.

In Exercises 5–10, find an equation for the tangent to the curve at the
given point. Then sketch the curve and tangent together.

5. 6.

7. 8.

9. 10.

In Exercises 11–18, find the slope of the function’s graph at the given
point. Then find an equation for the line tangent to the graph there.

11. 12.

13. 14.

15. 16.

17. 18.

In Exercises 19–22, find the slope of the curve at the point indicated.

19. 20.

21. 22. y =

x - 1
x + 1

 , x = 0y =

1
x - 1

 , x = 3

y = 1 - x2, x = 2y = 5x2, x = -1

ƒsxd = 2x + 1, s8, 3dƒsxd = 2x, s4, 2d
hstd = t3

+ 3t, s1, 4dhstd = t3, s2, 8d

g sxd =

8
x2 , s2, 2dg sxd =

x
x - 2

 , s3, 3d

ƒsxd = x - 2x2, s1, -1dƒsxd = x2
+ 1, s2, 5d

y =

1
x 3 , a-2, -

1
8
by = x3, s -2, -8d

y =

1
x 2 , s -1, 1dy = 22x, s1, 2d

y = sx - 1d2
+ 1, s1, 1dy = 4 - x2, s -1, 3d

y

0 1–1

1

2

3

x

4

–2 2

P1 P2

x

y

1 2

2

1

0

P1
P2

x

y

0 1 2

2

1

–1

–2

P1

P2

–1–2

x

y

1

2

10

P1

P2

P2 .
P1

Tangent Lines with Specified Slopes
At what points do the graphs of the functions in Exercises 23 and 24
have horizontal tangents?

23. 24.

25. Find equations of all lines having slope that are tangent to the
curve 

26. Find an equation of the straight line having slope that is tan-
gent to the curve 

Rates of Change
27. Object dropped from a tower An object is dropped from the

top of a 100-m-high tower. Its height above ground after t sec is
How fast is it falling 2 sec after it is dropped?

28. Speed of a rocket At t sec after liftoff, the height of a rocket is
How fast is the rocket climbing 10 sec after liftoff ?

29. Circle’s changing area What is the rate of change of the area of
a circle with respect to the radius when the radius is

30. Ball’s changing volume What is the rate of change of the vol-
ume of a ball with respect to the radius when the
radius is 

31. Show that the line is its own tangent line at any
point 

32. Find the slope of the tangent to the curve at the point
where 

Testing for Tangents
33. Does the graph of

have a tangent at the origin? Give reasons for your answer.

34. Does the graph of

have a tangent at the origin? Give reasons for your answer.

Vertical Tangents
We say that a continuous curve has a vertical tangent at the
point where if or 
For example, has a vertical tangent at (see accompa-
nying figure):

 = lim
h:0

 
1

h2>3 = q .

 lim
h:0

 
ƒs0 + hd - ƒs0d

h
= lim

h:0
 
h1>3

- 0
h

x = 0y = x1>3
- q .lim h:0 sƒsx0 + hd - ƒsx0dd>h = qx = x0

y = ƒsxd

g sxd = e x sin s1>xd, x Z 0

0, x = 0

ƒsxd = e x2 sin s1>xd, x Z 0

0, x = 0

x = 4.
y = 1>2x

(x0, mx0 + b).
y = mx + b

r = 2?
sV = s4>3dpr3d

r = 3?
sA = pr2d

3t2 ft.

100 - 4.9t2 m.

y = 2x .
1>4

y = 1>sx - 1d .
-1

g sxd = x3
- 3xƒsxd = x2

+ 4x - 1
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However, has no vertical tangent at (see next figure):

does not exist, because the limit is from the right and from the
left.

35. Does the graph of

have a vertical tangent at the origin? Give reasons for your answer.

ƒsxd = •
-1, x 6 0

0, x = 0

1, x 7 0

x

y

0
NO VERTICAL TANGENT AT ORIGIN

y � g(x) � x2�3

- qq

 = lim
h:0

 
1

h1>3

 lim
h:0

 
g s0 + hd - g s0d

h
= lim

h:0
 
h2>3

- 0
h

x = 0y = x2>3

x

y

0

VERTICAL TANGENT AT ORIGIN

y � f (x) � x1�3

126 Chapter 3: Differentiation

36. Does the graph of

have a vertical tangent at the point (0, 1)? Give reasons for your
answer.

Graph the curves in Exercises 37–46.

a. Where do the graphs appear to have vertical tangents?

b. Confirm your findings in part (a) with limit calculations. But
before you do, read the introduction to Exercises 35 and 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

COMPUTER EXPLORATIONS
Use a CAS to perform the following steps for the functions in Exer-
cises 47–50:

a. Plot over the interval 

b. Holding fixed, the difference quotient

at becomes a function of the step size h. Enter this function
into your CAS workspace.

c. Find the limit of q as 

d. Define the secant lines for 
and 1. Graph them together with ƒ and the tangent line over the
interval in part (a).

47. 48.

49.

50. ƒsxd = cos x + 4 sin s2xd, x0 = p

ƒsxd = x + sin s2xd, x0 = p>2
ƒsxd = x +

5
x  , x0 = 1ƒsxd = x3

+ 2x, x0 = 0

h = 3, 2 ,y = ƒsx0d + q # sx - x0d
h : 0.

x0

qshd =

ƒsx0 + hd - ƒsx0d
h

x0

sx0 - 1>2d … x … sx0 + 3d .y = ƒsxd

y = 2 ƒ 4 - x ƒy = e -2ƒ x ƒ , x … 0

2x, x 7 0

y = x1>3
+ sx - 1d1>3y = x2>3

- sx - 1d1>3
y = x5>3

- 5x2>3y = 4x2>5
- 2x

y = x3>5y = x1>5
y = x4>5y = x2>5

Usxd = e0, x 6 0

1, x Ú 0

T

3.2 The Derivative as a Function

In the last section we defined the derivative of at the point to be the limit

We now investigate the derivative as a function derived from ƒ by considering the limit at
each point x in the domain of ƒ.

ƒ¿sx0d = lim
h:0

 
ƒsx0 + hd - ƒsx0d

h
.

x = x0y = ƒsxd

DEFINITION The derivative of the function ƒ(x) with respect to the variable x is
the function whose value at x is

provided the limit exists.

ƒ¿sxd = lim
h:0

 
ƒsx + hd - ƒsxd

h
,

ƒ¿

HISTORICAL ESSAY

The Derivative
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We use the notation ƒ(x) in the definition to emphasize the independent variable x
with respect to which the derivative function is being defined. The domain of is
the set of points in the domain of ƒ for which the limit exists, which means that the domain
may be the same as or smaller than the domain of ƒ. If exists at a particular x, we say
that ƒ is differentiable (has a derivative) at x. If exists at every point in the domain of
ƒ, we call ƒ differentiable.

If we write then and h approaches 0 if and only if z approaches x.
Therefore, an equivalent definition of the derivative is as follows (see Figure 3.4). This
formula is sometimes more convenient to use when finding a derivative function.

h = z - xz = x + h ,

ƒ¿

ƒ¿

ƒ¿ƒ¿(x)

3.2 The Derivative as a Function 127

Alternative Formula for the Derivative

ƒ¿sxd = lim
z:x

 
ƒszd - ƒsxd

z - x .

x z � x � h

h � z � x

P(x, f (x))

Q(z, f (z))

f (z) � f (x)

y � f (x)

Secant slope is
f (z) � f (x)

z � x

Derivative of f at x is

f '(x) � lim
h→0

� lim
z→x

f (x � h) � f (x)
h

f (z) � f (x)
z � x

FIGURE 3.4 Two forms for the difference
quotient.

Derivative of the Reciprocal Function

d
dx
a1x b = -

1
x2, x Z 0

Calculating Derivatives from the Definition

The process of calculating a derivative is called differentiation. To emphasize the idea
that differentiation is an operation performed on a function we use the notation

as another way to denote the derivative Example 1 of Section 3.1 illustrated the dif-
ferentiation process for the function when For x representing any point in
the domain, we get the formula

Here are two more examples in which we allow x to be any point in the domain of ƒ.

EXAMPLE 1 Differentiate 

Solution We use the definition of derivative, which requires us to calculate and

then subtract to obtain the numerator in the difference quotient. We have

and

Definition

Simplify.

Cancel .h Z 0 = lim
h:0

 
-1

sx + h - 1dsx - 1d
=

-1
sx - 1d2 .

 = lim
h:0

 
1
h

# -h
sx + h - 1dsx - 1d

a
b

-

c
d

=

ad - cb
bd

 = lim
h:0

 
1
h

#
sx + hdsx - 1d - xsx + h - 1d

sx + h - 1dsx - 1d

 = lim
h:0

 

x + h
x + h - 1

-
x

x - 1
h

 ƒ¿sxd = lim
h:0

 
ƒsx + hd - ƒsxd

h

ƒsx + hd =

sx + hd
sx + hd - 1

 , soƒsxd =
x

x - 1

ƒ(x)

ƒ(x + h)

ƒsxd =
x

x - 1
.

d
dx
a1x b = -

1
x2 .

x = a.y = 1>xƒ¿sxd .

d
dx

 ƒsxd

y = ƒsxd ,
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EXAMPLE 2

(a) Find the derivative of for 

(b) Find the tangent line to the curve at 

Solution

(a) We use the alternative formula to calculate 

(b) The slope of the curve at is

The tangent is the line through the point (4, 2) with slope (Figure 3.5):

Notations

There are many ways to denote the derivative of a function where the independ-
ent variable is x and the dependent variable is y. Some common alternative notations for
the derivative are

The symbols and D indicate the operation of differentiation. We read as
“the derivative of y with respect to x,” and and ( )ƒ(x) as “the derivative of ƒ
with respect to x.” The “prime” notations and come from notations that Newton
used for derivatives. The notations are similar to those used by Leibniz. The sym-
bol should not be regarded as a ratio (until we introduce the idea of “differen-
tials” in Section 3.11).

To indicate the value of a derivative at a specified number we use the notation

For instance, in Example 2

Graphing the Derivative

We can often make a reasonable plot of the derivative of by estimating the slopes
on the graph of ƒ. That is, we plot the points in the xy-plane and connect them
with a smooth curve, which represents y = ƒ¿sxd .

sx, ƒ¿sxdd
y = ƒsxd

ƒ¿s4d =
d
dx

 1x `
x = 4

=
1

21x
`
x = 4

=
1

224
=

1
4

.

ƒ¿sad =

dy
dx
`
x = a

=

df
dx
`
x = a

=
d
dx

 ƒsxd `
x = a

.

x = a,

dy>dx
d>dx

ƒ¿y¿

d>dxdƒ>dx
dy>dxd>dx

ƒ¿sxd = y¿ =

dy
dx

=

dƒ
dx

=
d
dx

 ƒsxd = Dsƒdsxd = Dx ƒsxd .

y = ƒsxd ,

 y =
1
4

 x + 1.

 y = 2 +
1
4

 sx - 4d

1>4
ƒ¿s4d =

1

224
=

1
4

.

x = 4

 = lim
z:x

 
1

1z + 1x
=

1
21x

 .

 = lim
z:x

 
1z - 1x

A1z - 1x B A1z + 1x B

 = lim
z:x

 
1z - 1x

z - x

 ƒ¿sxd = lim
z:x

 
ƒszd - ƒsxd

z - x

ƒ¿ :

x = 4.y = 1x

x 7 0.ƒsxd = 1x

128 Chapter 3: Differentiation

Derivative of the Square Root
Function

d
dx

 2x =

1

22x
 , x 7 0

x

y

0 4

(4, 2)

1

y � �x

y �    x � 11
4

FIGURE 3.5 The curve and its
tangent at (4, 2). The tangent’s slope is
found by evaluating the derivative at 
(Example 2).

x = 4

y = 1x
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EXAMPLE 3 Graph the derivative of the function in Figure 3.6a.

Solution We sketch the tangents to the graph of ƒ at frequent intervals and use their
slopes to estimate the values of at these points. We plot the corresponding 
pairs and connect them with a smooth curve as sketched in Figure 3.6b.

What can we learn from the graph of At a glance we can see

1. where the rate of change of ƒ is positive, negative, or zero;

2. the rough size of the growth rate at any x and its size in relation to the size of ƒ(x);

3. where the rate of change itself is increasing or decreasing.

Differentiable on an Interval; One-Sided Derivatives

A function is differentiable on an open interval (finite or infinite) if it has a
derivative at each point of the interval. It is differentiable on a closed interval [a, b] if it
is differentiable on the interior (a, b) and if the limits

Right-hand derivative at a

Left-hand derivative at b

exist at the endpoints (Figure 3.7).
Right-hand and left-hand derivatives may be defined at any point of a function’s do-

main. Because of Theorem 6, Section 2.4, a function has a derivative at a point if and only if
it has left-hand and right-hand derivatives there, and these one-sided derivatives are equal.

EXAMPLE 4 Show that the function is differentiable on and 
but has no derivative at 

Solution From Section 3.1, the derivative of is the slope m. Thus, to the
right of the origin,

To the left,

(Figure 3.8). There is no derivative at the origin because the one-sided derivatives differ
there:

 = lim
h:0-

-1 = -1.

 = lim
h:0-

 
-h
h

 Left-hand derivative of ƒ x ƒ at zero = lim
h:0-

 
ƒ 0 + h ƒ - ƒ 0 ƒ

h
= lim

h:0-

 
ƒ h ƒ

h

 = lim
h:0+

1 = 1

 = lim
h:0+

 
h
h

 Right-hand derivative of ƒ x ƒ at zero = lim
h:0+

 
ƒ 0 + h ƒ - ƒ 0 ƒ

h
= lim

h:0+

 
ƒ h ƒ

h

ƒ x ƒ = -x
d
dx

 s ƒ x ƒ d =
d
dx

 s -xd =
d
dx

 s -1 # xd = -1

ƒ x ƒ = x
d
dx

 smx + bd = m ,
d
dx

 s ƒ x ƒ d =
d
dx

 sxd =
d
dx

 s1 # xd = 1.

y = mx + b

x = 0.
s0, q ds - q , 0dy = ƒ x ƒ

lim
h:0-

 
ƒsb + hd - ƒsbd

h

lim
h:0+

 
ƒsa + hd - ƒsad

h

y = ƒsxd

y = ƒ¿sxd?

sx, ƒ¿sxddƒ¿sxd

y = ƒsxd

3.2 The Derivative as a Function 129

0 10

(a)

5 15

5

10

Slope 0

A

B

C
D

E

Slope 0

105 15

1

2

3

4

–1

–2

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

⎧ ⎪ ⎨ ⎪ ⎩

(b)

Slope –1

4
3

Slope 

y � f (x)

� 8

� 4 x-units

A'

y � f '(x)

B'
C'

D'

E'

Vertical coordinate –1

y

x

x

Slope

–

FIGURE 3.6 We made the graph of
in (b) by plotting slopes from 

the graph of in (a). The vertical
coordinate of is the slope at B and so on.
The slope at E is approximately 
In (b) we see that the rate of change of ƒ is
negative for x between and the rate 
of change is positive for x to the right of D¿.

D¿;A¿

8>4 = 2.
B¿

y = ƒsxd
y = ƒ¿sxd

a ba � h
h � 0

b � h
h � 0

lim
h→0�

f (a � h) � f (a)
h

Slope �

y � f (x)

lim
h→0�

f (b � h) � f (b)
h

Slope �

x

FIGURE 3.7 Derivatives at endpoints are
one-sided limits.

ƒ h ƒ = h when h 7 0

ƒ h ƒ = -h when h 6 0
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EXAMPLE 5 In Example 2 we found that for 

We apply the definition to examine if the derivative exists at 

Since the (right-hand) limit is not finite, there is no derivative at Since the slopes
of the secant lines joining the origin to the points on a graph of approach

the graph has a vertical tangent at the origin. (See Figure 1.17 on page 9).

When Does a Function Not Have a Derivative at a Point?

A function has a derivative at a point if the slopes of the secant lines through 
and a nearby point Q on the graph approach a finite limit as Q approaches P. Whenever the
secants fail to take up a limiting position or become vertical as Q approaches P, the derivative
does not exist. Thus differentiability is a “smoothness” condition on the graph of ƒ. A
function can fail to have a derivative at a point for many reasons, including the existence of
points where the graph has

1. a corner, where the one-sided 2. a cusp, where the slope of PQ approaches
derivatives differ. from one side and from the other.

3. a vertical tangent, a discontinuity (two examples shown).
where the slope of PQ
approaches from both
sides or approaches 
from both sides (here, ).- q

- q

q

- qq

P

Q�

Q�

P

Q� Q�

Psx0, ƒsx0ddx0

q ,
y = 1x(h, 1h)

x = 0.

lim
h:0+

 
20 + h - 20

h
= lim

h:0+

 
1
1h

= q .

x = 0:

d
dx

 1x =
1

21x
 .

x 7 0,
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x

y

0
y' not defined at x � 0:
right-hand derivative
� left-hand derivative

y' � –1 y' � 1

y �⏐x⏐

FIGURE 3.8 The function is
not differentiable at the origin where
the graph has a “corner” (Example 4).

y = ƒ x ƒ

P

Q�

Q�

P

Q�

Q�

P

Q�

Q�

4.
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Another case in which the derivative may fail to exist occurs when the function’s slope is
oscillating rapidly near P, as with near the origin, where it is discontinu-
ous (see Figure 2.31).

Differentiable Functions Are Continuous

A function is continuous at every point where it has a derivative.

ƒ(x) = sin (1>x)

3.2 The Derivative as a Function 131

THEOREM 1—Differentiability Implies Continuity If ƒ has a derivative at
then ƒ is continuous at x = c .x = c ,

Proof Given that exists, we must show that or equivalently,
that If then

Now take limits as By Theorem 1 of Section 2.2, 

Similar arguments with one-sided limits show that if ƒ has a derivative from one side
(right or left) at then ƒ is continuous from that side at 

Theorem 1 says that if a function has a discontinuity at a point (for instance, a jump
discontinuity), then it cannot be differentiable there. The greatest integer function

fails to be differentiable at every integer (Example 4, Section 2.5).

Caution The converse of Theorem 1 is false. A function need not have a derivative at
a point where it is continuous, as we saw in Example 4.

x = ny = :x;

x = c .x = c

 = ƒscd.

 = ƒscd + 0

 = ƒscd + ƒ¿scd # 0

 lim
h:0

 ƒsc + hd = lim
h:0

 ƒscd + lim
h:0

 
ƒsc + hd - ƒscd

h
# lim

h:0
h

h : 0.

 = ƒscd +

ƒsc + hd - ƒscd
h

# h .

 ƒsc + hd = ƒscd + sƒsc + hd - ƒscdd

h Z 0,limh:0 ƒsc + hd = ƒscd .
limx:c ƒsxd = ƒscd ,ƒ¿scd

Exercises 3.2

Finding Derivative Functions and Values
Using the definition, calculate the derivatives of the functions in Exer-
cises 1–6. Then find the values of the derivatives as specified.

1.

2.

3.

4.

5. psud = 23u ; p¿s1d, p¿s3d, p¿s2>3d

k szd =

1 - z
2z

 ; k¿s -1d, k¿s1d, k¿ A22 B
g std =

1
t2 ; g¿s -1d, g¿s2d, g¿ A23 B

Fsxd = sx - 1d2
+ 1; F¿s -1d, F¿s0d, F¿s2d

ƒsxd = 4 - x2; ƒ¿s -3d, ƒ¿s0d, ƒ¿s1d

6.

In Exercises 7–12, find the indicated derivatives.

7. 8.

9. 10.

11. 12.
dz
dw

 if z =

1

23w - 2

dp

dq
 if p =

1

2q + 1

dy
dt
 if y = t -

1
t

ds
dt
 if s =

t
2t + 1

dr
ds
 if r = s3

- 2s2
+ 3

dy

dx
 if y = 2x3

r ssd = 22s + 1 ; r¿s0d, r¿s1d, r¿s1>2d
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Slopes and Tangent Lines
In Exercises 13–16, differentiate the functions and find the slope of
the tangent line at the given value of the independent variable.

13. 14.

15. 16.

In Exercises 17–18, differentiate the functions. Then find an equation
of the tangent line at the indicated point on the graph of the function.

17.

18.

In Exercises 19–22, find the values of the derivatives.

19.

20.

21.

22.

Using the Alternative Formula for Derivatives
Use the formula

to find the derivative of the functions in Exercises 23–26.

23. 24.

25. 26.

Graphs
Match the functions graphed in Exercises 27–30 with the derivatives
graphed in the accompanying figures (a)–(d).

y'

0
x

(d)

y'

0
x

(c)

y'

0
x

(a)

y'

0
x

(b)

g sxd = 1 + 1xg sxd =

x
x - 1

ƒsxd = x2
- 3x + 4ƒsxd =

1
x + 2

ƒ¿sxd = lim
z:x

 
ƒszd - ƒsxd

z - x

dw
dz
`
z = 4

 if w = z + 1z

dr
du
`
u= 0

 if r =

2

24 - u

dy

dx
`
x =23

 if y = 1 -

1
x

ds
dt
`
t = -1

 if s = 1 - 3t2

w = g szd = 1 + 24 - z, sz, wd = s3, 2d

y = ƒsxd =

8

2x - 2
 , sx, yd = s6, 4d

y =

x + 3
1 - x

, x = -2s = t3
- t2, t = -1

k sxd =

1
2 + x

 , x = 2ƒsxd = x +

9
x  , x = -3

27. 28.

29. 30.

31. a. The graph in the accompanying figure is made of line seg-
ments joined end to end. At which points of the interval

is not defined? Give reasons for your answer.

b. Graph the derivative of ƒ.
The graph should show a step function.

32. Recovering a function from its derivative

a. Use the following information to graph the function ƒ over
the closed interval 

i) The graph of ƒ is made of closed line segments joined
end to end.

ii) The graph starts at the point 

iii) The derivative of ƒ is the step function in the figure
shown here.

b. Repeat part (a) assuming that the graph starts at 
instead of s -2, 3d .

s -2, 0d

x
0 1–2 3 5

1

y'

y' � f '(x)

–2

s -2, 3d .

[-2, 5] .

x

y

0 1 6

(0, 2) (6, 2)

(–4, 0)

y � f (x)

(4, –2)(1, –2)

ƒ¿[-4, 6]

y

0
x

y � f4(x)

y

0
x

y � f3(x)

x

y

0

y � f2(x)

x

y

0

y � f1(x)
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36. Weight loss Jared Fogle, also known as the “Subway Sandwich
Guy,” weighed 425 lb in 1997 before losing more than 240 lb in
12 months (http://en.wikipedia.org/wiki/Jared_Fogle). A chart
showing his possible dramatic weight loss is given in the accom-
panying figure.

a. Estimate Jared’s rate of weight loss when

i) ii) iii)

b. When does Jared lose weight most rapidly and what is this
rate of weight loss?

c. Use the graphical technique of Example 3 to graph the deriva-
tive of weight W.

One-Sided Derivatives
Compute the right-hand and left-hand derivatives as limits to show that
the functions in Exercises 37–40 are not differentiable at the point P.

37. 38.

39. 40.

In Exercises 41 and 42, determine if the piecewise defined function is
differentiable at the origin.

41.

42. gsxd = e x2>3, x Ú 0

x1>3, x 6 0

ƒsxd = e2x - 1, x Ú 0

x2
+ 2x + 7, x 6 0

y

y � 1
x

y � f (x)

x

P(1, 1)

y � x
1

1

y

y � f (x)

y � 2x � 1

x

P(1, 1)

0

1

1

y � �x

x

y

y � f (x)

y � 2x

y � 2

1

2

0 1 2

P(1, 2)

x

y

y � f (x)y � x2

y � x

P(0, 0)

t = 11t = 4t = 1

3 4 5 7 8 10 111 20

100

200

300

425

500

6 9 12

Time (months)

W
ei

gh
t (

lb
s)

W

t

33. Growth in the economy The graph in the accompanying figure
shows the average annual percentage change in the U.S.
gross national product (GNP) for the years 1983–1988. Graph

(where defined).

34. Fruit flies (Continuation of Example 4, Section 2.1.) Popula-
tions starting out in closed environments grow slowly at first,
when there are relatively few members, then more rapidly as the
number of reproducing individuals increases and resources are
still abundant, then slowly again as the population reaches the
carrying capacity of the environment.

a. Use the graphical technique of Example 3 to graph the deriva-
tive of the fruit fly population. The graph of the population is
reproduced here.

b. During what days does the population seem to be increasing
fastest? Slowest?

35. Temperature The given graph shows the temperature T in °F at
Davis, CA, on April 18, 2008, between 6 A.M. and 6 P.M.

a. Estimate the rate of temperature change at the times

i) 7 A.M. ii) 9 A.M. iii) 2 P.M. iv) 4 P.M.

b. At what time does the temperature increase most rapidly? De-
crease most rapidly? What is the rate for each of those times?

c. Use the graphical technique of Example 3 to graph the deriva-
tive of temperature T versus time t.

30

40

50

60

70

80

6 9 12
9 a.m.6 a.m. 12 noon 3 p.m. 6 p.m.

Time (hrs)

Te
m

pe
ra

tu
re

 (
°F

)

T

t

100

50

100
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200

250

300

350
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Time (days)

N
um

be
r 

of
 f

lie
s

p

t

1983 1984 1985 1986 1987 1988
0
1

2

3

4

5

6

7%

dy>dt

y = ƒstd
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Differentiability and Continuity on an Interval
Each figure in Exercises 43–48 shows the graph of a function over a
closed interval D. At what domain points does the function appear to be

a. differentiable?

b. continuous but not differentiable?

c. neither continuous nor differentiable?

Give reasons for your answers.

43. 44.

45. 46.

47. 48.

Theory and Examples
In Exercises 49–52,

a. Find the derivative of the given function 

b. Graph and side by side using separate sets of
coordinate axes, and answer the following questions.

c. For what values of x, if any, is positive? Zero? Negative?

d. Over what intervals of x-values, if any, does the function
increase as x increases? Decrease as x increases? How

is this related to what you found in part (c)? (We will say more
about this relationship in Section 4.3.)

49. 50.

51. 52.

53. Tangent to a parabola Does the parabola 
have a tangent whose slope is If so, find an equation for the
line and the point of tangency. If not, why not?

-1?
y = 2x2

- 13x + 5

y = x4>4y = x3>3
y = -1>xy = -x2

y = ƒsxd

ƒ¿

y = ƒ¿sxdy = ƒsxd
y = ƒsxd .ƒ¿sxd

y � f (x)
D:  –3 � x � 3

x

y

–3 –2 –1 0

2

4

1 2 3x

y
y � f (x)
D:  –1 � x � 2

–1 0 1 2

1

x

y

y � f (x)
D:  –2 � x � 3

–2 –1 1 2 30

1

2

3

x

y

y � f (x)
D:  –3 � x � 3

–1 0
–1

1

–2

1 2 3–2–3

y � f (x)
D:  –2 � x � 3

x

y

–1 0 1 2 3–2

1

–1

–2

2

y � f (x)
D:  –3 � x � 2

x

y

–3 –2 –1 1 20

1

–1

–2

2
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54. Tangent to Does any tangent to the curve 
cross the x-axis at If so, find an equation for the line
and the point of tangency. If not, why not?

55. Derivative of Does knowing that a function ƒ(x) is differen-
tiable at tell you anything about the differentiability of the
function at Give reasons for your answer.

56. Derivative of multiples Does knowing that a function g (t) is
differentiable at tell you anything about the differentiability
of the function 3g at Give reasons for your answer.

57. Limit of a quotient Suppose that functions g(t) and h(t) are 
defined for all values of t and Can

exist? If it does exist, must it equal zero?
Give reasons for your answers.

58. a. Let ƒ(x) be a function satisfying for 
Show that ƒ is differentiable at and find 

b. Show that

is differentiable at and find 

59. Graph in a window that has Then, on
the same screen, graph

for Then try Explain what
is going on.

60. Graph in a window that has 
Then, on the same screen, graph

for Then try Explain what is
going on.

61. Derivative of Graph the derivative of Then
graph What can you conclude?

62. Weierstrass’s nowhere differentiable continuous function
The sum of the first eight terms of the Weierstrass function

is

Graph this sum. Zoom in several times. How wiggly and bumpy
is this graph? Specify a viewing window in which the displayed
portion of the graph is smooth.

COMPUTER EXPLORATIONS
Use a CAS to perform the following steps for the functions in
Exercises 63–68.

a. Plot to see that function’s global behavior.

b. Define the difference quotient q at a general point x, with
general step size h.

c. Take the limit as What formula does this give?

d. Substitute the value and plot the function 
together with its tangent line at that point.

y = ƒsxdx = x0

h : 0.

y = ƒsxd

  + s2>3d3 cos s93pxd +
Á

+ s2>3d7 cos s97pxd .

 g sxd = cos spxd + s2>3d1 cos s9pxd + s2>3d2 cos s92pxd

g
q

n = 0 s2>3dn cos s9npxdƒ(x) =

y = s ƒ x ƒ - 0d>sx - 0d = ƒ x ƒ >x .
ƒsxd = ƒ x ƒ .y � �x �

h = -2, -1, -0.2 .h = 2, 1, 0.2 .

y =

sx + hd3
- x3

h

-2 … x … 2, 0 … y … 3.y = 3x2

h = -1, -0.5, -0.1 .h = 1, 0.5, 0.1 .

y =

1x + h - 1x
h

0 … x … 2.y = 1> A21x B
ƒ¿s0d .x = 0

ƒsxd = L x2 sin 
1
x , x Z 0

0, x = 0

ƒ¿s0d .x = 0
-1 … x … 1.ƒ ƒsxd ƒ … x2

limt:0 sg stdd>shstdd
g s0d = hs0d = 0.

t = 7?
t = 7

x = x0 ?-ƒ
x = x0

�ƒ

x = -1?
y = 1xy � 1x

T

T

T
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e. Substitute various values for x larger and smaller than into
the formula obtained in part (c). Do the numbers make sense
with your picture?

f. Graph the formula obtained in part (c). What does it mean
when its values are negative? Zero? Positive? Does this
make sense with your plot from part (a)? Give reasons for
your answer.

63. ƒsxd = x3
+ x2

- x, x0 = 1

x0

3.3 Differentiation Rules 135

64.

65.

66.

67.

68. ƒsxd = x2 cos x, x0 = p>4
ƒsxd = sin 2x, x0 = p>2
ƒsxd =

x - 1
3x2

+ 1
, x0 = -1

ƒsxd =

4x

x2
+ 1

, x0 = 2

ƒsxd = x1>3
+ x2>3, x0 = 1

Proof We apply the definition of the derivative to the function whose outputs
have the constant value c (Figure 3.9). At every value of x, we find that

From Section 3.1, we know that

From Example 2 of the last section we also know that

.

These two examples illustrate a general rule for differentiating a power . We first prove
the rule when n is a positive integer.

xn

d
dx

 A2x B =
1

22x
,  or d

dx
 Ax1>2 B =

1
2

 x - 1>2

d
dx
a1x b = -

1
x2,  or d

dx Ax - 1 B = -x - 2.

ƒ¿sxd = lim
h:0

 
ƒsx + hd - ƒsxd

h
= lim

h:0
 
c - c

h
= lim

h:0
0 = 0.

ƒsxd = c ,

3.3 Differentiation Rules

This section introduces several rules that allow us to differentiate constant functions,
power functions, polynomials, exponential functions, rational functions, and certain com-
binations of them, simply and directly, without having to take limits each time.

Powers, Multiples, Sums, and Differences

A simple rule of differentiation is that the derivative of every constant function is zero.

Derivative of a Constant Function
If ƒ has the constant value then

dƒ
dx

=
d
dx

 scd = 0.

ƒsxd = c ,

x

y

0 x

c

h

y � c
(x � h, c)(x, c)

x � h

FIGURE 3.9 The rule is
another way to say that the values of
constant functions never change and that
the slope of a horizontal line is zero at
every point.

sd>dxdscd = 0

Power Rule for Positive Integers:

If n is a positive integer, then

d
dx

 xn
= nxn - 1 .
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Proof of the Positive Integer Power Rule The formula

can be verified by multiplying out the right-hand side. Then from the alternative formula
for the definition of the derivative,

n terms

The Power Rule is actually valid for all real numbers n. We have seen examples for a
negative integer and fractional power, but n could be an irrational number as well. To apply
the Power Rule, we subtract 1 from the original exponent n and multiply the result by n.
Here we state the general version of the rule, but postpone its proof until Section 3.8.

 = nxn - 1.

 = lim
z:x

sz n - 1
+ z n - 2x +

Á
+ zxn - 2

+ xn - 1d

 ƒ¿sxd = lim
z:x

 
ƒszd - ƒsxd

z - x = lim
z:x

 
z n

- xn

z - x

z n
- xn

= sz - xdsz n - 1
+ z n - 2 x +

Á
+ zx n - 2

+ xn - 1d
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HISTORICAL BIOGRAPHY

Richard Courant
(1888–1972)

EXAMPLE 1 Differentiate the following powers of x.

(a) (b) (c) (d) (e) (f)

Solution

(a) (b)

(c) (d)

(e)

(f)

The next rule says that when a differentiable function is multiplied by a constant, its
derivative is multiplied by the same constant.

d
dx A2x 2 +p B =

d
dx Ax1 + (p>2) B = a1 +

p
2
bx1 + (p>2) - 1

=
1
2

(2 + p)2xp

d
dx

 (x-4>3) = -
4
3

 x-(4>3) - 1
= -

4
3

 x-7>3

d
dx
a 1

x4 b =
d
dx

(x-4) = -4x-4 - 1
= -4x-5

= -
4
x5

d
dx Ax22 B = 22x22 - 1

d
dx

 (x2>3) =
2
3

 x (2>3) - 1
=

2
3

 x-1>3d
dx

(x3) = 3x3 - 1
= 3x2

2x2 +px-4>31
x4x22x2/3x3

Power Rule (General Version)
If n is any real number, then

,

for all x where the powers and are defined.xn - 1xn

d
dx

 x n
= nx n - 1

Derivative Constant Multiple Rule
If u is a differentiable function of x, and c is a constant, then

d
dx

 scud = c 
du
dx

.

In particular, if n is any real number, then

d
dx

 scxnd = cnxn - 1 .
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Proof

Constant Multiple Limit Property

u is differentiable.

EXAMPLE 2

(a) The derivative formula

says that if we rescale the graph of by multiplying each y-coordinate by 3, then
we multiply the slope at each point by 3 (Figure 3.10).

(b) Negative of a function

The derivative of the negative of a differentiable function u is the negative of the func-
tion’s derivative. The Constant Multiple Rule with gives

The next rule says that the derivative of the sum of two differentiable functions is the
sum of their derivatives.

d
dx

 s -ud =
d
dx

 s -1 # ud = -1 # d
dx

 sud = -
du
dx

.

c = -1

y = x2

d
dx

 s3x2d = 3 # 2x = 6x

 = c 
du
dx

 = c lim
h:0

 
usx + hd - usxd

h

 
d
dx

 cu = lim
h:0

 
cusx + hd - cusxd

h
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x

y

0 1

1
(1, 1)

2

2

3 (1, 3)
 

Slope

Slope
Slope � 2x

� 2(1) � 2

y � x2

y � 3x2

Slope � 3(2x)
� 6x
� 6(1) � 6

FIGURE 3.10 The graphs of and
Tripling the y-coordinate triples

the slope (Example 2).
y = 3x2 .

y = x2

For example, if , then y is the sum of and We
then have

Proof We apply the definition of the derivative to 

Combining the Sum Rule with the Constant Multiple Rule gives the Difference Rule,
which says that the derivative of a difference of differentiable functions is the difference of
their derivatives:

d
dx

 su - yd =
d
dx

 [u + s -1dy] =
du
dx

+ s -1d 
dy
dx

=
du
dx

-
dy
dx

 .

 = lim
h:0

 
usx + hd - usxd

h
+ lim

h:0
 
ysx + hd - ysxd

h
=

du
dx

+
dy
dx

.

 = lim
h:0

 cusx + hd - usxd
h

+

ysx + hd - ysxd
h

d
 
d
dx

 [usxd + ysxd] = lim
h:0

 
[usx + hd + ysx + hd] - [usxd + ysxd]

h

ƒsxd = usxd + ysxd :

dy
dx

=
d
dx

 (x4) +
d
dx

 (12x) = 4x3
+ 12.

y(x) = 12x.u(x) = x4y = x4
+ 12x

Derivative definition

with ƒsxd = cusxd

Derivative Sum Rule
If u and are differentiable functions of x, then their sum is differentiable
at every point where u and are both differentiable. At such points,

d
dx

 su + yd =
du
dx

+
dy
dx

.

y

u + yy

Denoting Functions by u and
The functions we are working with when
we need a differentiation formula are
likely to be denoted by letters like ƒ and g.
We do not want to use these same letters
when stating general differentiation rules,
so we use letters like u and instead that
are not likely to be already in use.

y

Y

7001_AWLThomas_ch03p122-221.qxd  10/12/09  2:21 PM  Page 137



The Sum Rule also extends to finite sums of more than two functions. If
are differentiable at x, then so is and

For instance, to see that the rule holds for three functions we compute

A proof by mathematical induction for any finite number of terms is given in Appendix 2.

EXAMPLE 3 Find the derivative of the polynomial 

Solution Sum and Difference Rules

We can differentiate any polynomial term by term, the way we differentiated the poly-
nomial in Example 3. All polynomials are differentiable at all values of x.

EXAMPLE 4 Does the curve have any horizontal tangents? If so,
where?

Solution The horizontal tangents, if any, occur where the slope is zero. We have

Now solve the equation 

The curve has horizontal tangents at and The corre-
sponding points on the curve are (0, 2), (1, 1) and See Figure 3.11. We will see in
Chapter 4 that finding the values of x where the derivative of a function is equal to zero is
an important and useful procedure.

Derivatives of Exponential Functions

We briefly reviewed exponential functions in Section 1.5. When we apply the definition of
the derivative to  ƒ(x) � ax, we get

Derivative definition

ax�h = ax ah

Factoring out ax

ax is constant as  

(1)= ¢ lim
h:0

 
ah

- 1
h
≤ # ax.

h : 0.= ax # lim
h:0

 
ah

- 1
h

= lim
h:0

a x # ah
- 1
h

#
= lim

h:0

a x # ah
- a x

h

d
dx

(ax
 ) = lim

h:0

a x + h
- ax

h

s -1, 1d .
-1.x = 0, 1 ,y = x4

- 2x2
+ 2

 x = 0, 1, -1.

 4xsx2
- 1d = 0

 4x3
- 4x = 0

dy
dx

= 0 for x :

dy
dx

=
d
dx

 sx4
- 2x2

+ 2d = 4x3
- 4x .

dy>dx

y = x4
- 2x2

+ 2

 = 3x2
+

4
3

# 2x - 5 + 0 = 3x2
+

8
3

 x - 5

dy
dx

=
d
dx

 x3
+

d
dx

 a4
3

 x2b -
d
dx

 s5xd +
d
dx

 s1d

y = x3
+

4
3

 x2
- 5x + 1.

d
dx

 su1 + u2 + u3d =

d
dx

 ssu1 + u2d + u3d =

d
dx

 su1 + u2d +  
du3

dx
=

du1

dx
+

du2

dx
+

du3

dx
 .

d
dx

 su1 + u2 +
Á

+ und =

du1

dx
+

du2

dx
+

Á
+

dun

dx
.

u1 + u2 +
Á

+ un ,u1 , u2 , Á , un
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(++)++*

a fixed numberL

x

y

0 1–1

(1, 1)(–1, 1)
1

(0, 2)

y � x4 � 2x2 � 2

FIGURE 3.11 The curve in Example 4
and its horizontal tangents.
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Thus we see that the derivative of is a constant multiple L of . The constant L is a limit
unlike any we have encountered before. Note, however, that it equals the derivative of

at :

.

The limit L is therefore the slope of the graph of where it crosses the y-axis. In
Chapter 7, where we carefully develop the logarithmic and exponential functions, we
prove that the limit L exists and has the value ln a. For now we investigate values of L by
graphing the function and studying its behavior as h approaches 0.

Figure 3.12 shows the graphs of for four different values of a. The
limit L is approximately 0.69 if , about 0.92 if , and about 1.1 if . It ap-
pears that the value of L is 1 at some number a chosen between 2.5 and 3. That number is
given by With this choice of base we obtain the natural exponen-
tial function as in Section 1.5, and see that it satisfies the property

(2)

That the limit is 1 implies an important relationship between the natural exponential func-
tion and its derivative:

Eq. (1) with

Eq. (2)

Therefore the natural exponential function is its own derivative.

=  1 # ex
= ex.

a = e
d
dx

 (ex) = lim
h:0 
¢ eh

- 1
h
≤ # ex

ex

ƒ¿(0) = lim
h:0 

eh
- 1
h

= 1.

ƒ(x) = ex
a = e L 2.718281828.

a = 3a = 2.5a = 2
y = (ah

- 1)>hy = (ah
- 1)>h

ƒ(x) = ax

ƒ¿(0) = lim
h:0

ah
- a0

h
=  lim

h:0

ah
- 1
h

= L

x = 0ƒ(x) = ax

axax
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EXAMPLE 5 Find an equation for a line that is tangent to the graph of and goes
through the origin.

Solution Since the line passes through the origin, its equation is of the form ,
where m is the slope. If it is tangent to the graph at the point , the slope is

The slope of the natural exponential at is . Because these
slopes are the same, we then have that . It follows that and , so the
equation of the tangent line is . See Figure 3.13.

We might ask if there are functions other than the natural exponential function that are
their own derivatives. The answer is that the only functions that satisfy the property that

are functions that are constant multiples of the natural exponential function,
, c any constant. We prove this fact in Section 7.2. Note from the Constant

Multiple Rule that indeed

d
dx

 (c # ex) = c # d
dx

 (ex) = c # ex.

ƒ(x) = c # ex
ƒ¿(x) = ƒ(x)

y = ex
m = ea = 1ea

= ea>a eax = am = (ea
- 0)>(a - 0).

(a, ea)
y = mx

y = ex

h

y
a � 3 a � 2.5

a � 2

a � e

1.1

0

1.0

0.92

0.69 y �            , a � 0ah � 1
h

FIGURE 3.12 The position of the curve
varies continu-

ously with a.
y = (ah

- 1)>h, a 7 0,

–1 a

2

4

6

x

y

(a, ea)

y � e x

FIGURE 3.13 The line through the origin
is tangent to the graph of when

(Example 5).a = 1
y = ex

Derivative of the Natural Exponential Function

d
dx

 (ex) = ex
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Products and Quotients

While the derivative of the sum of two functions is the sum of their derivatives, the deriva-
tive of the product of two functions is not the product of their derivatives. For instance,

The derivative of a product of two functions is the sum of two products, as we now explain.

d
dx

 sx # xd =
d
dx

 sx2d = 2x, while d
dx

 sxd # d
dx

 sxd = 1 # 1 = 1.

Derivative Product Rule
If u and are differentiable at x, then so is their product u , and

d
dx

 suyd = u 
dy
dx

+ y 
du
dx

.

yy

The derivative of the product u is u times the derivative of plus times the deriva-
tive of u. In prime notation, In function notation,

EXAMPLE 6 Find the derivative of (a) , (b)

Solution

(a) We apply the Product Rule with and 

(b)

Proof of the Derivative Product Rule

To change this fraction into an equivalent one that contains difference quotients for the de-
rivatives of u and , we subtract and add in the numerator:

As h approaches zero, approaches u(x) because u, being differentiable at x, is con-
tinuous at x. The two fractions approach the values of at x and at x. In short,

d
dx

 suyd = u 
dy
dx

+ y 
du
dx

.

du>dxdy>dx
usx + hd

 = lim
h:0

usx + hd # lim
h:0

 
ysx + hd - ysxd

h
+ ysxd # lim

h:0
 
usx + hd - usxd

h
.

 = lim
h:0

 cusx + hd 
ysx + hd - ysxd

h
+ ysxd 

usx + hd - usxd
h

d
 
d
dx

 suyd = lim
h:0

 
usx + hdysx + hd - usx + hdysxd + usx + hdysxd - usxdysxd

h

usx + hdysxdy

d
dx

 suyd = lim
h:0

 
usx + hdysx + hd - usxdysxd

h

d
dx

 (e2x) =
d
dx

 (ex # ex) = ex # d
dx

 (ex) + ex # d
dx

 (ex) = 2ex # ex
= 2e2x

 = 1 + (x - 1) 
ex

x2 .

 = 2 +
ex

x - 1 -
ex

x2

 
d
dx

 c1x  Ax2
+ ex B d =

1
x  A2x + ex B + Ax2

+ ex B a- 1
x2 b
y = x2

+ ex :u = 1>x

y = e2x.y =
1
x  Ax2

+ ex B
d
dx

 [ƒsxdg sxd] = ƒsxdg¿sxd + g sxdƒ¿sxd .

suyd¿ = uy¿ + yu¿ .
yyy

d
dx

 a1x b = -

1

x2

d
dx

 suyd = u 
dy
dx

+ y 
du
dx

, and

0

y(x � h)

y(x)

	y

u(x)y(x)

u(x � h) 	y

y(x) 	u

u(x � h)u(x)
	u

Then the change in the product uy is the
difference in areas of the larger and
smaller “squares,” which is the sum of the
upper and right-hand reddish-shaded
rectangles. That is,

Division by h gives

The limit as gives the Product
Rule.

h : 0 +

¢(uy)

h
= u(x + h)

¢y

h
+ y(x)

¢u
h

.

= u(x + h)¢y + y(x)¢u.
¢(uy) = u(x + h)y(x + h) - u(x)y(x)

Picturing the Product Rule

Suppose u(x) and (x) are positive and
increase when x increases, and h 7 0.

y
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EXAMPLE 7 Find the derivative of 

Solution

(a) From the Product Rule with and we find

(b) This particular product can be differentiated as well (perhaps better) by multiplying
out the original expression for y and differentiating the resulting polynomial:

This is in agreement with our first calculation.

The derivative of the quotient of two functions is given by the Quotient Rule.

 
dy
dx

= 5x4
+ 3x2

+ 6x .

 y = sx2
+ 1dsx3

+ 3d = x5
+ x3

+ 3x2
+ 3

 = 5x4
+ 3x2

+ 6x .

 = 3x4
+ 3x2

+ 2x4
+ 6x

 
d
dx

 C sx2
+ 1dsx3

+ 3d D = sx2
+ 1ds3x2d + sx3

+ 3ds2xd

y = x3
+ 3,u = x2

+ 1

y = sx2
+ 1dsx3

+ 3d .
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Derivative Quotient Rule
If u and are differentiable at x and if then the quotient is differ-
entiable at x, and

d
dx

 auy b =

y 
du
dx

- u 
dy
dx

y2 .

u>yysxd Z 0,y

In function notation,

EXAMPLE 8 Find the derivative of (a) (b) .

Solution

(a) We apply the Quotient Rule with and 

.

(b)
d
dx

 (e - x) =  
d
dx
a 1

ex b =
ex # 0 - 1 # ex

(ex)2 =
-1
ex = -e - x

 =
- t4

+ 3t2
+ 2t

st3
+ 1d2

 =
2t4

+ 2t - 3t4
+ 3t2

st3
+ 1d2

d
dt

 auy b =

ysdu>dtd - usdy>dtd

y2
 
dy
dt

=

st3
+ 1d # 2t - st2

- 1d # 3t2

st3
+ 1d2

y = t3
+ 1:u = t2

- 1

y = e-xy =
t2

- 1
t3

+ 1
,

d
dx

 c ƒsxd
g sxd

d =

g sxdƒ¿sxd - ƒsxdg¿sxd
g2sxd

.

d
dx

 suyd = u 
dy
dx

+ y 
du
dx
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Proof of the Derivative Quotient Rule

To change the last fraction into an equivalent one that contains the difference quotients for
the derivatives of u and , we subtract and add (x)u(x) in the numerator. We then get

Taking the limits in the numerator and denominator now gives the Quotient Rule.

The choice of which rules to use in solving a differentiation problem can make a dif-
ference in how much work you have to do. Here is an example.

EXAMPLE 9 Rather than using the Quotient Rule to find the derivative of

expand the numerator and divide by 

Then use the Sum and Power Rules:

Second- and Higher-Order Derivatives

If is a differentiable function, then its derivative is also a function. If is
also differentiable, then we can differentiate to get a new function of x denoted by 
So The function is called the second derivative of ƒ because it is the deriv-
ative of the first derivative. It is written in several ways:

The symbol means the operation of differentiation is performed twice.
If then and we have

Thus D2(x6) = 30x4 .

y– =

dy¿

dx
=

d
dx

 (6x5) = 30x4 .

y¿ = 6x5y = x6 ,
D2

ƒ–sxd =

d2y

dx2 =
d
dx

 ady
dx
b =

dy¿

dx
= y– = D2sƒdsxd = Dx

2 ƒsxd .

ƒ–ƒ– = sƒ¿ d¿ .
ƒ–.ƒ¿

ƒ¿ƒ¿sxdy = ƒsxd

 = -
1
x2 +

6
x3 -

6
x4 .

 
dy
dx

= -x-2
- 3s -2dx-3

+ 2s -3dx-4

y =

sx - 1dsx2
- 2xd

x4 =
x3

- 3x2
+ 2x

x4 = x-1
- 3x-2

+ 2x-3 .

x4 :

y =

sx - 1dsx2
- 2xd

x4 ,

 = lim
h:0

 
ysxd 

usx + hd - usxd
h

- usxd 
ysx + hd - ysxd

h
ysx + hdysxd

 .

 
d
dx

 auy b = lim
h:0

 
ysxdusx + hd - ysxdusxd + ysxdusxd - usxdysx + hd

hysx + hdysxd

yy

 = lim
h:0

 
ysxdusx + hd - usxdysx + hd

hysx + hdysxd

 
d
dx

 auy b = lim
h:0

 

usx + hd
ysx + hd

-

usxd
ysxd

h
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3.3 Differentiation Rules 143

How to Read the Symbols for
Derivatives

“y prime”
“y double prime”

“d squared y dx squared”

“y triple prime”
“y super n”

“d to the n of y by dx to the n”

“D to the n”Dn

dny

dxn

y snd
y‡

d2y

dx2

y–

y¿

If is differentiable, its derivative, , is the third derivative
of y with respect to x. The names continue as you imagine, with

denoting the nth derivative of y with respect to x for any positive integer n.
We can interpret the second derivative as the rate of change of the slope of the tangent

to the graph of at each point. You will see in the next chapter that the second de-
rivative reveals whether the graph bends upward or downward from the tangent line as we
move off the point of tangency. In the next section, we interpret both the second and third
derivatives in terms of motion along a straight line.

EXAMPLE 10 The first four derivatives of are

First derivative:

Second derivative:

Third derivative:

Fourth derivative:

The function has derivatives of all orders, the fifth and later derivatives all being zero.

 y s4d
= 0.

 y‡ = 6

 y– = 6x - 6

 y¿ = 3x2
- 6x

y = x3
- 3x2

+ 2

y = ƒsxd

y snd
=

d
dx

 y sn - 1d
=

dny

dxn = Dny

y‡ = dy–>dx = d3y>dx3y–

Exercises 3.3

Derivative Calculations
In Exercises 1–12, find the first and second derivatives.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

In Exercises 13–16, find (a) by applying the Product Rule and
(b) by multiplying the factors to produce a sum of simpler terms to
differentiate.

13. 14.

15. 16.

Find the derivatives of the functions in Exercises 17–40.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26. r = 2 a 1

2u + 2uby =

1 + x - 41x
x

u =

5x + 1
21x

ƒssd =

1s - 1

1s + 1

w = s2x - 7d-1sx + 5dy = s1 - tds1 + t2d-1

ƒstd =

t2
- 1

t2
+ t - 2

g sxd =

x2
- 4

x + 0.5

z =

4 - 3x

3x2
+ x

y =

2x + 5
3x - 2

y = s1 + x2dsx3>4
- x-3dy = sx2

+ 1d ax + 5 +

1
x b

y = s2x + 3ds5x2
- 4xdy = s3 - x2dsx3

- x + 1d

y¿

r =

12
u

-

4
u3 +

1
u4r =

1
3s2 -

5
2s

y = 4 - 2x - x-3y = 6x2
- 10x - 5x-2

s = -2t -1
+

4
t2w = 3z-2

-

1
z

y =

x3

3
+

x2

2
+

x
4

y =

4x3

3
- x + 2ex

w = 3z7
- 7z3

+ 21z2s = 5t3
- 3t5

y = x2
+ x + 8y = -x2

+ 3

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

Find the derivatives of all orders of the functions in Exercises 41–44.

41. 42.

43. 44.

Find the first and second derivatives of the functions in Exercises
45–52.

45. 46.

47. 48.

49. 50.

51. 52. w = ezsz - 1dsz2
+ 1dw = 3z2e2z

p =

q2
+ 3

sq - 1d3
+ sq + 1d3w = a1 + 3z

3z
b s3 - zd

u =

sx2
+ xdsx2

- x + 1d
x4r =

su - 1dsu2
+ u + 1d
u3

s =

t2
+ 5t - 1

t2y =

x3
+ 7
x

y = s4x3
+ 3xds2 - xdy = sx - 1dsx2

+ 3x - 5d

y =

x5

120
y =

x4

2
-

3
2

 x2
- x

r = eu a 1
u2 + u-p>2br =

es

s

y = 23 x9.6
+ 2e1.3y =

72x2
- xe

w =

1
z1.4 +

p

2z
s = 2t3>2

+ 3e2

y = x-3>5
+ p3>2y = x9>4

+ e-2x

w =  re-ry =  x3ex

y =

x2
+ 3ex

2ex
- x

y = 2e-x
+ e3x

y =

sx + 1dsx + 2d
sx - 1dsx - 2d

y =

1
sx2

- 1dsx2
+ x + 1d
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53. Suppose u and are functions of x that are differentiable at 
and that

Find the values of the following derivatives at 

a. b. c. d.

54. Suppose u and are differentiable functions of x and that

Find the values of the following derivatives at 

a. b. c. d.

Slopes and Tangents
55. a. Normal to a curve Find an equation for the line perpendicular

to the tangent to the curve at the point (2, 1).

b. Smallest slope What is the smallest slope on the curve? At
what point on the curve does the curve have this slope?

c. Tangents having specified slope Find equations for the tan-
gents to the curve at the points where the slope of the curve is 8.

56. a. Horizontal tangents Find equations for the horizontal tan-
gents to the curve Also find equations for
the lines that are perpendicular to these tangents at the points
of tangency.

b. Smallest slope What is the smallest slope on the curve? At
what point on the curve does the curve have this slope? Find
an equation for the line that is perpendicular to the curve’s
tangent at this point.

57. Find the tangents to Newton’s serpentine (graphed here) at the 
origin and the point (1, 2).

58. Find the tangent to the Witch of Agnesi (graphed here) at the point
(2, 1).

59. Quadratic tangent to identity function The curve 
passes through the point (1, 2) and is tangent to the

line at the origin. Find a, b, and c.

60. Quadratics having a common tangent The curves 
and have a common tangent line at

the point (1, 0). Find a, b, and c.

61. Find all points (x, y) on the graph of with tan-
gent lines parallel to the line y = 8x + 5.

ƒsxd = 3x2
- 4x

y = cx - x2x2
+ ax + b

y =

y = x
ax2

+ bx + c
y =

x

y

0

1

1 2

2
(2, 1)

3

y � 8
x2 � 4

x

y

0

1

1 2

2
(1, 2)

3 4

y � 4x
x2 � 1

y = x3
- 3x - 2.

y = x3
- 4x + 1

d
dx

 s7y - 2udd
dx

 ayu bd
dx

 auy bd
dx

 suyd

x = 1.

us1d = 2, u¿s1d = 0, ys1d = 5, y¿s1d = -1.

y

d
dx

 s7y - 2udd
dx

 ayu bd
dx

 auy bd
dx

 suyd

x = 0.

us0d = 5, u¿s0d = -3, ys0d = -1, y¿s0d = 2.

x = 0y
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62. Find all points (x, y) on the graph of with
tangent lines parallel to the line 

63. Find all points (x, y) on the graph of with tangent
lines perpendicular to the line 

64. Find all points (x, y) on the graph of with tangent lines
passing through the point (3, 8).

65. a. Find an equation for the line that is tangent to the curve
at the point 

b. Graph the curve and tangent line together. The tangent inter-
sects the curve at another point. Use Zoom and Trace to esti-
mate the point’s coordinates.

c. Confirm your estimates of the coordinates of the second in-
tersection point by solving the equations for the curve and
tangent simultaneously (Solver key).

66. a. Find an equation for the line that is tangent to the curve
at the origin.

b. Graph the curve and tangent together. The tangent intersects
the curve at another point. Use Zoom and Trace to estimate
the point’s coordinates.

c. Confirm your estimates of the coordinates of the second in-
tersection point by solving the equations for the curve and
tangent simultaneously (Solver key).

Theory and Examples
For Exercises 67 and 68 evaluate each limit by first converting each to
a derivative at a particular x-value.

67. 68.

69. Find the value of a that makes the following function differen-
tiable for all x-values.

70. Find the values of a and b that make the following function differ-
entiable for all x-values.

71. The general polynomial of degree n has the form

where Find P¿sxd .an Z 0.

Psxd = an xn
+ an - 1 xn - 1

+
Á

+ a2 x2
+ a1 x + a0

ƒsxd = eax + b, x 7 -1

bx2
- 3, x … -1

gsxd = eax, if x 6 0

x2
- 3x, if x Ú 0

 lim
x: -1

 
x2>9

- 1
x + 1

 lim
x:1

 
x50

- 1
x - 1

y = x3
- 6x2

+ 5x

s -1, 0d .y = x3
- x

y

x

(3, 8)

–2

2

2 4

6

10
f (x) 5 x2

(x, y)

ƒsxd = x2

y = 2x + 3.
y = x>(x - 2)

8x - 2y = 1.
gsxd =

1
3 x3

-
3
2 x2

+ 1

T

T

T

T
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72. The body’s reaction to medicine The reaction of the body to a
dose of medicine can sometimes be represented by an equation of
the form

where C is a positive constant and M is the amount of medicine ab-
sorbed in the blood. If the reaction is a change in blood pressure, R
is measured in millimeters of mercury. If the reaction is a change
in temperature, R is measured in degrees, and so on.

Find . This derivative, as a function of M, is called the
sensitivity of the body to the medicine. In Section 4.5, we will see
how to find the amount of medicine to which the body is most
sensitive.

73. Suppose that the function in the Derivative Product Rule has a
constant value c. What does the Derivative Product Rule then say?
What does this say about the Derivative Constant Multiple Rule?

74. The Reciprocal Rule

a. The Reciprocal Rule says that at any point where the function
(x) is differentiable and different from zero,

Show that the Reciprocal Rule is a special case of the Deriva-
tive Quotient Rule.

b. Show that the Reciprocal Rule and the Derivative Product
Rule together imply the Derivative Quotient Rule.

75. Generalizing the Product Rule The Derivative Product Rule
gives the formula

for the derivative of the product u of two differentiable functions
of x.

a. What is the analogous formula for the derivative of the prod-
uct u w of three differentiable functions of x?

b. What is the formula for the derivative of the product 
of four differentiable functions of x?

u1 u2 u3 u4

y

y

d
dx

 suyd = u 
dy
dx

+ y 
du
dx

d
dx

 a1y b = -

1
y2 

dy
dx

.

y

y

dR>dM

R = M2 aC
2

-

M
3
b ,
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c. What is the formula for the derivative of a product
of a finite number n of differentiable functions

of x?

76. Power Rule for negative integers Use the Derivative Quotient
Rule to prove the Power Rule for negative integers, that is,

where m is a positive integer.

77. Cylinder pressure If gas in a cylinder is maintained at a con-
stant temperature T, the pressure P is related to the volume V by a
formula of the form

in which a, b, n, and R are constants. Find . (See accompa-
nying figure.)

78. The best quantity to order One of the formulas for inventory
management says that the average weekly cost of ordering, paying
for, and holding merchandise is

where q is the quantity you order when things run low (shoes, ra-
dios, brooms, or whatever the item might be); k is the cost of plac-
ing an order (the same, no matter how often you order); c is the cost
of one item (a constant); m is the number of items sold each week
(a constant); and h is the weekly holding cost per item (a constant
that takes into account things such as space, utilities, insurance,
and security). Find and d2A>dq2 .dA>dq

Asqd =

km
q + cm +

hq

2
,

dP>dV

P =

nRT
V - nb

-

an2

V 2 ,

d
dx

 (x-m) = -mx-m - 1

u1 u2 u3
Á un

3.4 The Derivative as a Rate of Change

In Section 2.1 we introduced average and instantaneous rates of change. In this section we
study further applications in which derivatives model the rates at which things change. It is
natural to think of a quantity changing with respect to time, but other variables can be
treated in the same way. For example, an economist may want to study how the cost of pro-
ducing steel varies with the number of tons produced, or an engineer may want to know
how the power output of a generator varies with its temperature.

Instantaneous Rates of Change

If we interpret the difference quotient as the average rate of change
in ƒ over the interval from x to we can interpret its limit as as the rate at
which ƒ is changing at the point x.

h : 0x + h ,
sƒsx + hd - ƒsxdd>h
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Thus, instantaneous rates are limits of average rates.

It is conventional to use the word instantaneous even when x does not represent time.
The word is, however, frequently omitted. When we say rate of change, we mean
instantaneous rate of change.

EXAMPLE 1 The area A of a circle is related to its diameter by the equation

How fast does the area change with respect to the diameter when the diameter is 10 m?

Solution The rate of change of the area with respect to the diameter is

When the area is changing with respect to the diameter at the rate of

Motion Along a Line: Displacement, Velocity, Speed,
Acceleration, and Jerk

Suppose that an object is moving along a coordinate line (an s-axis), usually horizontal or
vertical, so that we know its position s on that line as a function of time t:

The displacement of the object over the time interval from t to (Figure 3.14) is

and the average velocity of the object over that time interval is

To find the body’s velocity at the exact instant t, we take the limit of the average ve-
locity over the interval from t to as shrinks to zero. This limit is the derivative of
ƒ with respect to t.

¢tt + ¢t

yay =

displacement
travel time

=
¢s
¢t

=

ƒst + ¢td - ƒstd
¢t

.

¢s = ƒst + ¢td - ƒstd ,

t + ¢t

s = ƒstd .

sp>2d10 = 5p m2>m L 15.71 m2>m.
D = 10 m,

dA
dD

=
p
4

# 2D =
pD
2

.

A =
p
4

 D2 .

DEFINITION Velocity (instantaneous velocity) is the derivative of position
with respect to time. If a body’s position at time t is then the body’s
velocity at time t is

ystd =
ds
dt

= lim
¢t:0

 
ƒst + ¢td - ƒstd

¢t
.

s = ƒstd ,

DEFINITION The instantaneous rate of change of ƒ with respect to x at is
the derivative

provided the limit exists.

ƒ¿sx0d = lim
h:0

 
ƒsx0 + hd - ƒsx0d

h
,

x0

s
Δs

Position at time t … and at time t � Δ t

s � f (t) s � Δs � f (t � Δt)

FIGURE 3.14 The positions of a body
moving along a coordinate line at time t
and shortly later at time Here the
coordinate line is horizontal.

t + ¢t .
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Besides telling how fast an object is moving along the horizontal line in Figure 3.14, its
velocity tells the direction of motion. When the object is moving forward (s increasing), the
velocity is positive; when the object is moving backward (s decreasing), the velocity is neg-
ative. If the coordinate line is vertical, the object moves upward for positive velocity and
downward for negative velocity. The blue curves in Figure 3.15 represent position along the
line over time; they do not portray the path of motion, which lies along the s-axis.

If we drive to a friend’s house and back at 30 mph, say, the speedometer will show 30
on the way over but it will not show on the way back, even though our distance from
home is decreasing. The speedometer always shows speed, which is the absolute value of
velocity. Speed measures the rate of progress regardless of direction.

-30
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t

s

0
s increasing:
positive slope so
moving upward

s � f (t)

ds
dt

� 0

t

s

0
s decreasing:
negative slope so
moving downward

s � f (t)

ds
dt

� 0

(a)

(b)

FIGURE 3.15 For motion 
along a straight line (the vertical axis),

is (a) positive when s
increases and (b) negative when s
decreases.

y = ds>dt

s = ƒstd

HISTORICAL BIOGRAPHY

Bernard Bolzano
(1781–1848)

EXAMPLE 2 Figure 3.16 shows the graph of the velocity of a particle moving
along a horizontal line (as opposed to showing a position function such as in Figure
3.15). In the graph of the velocity function, it’s not the slope of the curve that tells us if the par-
ticle is moving forward or backward along the line (which is not shown in the figure), but rather
the sign of the velocity. Looking at Figure 3.16, we see that the particle moves forward for the
first 3 sec (when the velocity is positive), moves backward for the next 2 sec (the velocity is
negative), stands motionless for a full second, and then moves forward again. The particle is
speeding up when its positive velocity increases during the first second, moves at a steady
speed during the next second, and then slows down as the velocity decreases to zero during the
third second. It stops for an instant at (when the velocity is zero) and reverses direc-
tion as the velocity starts to become negative. The particle is now moving backward and gain-
ing in speed until at which time it achieves its greatest speed during its backward
motion. Continuing its backward motion at time the particle starts to slow down again
until it finally stops at time (when the velocity is once again zero). The particle now re-
mains motionless for one full second, and then moves forward again at speeding up
during the final second of the forward motion indicated in the velocity graph.

The rate at which a body’s velocity changes is the body’s acceleration. The accelera-
tion measures how quickly the body picks up or loses speed.

A sudden change in acceleration is called a jerk. When a ride in a car or a bus is jerky,
it is not that the accelerations involved are necessarily large but that the changes in accel-
eration are abrupt.

t = 6 sec,
t = 5

t = 4,
t = 4 sec,

t = 3 sec

s = ƒstd
y = ƒ¿std

DEFINITION Speed is the absolute value of velocity.

Speed = ƒ ystd ƒ = ` ds
dt
`

DEFINITIONS Acceleration is the derivative of velocity with respect to time.
If a body’s position at time t is then the body’s acceleration at time t is

Jerk is the derivative of acceleration with respect to time:

jstd =
da
dt

=
d3s
dt3 .

astd =
dy
dt

=
d2s
dt2 .

s = ƒstd ,

Near the surface of the Earth all bodies fall with the same constant acceleration.
Galileo’s experiments with free fall (see Section 2.1) lead to the equation

s =
1
2

 gt2 ,
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where s is the distance fallen and g is the acceleration due to Earth’s gravity. This equation
holds in a vacuum, where there is no air resistance, and closely models the fall of dense,
heavy objects, such as rocks or steel tools, for the first few seconds of their fall, before the
effects of air resistance are significant.

The value of g in the equation depends on the units used to measure
t and s. With t in seconds (the usual unit), the value of g determined by measurement at sea level
is approximately (feet per second squared) in English units, and 
(meters per second squared) in metric units. (These gravitational constants depend on 
the distance from Earth’s center of mass, and are slightly lower on top of Mt. Everest, for
example.)

The jerk associated with the constant acceleration of gravity is zero:

An object does not exhibit jerkiness during free fall.

EXAMPLE 3 Figure 3.17 shows the free fall of a heavy ball bearing released from rest
at time 

(a) How many meters does the ball fall in the first 2 sec?

(b) What is its velocity, speed, and acceleration when ?

Solution

(a) The metric free-fall equation is During the first 2 sec, the ball falls

(b) At any time t, velocity is the derivative of position:

ystd = s¿std =
d
dt

 s4.9t2d = 9.8t .

ss2d = 4.9s2d2
= 19.6 m.

s = 4.9t2 .

t = 2

t = 0 sec.

j =
d
dt

 sgd = 0.

sg = 32 ft>sec2d

g = 9.8 m>sec232 ft>sec2

s = s1>2dgt2
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t � 2

FIGURE 3.17 A ball bearing
falling from rest (Example 3).
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down

Steady
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Velocity y � f '(t)
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(y � 0)

t (sec)

Greatest
speed

y

FIGURE 3.16 The velocity graph of a particle moving along a horizontal line,
discussed in Example 2.
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At the velocity is

in the downward (increasing s) direction. The speed at is

The acceleration at any time t is

At the acceleration is  

EXAMPLE 4 A dynamite blast blows a heavy rock straight up with a launch velocity of
160 ft sec (about 109 mph) (Figure 3.18a). It reaches a height of after
t sec.

(a) How high does the rock go?

(b) What are the velocity and speed of the rock when it is 256 ft above the ground on the
way up? On the way down?

(c) What is the acceleration of the rock at any time t during its flight (after the blast)?

(d) When does the rock hit the ground again?

Solution

(a) In the coordinate system we have chosen, s measures height from the ground up, so
the velocity is positive on the way up and negative on the way down. The instant the
rock is at its highest point is the one instant during the flight when the velocity is 0. To
find the maximum height, all we need to do is to find when and evaluate s at
this time.

At any time t during the rock’s motion, its velocity is

The velocity is zero when

The rock’s height at is

See Figure 3.18b.

(b) To find the rock’s velocity at 256 ft on the way up and again on the way down, we first
find the two values of t for which

To solve this equation, we write

The rock is 256 ft above the ground 2 sec after the explosion and again 8 sec after the
explosion. The rock’s velocities at these times are

 ys8d = 160 - 32s8d = 160 - 256 = -96 ft>sec.

 ys2d = 160 - 32s2d = 160 - 64 = 96 ft>sec.

 t = 2 sec, t = 8 sec.

 st - 2dst - 8d = 0

 16st2
- 10t + 16d = 0

 16t2
- 160t + 256 = 0

sstd = 160t - 16t2
= 256.

smax = ss5d = 160s5d - 16s5d2
= 800 - 400 = 400 ft .

t = 5 sec

160 - 32t = 0 or t = 5 sec.

y =
ds
dt

=
d
dt

 s160t - 16t2d = 160 - 32t ft>sec.

y = 0

s = 160t - 16t2 ft>

9.8 m>sec2 .t = 2,

astd = y¿std = s–std = 9.8 m>sec2 .

speed = ƒ ys2d ƒ = 19.6 m>sec.

t = 2

ys2d = 19.6 m>sec

t = 2,
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s

H
ei

gh
t (

ft
)

(a)

smax

s � 0

256 t � ?

y � 0

t
0

400

5 10

(b)

160

–160

s, y

s � 160t � 16t2

y � � 160 � 32tds
dt

FIGURE 3.18 (a) The rock in Example 4.
(b) The graphs of s and y as functions of
time; s is largest when 
The graph of s is not the path of the rock:
It is a plot of height versus time. The slope
of the plot is the rock’s velocity, graphed
here as a straight line.

y = ds>dt = 0.
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At both instants, the rock’s speed is 96 ft sec. Since the rock is moving up-
ward (s is increasing) at it is moving downward (s is decreasing) at 
because 

(c) At any time during its flight following the explosion, the rock’s acceleration is a
constant

The acceleration is always downward. As the rock rises, it slows down; as it falls, it
speeds up.

(d) The rock hits the ground at the positive time t for which The equation
factors to give so it has solutions and

At the blast occurred and the rock was thrown upward. It returned to
the ground 10 sec later.

Derivatives in Economics

Engineers use the terms velocity and acceleration to refer to the derivatives of functions
describing motion. Economists, too, have a specialized vocabulary for rates of change and
derivatives. They call them marginals.

In a manufacturing operation, the cost of production c(x) is a function of x, the num-
ber of units produced. The marginal cost of production is the rate of change of cost with
respect to level of production, so it is .

Suppose that c(x) represents the dollars needed to produce x tons of steel in one week.
It costs more to produce tons per week, and the cost difference, divided by h, is the
average cost of producing each additional ton:

The limit of this ratio as is the marginal cost of producing more steel per week
when the current weekly production is x tons (Figure 3.19):

Sometimes the marginal cost of production is loosely defined to be the extra cost of
producing one additional unit:

which is approximated by the value of at x. This approximation is acceptable if the
slope of the graph of c does not change quickly near x. Then the difference quotient will be
close to its limit , which is the rise in the tangent line if (Figure 3.20). The
approximation works best for large values of x.

Economists often represent a total cost function by a cubic polynomial

where represents fixed costs such as rent, heat, equipment capitalization, and manage-
ment costs. The other terms represent variable costs such as the costs of raw materials,
taxes, and labor. Fixed costs are independent of the number of units produced, whereas
variable costs depend on the quantity produced. A cubic polynomial is usually adequate to
capture the cost behavior on a realistic quantity interval.

EXAMPLE 5 Suppose that it costs

csxd = x3
- 6x2

+ 15x

d

csxd = ax3
+ bx2

+ gx + d

¢x = 1dc>dx

dc>dx

¢c
¢x

=

csx + 1d - csxd
1

,

dc
dx

= lim
h:0

 
csx + hd - csxd

h
= marginal cost of production.

h : 0

csx + hd - csxd
h

=

average cost of each of the additional
h tons of steel produced.

x + h

dc>dx

t = 0,t = 10.
t = 016t s10 - td = 0,160t - 16t2

= 0
s = 0.

a =
dy
dt

=
d
dt

 s160 - 32td = -32 ft>sec2 .

ys8d 6 0.
t = 8t = 2 sec;

ys2d 7 0,>
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x
0

Production (tons/week)
x

Cost y (dollars)

y � c (x)
Slope �

marginal cost

x � h

FIGURE 3.19 Weekly steel production:
c(x) is the cost of producing x tons per
week. The cost of producing an additional
h tons is csx + hd - csxd .

x

y

0 x

⎧
⎪
⎨
⎪
⎩

dc
dx

x � 1

�x � 1

�c

y � c(x)

FIGURE 3.20 The marginal cost is
approximately the extra cost of
producing more unit.¢x = 1

¢c
dc>dx
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dollars to produce x radiators when 8 to 30 radiators are produced and that

gives the dollar revenue from selling x radiators. Your shop currently produces 10 radiators
a day. About how much extra will it cost to produce one more radiator a day, and what is
your estimated increase in revenue for selling 11 radiators a day?

Solution The cost of producing one more radiator a day when 10 are produced is about

The additional cost will be about $195. The marginal revenue is

The marginal revenue function estimates the increase in revenue that will result from sell-
ing one additional unit. If you currently sell 10 radiators a day, you can expect your rev-
enue to increase by about

if you increase sales to 11 radiators a day.

EXAMPLE 6 To get some feel for the language of marginal rates, consider marginal tax
rates. If your marginal income tax rate is 28% and your income increases by $1000, you
can expect to pay an extra $280 in taxes. This does not mean that you pay 28% of your en-
tire income in taxes. It just means that at your current income level I, the rate of increase of
taxes T with respect to income is You will pay $0.28 in taxes out of every
extra dollar you earn. Of course, if you earn a lot more, you may land in a higher tax
bracket and your marginal rate will increase.

Sensitivity to Change

When a small change in x produces a large change in the value of a function ƒ(x), we say
that the function is relatively sensitive to changes in x. The derivative is a measure of
this sensitivity.

EXAMPLE 7 Genetic Data and Sensitivity to Change

The Austrian monk Gregor Johann Mendel (1822–1884), working with garden peas and
other plants, provided the first scientific explanation of hybridization.

His careful records showed that if p (a number between 0 and 1) is the frequency of the
gene for smooth skin in peas (dominant) and is the frequency of the gene for wrin-
kled skin in peas, then the proportion of smooth-skinned peas in the next generation will be

The graph of y versus p in Figure 3.21a suggests that the value of y is more sensitive to a
change in p when p is small than when p is large. Indeed, this fact is borne out by the de-
rivative graph in Figure 3.21b, which shows that is close to 2 when p is near 0 and
close to 0 when p is near 1.

The implication for genetics is that introducing a few more smooth skin genes into a
population where the frequency of wrinkled skin peas is large will have a more dramatic
effect on later generations than will a similar increase when the population has a large pro-
portion of smooth skin peas.

dy>dp

y = 2ps1 - pd + p2
= 2p - p2 .

s1 - pd

ƒ¿sxd

dT>dI = 0.28.

r¿s10d = 3s100d - 6s10d + 12 = $252

r¿sxd =
d
dx

 (x3
- 3x2

+ 12x) = 3x2
- 6x + 12.

 c¿s10d = 3s100d - 12s10d + 15 = 195.

 c¿sxd =
d
dx

 Ax3
- 6x2

+ 15x B = 3x2
- 12x + 15

c¿s10d :

rsxd = x3
- 3x2

+ 12x
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p

y

0 1

1

(a)

 y � 2p � p2

dy /dp

p
0 1

2

(b)

� 2 � 2p
dy
dp

FIGURE 3.21 (a) The graph of
describing the proportion 

of smooth-skinned peas in the next
generation. (b) The graph of 
(Example 7).

dy>dp

y = 2p - p2 ,
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Exercises 3.4

Motion Along a Coordinate Line
Exercises 1–6 give the positions of a body moving on a coor-
dinate line, with s in meters and t in seconds.

a. Find the body’s displacement and average velocity for the
given time interval.

b. Find the body’s speed and acceleration at the endpoints of the
interval.

c. When, if ever, during the interval does the body change direction?

1.

2.

3.

4.

5.

6.

7. Particle motion At time t, the position of a body moving along
the s-axis is 

a. Find the body’s acceleration each time the velocity is zero.

b. Find the body’s speed each time the acceleration is zero.

c. Find the total distance traveled by the body from to 

8. Particle motion At time the velocity of a body moving
along the horizontal s-axis is 

a. Find the body’s acceleration each time the velocity is zero.

b. When is the body moving forward? Backward?

c. When is the body’s velocity increasing? Decreasing?

Free-Fall Applications
9. Free fall on Mars and Jupiter The equations for free fall at the

surfaces of Mars and Jupiter (s in meters, t in seconds) are
on Mars and on Jupiter. How long does it

take a rock falling from rest to reach a velocity of 27.8 m sec
(about 100 km h) on each planet?

10. Lunar projectile motion A rock thrown vertically upward
from the surface of the moon at a velocity of 24 m sec (about
86 km h) reaches a height of in t sec.

a. Find the rock’s velocity and acceleration at time t. (The accel-
eration in this case is the acceleration of gravity on the moon.)

b. How long does it take the rock to reach its highest point?

c. How high does the rock go?

d. How long does it take the rock to reach half its maximum
height?

e. How long is the rock aloft?

11. Finding g on a small airless planet Explorers on a small airless
planet used a spring gun to launch a ball bearing vertically upward
from the surface at a launch velocity of 15 m sec. Because the 
acceleration of gravity at the planet’s surface was the 
explorers expected the ball bearing to reach a height of

t sec later. The ball bearing reached its max-
imum height 20 sec after being launched. What was the value of gs ?
s = 15t - s1>2dgs t2 m

gs m>sec2 ,
>

s = 24t - 0.8t2 m> >
> >s = 11.44t2s = 1.86t2

y = t2
- 4t + 3.

t Ú 0,

t = 2.t = 0

s = t3
- 6t2

+ 9t m.

s =

25
t + 5

, -4 … t … 0

s =

25
t2 -

5
t , 1 … t … 5

s = st4>4d - t3
+ t2, 0 … t … 3

s = - t3
+ 3t2

- 3t, 0 … t … 3

s = 6t - t2, 0 … t … 6

s = t2
- 3t + 2, 0 … t … 2

s = ƒstd
12. Speeding bullet A 45-caliber bullet shot straight up from the

surface of the moon would reach a height of ft
after t sec. On Earth, in the absence of air, its height would be

ft after t sec. How long will the bullet be aloft in
each case? How high will the bullet go?

13. Free fall from the Tower of Pisa Had Galileo dropped a can-
nonball from the Tower of Pisa, 179 ft above the ground, the ball’s
height above the ground t sec into the fall would have been

a. What would have been the ball’s velocity, speed, and accelera-
tion at time t ?

b. About how long would it have taken the ball to hit the ground?

c. What would have been the ball’s velocity at the moment of impact?

14. Galileo’s free-fall formula Galileo developed a formula for a
body’s velocity during free fall by rolling balls from rest down in-
creasingly steep inclined planks and looking for a limiting for-
mula that would predict a ball’s behavior when the plank was ver-
tical and the ball fell freely; see part (a) of the accompanying
figure. He found that, for any given angle of the plank, the ball’s
velocity t sec into motion was a constant multiple of t. That is, the
velocity was given by a formula of the form The value of
the constant k depended on the inclination of the plank.

In modern notation—part (b) of the figure—with distance in
meters and time in seconds, what Galileo determined by experi-
ment was that, for any given angle the ball’s velocity t sec into
the roll was

a. What is the equation for the ball’s velocity during free fall?

b. Building on your work in part (a), what constant acceleration
does a freely falling body experience near the surface of Earth?

Understanding Motion from Graphs
15. The accompanying figure shows the velocity 

(m sec) of a body moving along a coordinate line.

a. When does the body reverse direction?

b. When (approximately) is the body moving at a constant speed?

0

–3

2 4

3

6 8 10

y (m/sec)

y � f (t)

t (sec)

> y = ds>dt = ƒstd

(a)

?

(b)

θ

Free-fall
position

y = 9.8ssin udt m>sec .

u ,

y = kt .

s = 179 - 16t2 .

s = 832t - 16t2

s = 832t - 2.6t2
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c. Graph the body’s speed for 

d. Graph the acceleration, where defined.

16. A particle P moves on the number line shown in part (a) of the ac-
companying figure. Part (b) shows the position of P as a function
of time t.

a. When is P moving to the left? Moving to the right? Standing
still?

b. Graph the particle’s velocity and speed (where defined).

17. Launching a rocket When a model rocket is launched, the pro-
pellant burns for a few seconds, accelerating the rocket upward.
After burnout, the rocket coasts upward for a while and then be-
gins to fall. A small explosive charge pops out a parachute
shortly after the rocket starts down. The parachute slows the
rocket to keep it from breaking when it lands.

The figure here shows velocity data from the flight of the
model rocket. Use the data to answer the following.

a. How fast was the rocket climbing when the engine stopped?

b. For how many seconds did the engine burn?

c. When did the rocket reach its highest point? What was its
velocity then?

d. When did the parachute pop out? How fast was the rocket
falling then?

e. How long did the rocket fall before the parachute opened?

f. When was the rocket’s acceleration greatest?

g. When was the acceleration constant? What was its value then
(to the nearest integer)?

0 2 4 6 8 10 12
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50

0

–50

–100
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200

Time after launch (sec)

V
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ft
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(b)

0

(a)

P
s (cm)

s (cm)

s � f (t)

t (sec)

(6, �4)

0 … t … 10.
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18. The accompanying figure shows the velocity of a parti-
cle moving on a horizontal coordinate line.

a. When does the particle move forward? Move backward?
Speed up? Slow down?

b. When is the particle’s acceleration positive? Negative? Zero?

c. When does the particle move at its greatest speed?

d. When does the particle stand still for more than an instant?

19. Two falling balls The multiflash photograph in the accompany-
ing figure shows two balls falling from rest. The vertical rulers
are marked in centimeters. Use the equation (the free-
fall equation for s in centimeters and t in seconds) to answer the
following questions.

a. How long did it take the balls to fall the first 160 cm? What
was their average velocity for the period?

b. How fast were the balls falling when they reached the 160-cm
mark? What was their acceleration then?

c. About how fast was the light flashing (flashes per second)?

s = 490t2

t (sec)

y

0 1 2 3 4 5 6 7 8 9

y � f(t)

y = ƒstd

7001_AWLThomas_ch03p122-221.qxd  10/12/09  2:22 PM  Page 153



20. A traveling truck The accompanying graph shows the position
s of a truck traveling on a highway. The truck starts at and
returns 15 h later at 

a. Use the technique described in Section 3.2, Example 3, to
graph the truck’s velocity Then
repeat the process, with the velocity curve, to graph the
truck’s acceleration .

b. Suppose that Graph and and
compare your graphs with those in part (a).

21. The graphs in the accompanying figure show the position s, ve-
locity and acceleration of a body moving
along a coordinate line as functions of time t. Which graph is
which? Give reasons for your answers.

22. The graphs in the accompanying figure show the position s, the
velocity and the acceleration of a body
moving along the coordinate line as functions of time t. Which
graph is which? Give reasons for your answers.

t

y

0

A

B

C

a = d2s>dt2y = ds>dt ,

t

y

0

A B

C

a = d2s>dt2y = ds>dt ,

0

100

200

300

400

500

5 10 15
Elapsed time, t (hr)

Po
si

tio
n,

 s
 (

km
)

d2s>dt2ds>dts = 15t2
- t3 .

dy>dt

y = ds>dt for 0 … t … 15.

t = 15.
t = 0
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Economics
23. Marginal cost Suppose that the dollar cost of producing x

washing machines is 

a. Find the average cost per machine of producing the first 100
washing machines.

b. Find the marginal cost when 100 washing machines are pro-
duced.

c. Show that the marginal cost when 100 washing machines are
produced is approximately the cost of producing one more
washing machine after the first 100 have been made, by cal-
culating the latter cost directly.

24. Marginal revenue Suppose that the revenue from selling x
washing machines is

dollars.

a. Find the marginal revenue when 100 machines are produced.

b. Use the function to estimate the increase in revenue that
will result from increasing production from 100 machines a
week to 101 machines a week.

c. Find the limit of as How would you interpret
this number?

Additional Applications
25. Bacterium population When a bactericide was added to a nu-

trient broth in which bacteria were growing, the bacterium popu-
lation continued to grow for a while, but then stopped growing
and began to decline. The size of the population at time t (hours)
was Find the growth rates at

a.

b.

c.

26. Draining a tank The number of gallons of water in a tank t
minutes after the tank has started to drain is 

How fast is the water running out at the end of 
10 min? What is the average rate at which the water flows out dur-
ing the first 10 min?

27. Draining a tank It takes 12 hours to drain a storage tank by
opening the valve at the bottom. The depth y of fluid in the tank t
hours after the valve is opened is given by the formula

a. Find the rate (m h) at which the tank is draining at time t.

b. When is the fluid level in the tank falling fastest? Slowest?
What are the values of at these times?

c. Graph y and together and discuss the behavior of y in
relation to the signs and values of .

28. Inflating a balloon The volume of a spherical
balloon changes with the radius.

a. At what rate does the volume change with respect to
the radius when 

b. By approximately how much does the volume increase when
the radius changes from 2 to 2.2 ft?

r = 2 ft?
sft3>ftd

V = s4>3dpr3

dy>dt
dy>dt

dy>dt

>dy>dt

y = 6 a1 -

t
12
b2

 m.

200s30 - td2 .
Qstd =

t = 10 hours .

t = 5 hours .

t = 0 hours .

b = 106
+ 104t - 103t2 .

x : q .r¿sxd

r¿sxd

rsxd = 20,000 a1 -

1
x b

csxd = 2000 + 100x - 0.1x2 .

T
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29. Airplane takeoff Suppose that the distance an aircraft travels
along a runway before takeoff is given by where D
is measured in meters from the starting point and t is measured in
seconds from the time the brakes are released. The aircraft will be-
come airborne when its speed reaches 200 km h. How long will it
take to become airborne, and what distance will it travel in that time?

30. Volcanic lava fountains Although the November 1959 Kilauea
Iki eruption on the island of Hawaii began with a line of fountains
along the wall of the crater, activity was later confined to a single
vent in the crater’s floor, which at one point shot lava 1900 ft
straight into the air (a Hawaiian record). What was the lava’s exit
velocity in feet per second? In miles per hour? (Hint: If is the
exit velocity of a particle of lava, its height t sec later will be

Begin by finding the time at which 
Neglect air resistance.)

Analyzing Motion Using Graphs
Exercises 31–34 give the position function of an object moving
along the s-axis as a function of time t. Graph ƒ together with the 

s = ƒstd

ds>dt = 0.s = y0 t - 16t2 ft .

y0

>

D = s10>9dt2 ,
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velocity function and the acceleration function
Comment on the object’s behavior in relation

to the signs and values of and a. Include in your commentary such
topics as the following:

a. When is the object momentarily at rest?

b. When does it move to the left (down) or to the right (up)?

c. When does it change direction?

d. When does it speed up and slow down?

e. When is it moving fastest (highest speed)? Slowest?

f. When is it farthest from the axis origin?

31. (a heavy object fired straight
up from Earth’s surface at 200 ft sec)

32.

33.

34. s = 4 - 7t + 6t2
- t3, 0 … t … 4

s = t3
- 6t2

+ 7t, 0 … t … 4

s = t2
- 3t + 2, 0 … t … 5

>s = 200t - 16t2, 0 … t … 12.5

y

astd = d2s>dt2
= ƒ–std .
ystd = ds>dt = ƒ¿std

3.5 Derivatives of Trigonometric Functions

Many phenomena of nature are approximately periodic (electromagnetic fields, heart rhythms,
tides, weather). The derivatives of sines and cosines play a key role in describing periodic
changes. This section shows how to differentiate the six basic trigonometric functions.

Derivative of the Sine Function

To calculate the derivative of for x measured in radians, we combine the
limits in Example 5a and Theorem 7 in Section 2.4 with the angle sum identity for the sine
function:

If then

= sin x # 0 + cos x # 1 = cos x . = sin x # lim
h:0

 
cos h - 1

h
+ cos x # lim

h:0
 
sin h

h

 = lim
h:0

 asin x # cos h - 1
h

b + lim
h:0

 acos x # sin h
h
b

= lim
h:0

 
sin x scos h - 1d + cos x sin h

h
 = lim

h:0
 
ssin x cos h + cos x sin hd - sin x

h

 ƒ¿sxd = lim
h:0

 
ƒsx + hd - ƒsxd

h
= lim

h:0
 
sin sx + hd - sin x

h

ƒsxd = sin x ,

sin sx + hd = sin x cos h + cos x sin h .

ƒsxd = sin x ,

The derivative of the sine function is the cosine function:

d
dx

 ssin xd = cos x .

Example 5a and
Theorem 7, Section 2.4

Derivative definition

(+++)+++*

limit 0
(+)+*

limit 1

T
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EXAMPLE 1 We find derivatives of the sine function involving differences, products,
and quotients.

(a) Difference Rule

(b) Product Rule

(c) Quotient Rule

Derivative of the Cosine Function

With the help of the angle sum formula for the cosine function,

we can compute the limit of the difference quotient:

Derivative definition

 = -sin x .

 = cos x # 0 - sin x # 1

 = cos x # lim
h:0

 
cos h - 1

h
- sin x # lim

h:0
 
sin h

h

 = lim
h:0

 cos x # cos h - 1
h

- lim
h:0

 sin x # sin h
h

 = lim
h:0

 
cos x scos h - 1d - sin x sin h

h

 = lim
h:0

 
scos x cos h - sin x sin hd - cos x

h

 
d
dx

 scos xd = lim
h:0

 
cos sx + hd - cos x

h

cos sx + hd = cos x cos h - sin x sin h ,

 =
x cos x - sin x

x2

 
dy
dx

=

x # d
dx

 (sin x) - sin x # 1

x2y =
sin x

x :

 = ex (cos x + sin x)

 = ex cos x + ex sin x

 
dy
dx

= ex 
d
dx

 (sin x) +
d
dx

 (ex) sin xy = exsin x :

 = 2x - cos x

 
dy
dx

= 2x -
d
dx

 (sin x)y = x2
- sin x :
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The derivative of the cosine function is the negative of the sine function:

d
dx

 scos xd = -sin x.

Example 5a and
Theorem 7, Section 2.4

Cosine angle sum
identity

1

x

y

0–� �
–1

1

x

y'

0–� �
–1

y � cos x

y' � –sin x

FIGURE 3.22 The curve as
the graph of the slopes of the tangents to
the curve y = cos x .

y¿ = -sin x
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Figure 3.22 shows a way to visualize this result in the same way we did for graphing deriv-
atives in Section 3.2, Figure 3.6.

EXAMPLE 2 We find derivatives of the cosine function in combinations with other
functions.

(a)

Sum Rule

(b)

Product Rule

(c)

Quotient Rule

Simple Harmonic Motion

The motion of an object or weight bobbing freely up and down with no resistance on the
end of a spring is an example of simple harmonic motion. The motion is periodic and 
repeats indefinitely, so we represent it using trigonometric functions. The next example
describes a case in which there are no opposing forces such as friction or buoyancy to slow
the motion.

EXAMPLE 3 A weight hanging from a spring (Figure 3.23) is stretched down 5 units
beyond its rest position and released at time to bob up and down. Its position at any
later time t is

What are its velocity and acceleration at time t ?

Solution We have

Position:

Velocity:

Acceleration: a =
dy
dt

=
d
dt

 s -5 sin td = -5 cos t .

y =
ds
dt

=
d
dt

 s5 cos td = -5 sin t

s = 5 cos t

s = 5 cos t .

t = 0

 =
1

1 - sin x

sin2 x + cos2 x = 1 =
1 - sin x

s1 - sin xd2

 =

s1 - sin xds -sin xd - cos x s0 - cos xd
s1 - sin xd2

 
dy
dx

=

(1 - sin x) 
d
dx

 (cos x) - cos x 
d
dx

 (1 - sin x)

s1 - sin xd2

y =
cos x

1 - sin x
:

 = cos2 x - sin2 x

 = sin x s -sin xd + cos x scos xd

 
dy
dx

= sin x 
d
dx

 (cos x) + cos x 
d
dx

 (sin x)

y = sin x cos x :

 = 5ex
- sin x

 
dy
dx

=
d
dx

 s5exd +
d
dx

 (cos x)

y = 5ex
+ cos x :
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s

0

–5

5

Rest
position

Position at
t � 0

FIGURE 3.23 A weight hanging from
a vertical spring and then displaced
oscillates above and below its rest position
(Example 3).
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Notice how much we can learn from these equations:

1. As time passes, the weight moves down and up between and on the
s-axis. The amplitude of the motion is 5. The period of the motion is the period of
the cosine function.

2. The velocity attains its greatest magnitude, 5, when as the
graphs show in Figure 3.24. Hence, the speed of the weight, is great-
est when that is, when (the rest position). The speed of the weight is
zero when This occurs when at the endpoints of the in-
terval of motion.

3. The acceleration value is always the exact opposite of the position value. When the
weight is above the rest position, gravity is pulling it back down; when the weight is
below the rest position, the spring is pulling it back up.

4. The acceleration, is zero only at the rest position, where and
the force of gravity and the force from the spring balance each other. When the weight
is anywhere else, the two forces are unequal and acceleration is nonzero. The acceler-
ation is greatest in magnitude at the points farthest from the rest position, where

EXAMPLE 4 The jerk associated with the simple harmonic motion in Example 3 is

It has its greatest magnitude when not at the extremes of the displacement but
at the rest position, where the acceleration changes direction and sign.

Derivatives of the Other Basic Trigonometric Functions

Because sin x and cos x are differentiable functions of x, the related functions

are differentiable at every value of x at which they are defined. Their derivatives, calcu-
lated from the Quotient Rule, are given by the following formulas. Notice the negative
signs in the derivative formulas for the cofunctions.

tan x =
sin x
cos x , cot x =

cos x
sin x

 , sec x =
1

cos x , and csc x =
1

sin x

sin t = ;1,

j =
da
dt

=
d
dt

 s -5 cos td = 5 sin t .

cos t = ;1.

cos t = 0a = -5 cos t ,

s = 5 cos t = ;5,sin t = 0.
s = 0cos t = 0,

ƒ y ƒ = 5 ƒ  sin t ƒ ,
cos t = 0,y = -5 sin t

2p,
s = 5s = -5
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t
0

s, y

y � –5 sin t s � 5 cos t

� �
2

3� 2�
2

5�
2

5

–5

FIGURE 3.24 The graphs of the position
and velocity of the weight in Example 3.

To show a typical calculation, we find the derivative of the tangent function. The other
derivations are left to Exercise 60.

The derivatives of the other trigonometric functions:

 
d
dx

 scsc xd = -csc x cot x 
d
dx

 ssec xd = sec x tan x

 
d
dx

 scot xd = -csc2 x 
d
dx

 stan xd = sec2 x
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EXAMPLE 5 Find d(tan x) dx.

Solution We use the Derivative Quotient Rule to calculate the derivative:

Quotient Rule

.

EXAMPLE 6 Find 

Solution Finding the second derivative involves a combination of trigonometric deriva-
tives.

Derivative rule for secant function

Derivative Product Rule

Derivative rules

The differentiability of the trigonometric functions throughout their domains gives
another proof of their continuity at every point in their domains (Theorem 1, Section 3.2).
So we can calculate limits of algebraic combinations and composites of trigonometric
functions by direct substitution.

EXAMPLE 7 We can use direct substitution in computing limits provided there is no
division by zero, which is algebraically undefined.

lim
x:0

 
22 + sec x

cos sp - tan xd
=

22 + sec 0
cos sp - tan 0d

=

22 + 1
cos sp - 0d

=

23
-1

= -23

 = sec3 x + sec x tan2 x

 = sec x ssec2 xd + tan x ssec x tan xd

 = sec x 
d
dx

 (tan x) + tan x 
d
dx

 (sec x)

 y– =
d
dx

 ssec x tan xd

 y¿ = sec x tan x

 y = sec x

y– if y = sec x .

 =
1

cos2 x
= sec2 x

 =
cos2 x + sin2 x

cos2 x

 =

cos x cos x - sin x s -sin xd
cos2 x

 
d
dx

 stan xd =
d
dx

 a sin x
cos x b =

cos x 
d
dx

 ssin xd - sin x 
d
dx

 scos xd

cos2 x

>
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Exercises 3.5

Derivatives
In Exercises 1–18, find .

1. 2.

3. 4. y = 2x sec x + 3y = x2 cos x

y =

3
x + 5 sin xy = -10x + 3 cos x

dy>dx
5. 6.

7. 8.

9.

10. y = ssin x + cos xd sec x

y = ssec x + tan xdssec x - tan xd
gsxd = csc x cot xƒsxd = sin x tan x

y = x2 cot x -

1
x2y = csc x - 41x + 7
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11. 12.

13. 14.

15.

16.

17. 18.

In Exercises 19–22, find .

19. 20.

21. 22.

In Exercises 23–26, find 

23. 24.

25. 26.

In Exercises 27–32, find .

27. 28.

29. 30.

31. 32.

33. Find if

a. b.

34. Find if

a. b.

Tangent Lines
In Exercises 35–38, graph the curves over the given intervals, together
with their tangents at the given values of x. Label each curve and tan-
gent with its equation.

35.

36.

37.

38.

Do the graphs of the functions in Exercises 39–42 have any horizontal
tangents in the interval If so, where? If not, why not?
Visualize your findings by graphing the functions with a grapher.

39.

40.

41.

42.

43. Find all points on the curve where
the tangent line is parallel to the line Sketch the curve
and tangent(s) together, labeling each with its equation.

y = 2x .
y = tan x, -p>2 6 x 6 p>2,

y = x + 2 cos x

y = x - cot x

y = 2x + sin x

y = x + sin x

0 … x … 2p?

 x = -p>3, 3p>2
 y = 1 + cos x, -3p>2 … x … 2p

 x = -p>3, p>4
 y = sec x, -p>2 6 x 6 p>2
 x = -p>3, 0, p>3
 y = tan x, -p>2 6 x 6 p>2
 x = -p, 0, 3p>2
 y = sin x, -3p>2 … x … 2p

y = 9 cos x .y = -2 sin x .

y s4d
= d4 y>dx4

y = sec x .y = csc x .

y–

p =

3q + tan q
q sec qp =

q sin q

q2
- 1

p =

tan q

1 + tan q
p =

sin q + cos q
cos q

p = s1 + csc qd cos qp = 5 +

1
cot q

dp>dq

r = s1 + sec ud sin ur = sec u csc u

r = u sin u + cos ur = 4 - u2 sin u

dr>du .

s =

sin t
1 - cos t

s =

1 + csc t
1 - csc t

s = t2
- sec t + 5ets = tan t - e-t

ds>dt

gsxd = s2 - xd tan2 xƒsxd = x3 sin x cos x

y = x2 cos x - 2x sin x - 2 cos x

y = x2 sin x + 2x cos x - 2 sin x

y =

cos x
x +

x
cos xy =

4
cos x +

1
tan x

y =

cos x
1 + sin x

y =

cot x
1 + cot x
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44. Find all points on the curve where the
tangent line is parallel to the line Sketch the curve and
tangent(s) together, labeling each with its equation.

In Exercises 45 and 46, find an equation for (a) the tangent to the
curve at P and (b) the horizontal tangent to the curve at Q.

45. 46.

Trigonometric Limits
Find the limits in Exercises 47–54.

47.

48.

49. 50.

51.

52.

53. 54.

Theory and Examples
The equations in Exercises 55 and 56 give the position of a
body moving on a coordinate line (s in meters, t in seconds). Find the
body’s velocity, speed, acceleration, and jerk at time 

55. 56.

57. Is there a value of c that will make

continuous at Give reasons for your answer.

58. Is there a value of b that will make

continuous at Differentiable at Give reasons for
your answers.

x = 0?x = 0?

g sxd = e x + b, x 6 0

cos x, x Ú 0

x = 0?

ƒsxd = L
sin2 3x

x2 , x Z 0

c, x = 0

s = sin t + cos ts = 2 - 2 sin t

t = p>4 sec .

s = ƒstd

lim
u:0

 cos a pu
sin u

blim
t:0

 tan a1 -

sin t
t b

lim
x:0

 sin a p + tan x
tan x - 2 sec x

b

lim
x:0

 sec cex
+ p tan a p

4 sec x
b - 1 d

 lim
u:p>4 

tan u - 1
u -

p
4

 lim
u:p>6 

sin u -
1
2

u -
p
6

lim
x: -p>621 + cos sp csc xd

lim
x:2

 sin a1x -

1
2
b

x

y

0 1 2

4

3

Q

⎛
⎝

⎛
⎝

�
4

P     , 4

�
4

y � 1 � �2 csc x � cot x

x

y

0

1

1 2

2

Q

y � 4 � cot x � 2csc x

⎛
⎝

⎛
⎝

�
2

P     , 2

�
2

y = -x .
y = cot x, 0 6 x 6 p ,

T
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59. Find 

60. Derive the formula for the derivative with respect to x of

a. sec x. b. csc x. c. cot x.

61. A weight is attached to a spring and reaches its equilibrium posi-
tion It is then set in motion resulting in a displacement of

where x is measured in centimeters and t is measured in seconds.
See the accompanying figure.

a. Find the spring’s displacement when and

b. Find the spring’s velocity when and 

62. Assume that a particle’s position on the x-axis is given by

where x is measured in feet and t is measured in seconds.

a. Find the particle’s position when and 

b. Find the particle’s velocity when and 

63. Graph for On the same screen, graph

for and 0.1. Then, in a new window, try
and What happens as As 

What phenomenon is being illustrated here?

64. Graph for On the same screen,
graph

for and 0.1. Then, in a new window, try
and What happens as As 

What phenomenon is being illustrated here?

65. Centered difference quotients The centered difference quotient

is used to approximate in numerical work because (1) its
limit as equals when exists, and (2) it usually
gives a better approximation of for a given value of h than
the difference quotient

ƒsx + hd - ƒsxd
h

.

ƒ¿sxd
ƒ¿sxdƒ¿sxdh : 0

ƒ¿sxd

ƒsx + hd - ƒsx - hd
2h

h : 0- ?h : 0+ ?-0.3 .h = -1, -0.5 ,
h = 1,  0.5,  0.3,

y =

cos sx + hd - cos x

h

-p … x … 2p .y = -sin x

h : 0- ?h : 0+ ?-0.3 .h = -1, -0.5 ,
h = 1,  0.5,  0.3,

y =

sin sx + hd - sin x

h

-p … x … 2p .y = cos x

t = p.t = 0, t = p>2,

t = p.t = 0, t = p>2,

x = 3 cos t + 4 sin t,

t = 3p>4.t = 0, t = p>3,

t = 3p>4.
t = 0, t = p>3,

x

0

–10

10

Equilibrium
position
at x 5 0

x = 10 cos t,

sx = 0d.

d999>dx999 scos xd .
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See the accompanying figure.

a. To see how rapidly the centered difference quotient for
converges to graph 

together with

over the interval for and 0.3. Compare
the results with those obtained in Exercise 63 for the same
values of h.

b. To see how rapidly the centered difference quotient for
converges to graph 

together with

over the interval and 0.3. Compare
the results with those obtained in Exercise 64 for the same
values of h.

66. A caution about centered difference quotients (Continuation
of Exercise 65. ) The quotient

may have a limit as when ƒ has no derivative at x. As a case
in point, take and calculate

As you will see, the limit exists even though has no de-
rivative at Moral: Before using a centered difference quo-
tient, be sure the derivative exists.

67. Slopes on the graph of the tangent function Graph 
and its derivative together on Does the graph of the
tangent function appear to have a smallest slope? A largest slope?
Is the slope ever negative? Give reasons for your answers.

s -p>2, p>2d .
y = tan x

x = 0.
ƒsxd = ƒ x ƒ

lim
h:0

 
ƒ 0 + h ƒ - ƒ 0 - h ƒ

2h
.

ƒsxd = ƒ x ƒ

h : 0

ƒsx + hd - ƒsx - hd
2h

[-p, 2p] for h = 1, 0.5 ,

y =

cos sx + hd - cos sx - hd
2h

y = -sin xƒ¿sxd = -sin x ,ƒsxd = cos x

h = 1, 0.5 ,[-p, 2p]

y =

sin sx + hd - sin sx - hd
2h

y = cos xƒ¿sxd = cos x ,ƒsxd = sin x

x

y

0 x

A

hh

C B

x � h x � h

y � f (x)

Slope � f '(x)

Slope �

Slope �

h
f (x � h) � f (x)

f (x � h) � f (x � h)
2h

T

T

T

T
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68. Slopes on the graph of the cotangent function Graph 
and its derivative together for Does the graph of the
cotangent function appear to have a smallest slope? A largest
slope? Is the slope ever positive? Give reasons for your answers.

69. Exploring (sin kx) x Graph 
and together over the interval 
Where does each graph appear to cross the y-axis? Do the graphs
really intersect the axis? What would you expect the graphs of

and to do as Why?
What about the graph of for other values of k ?
Give reasons for your answers.

70. Radians versus degrees: degree mode derivatives What hap-
pens to the derivatives of sin x and cos x if x is measured in de-
grees instead of radians? To find out, take the following steps.

a. With your graphing calculator or computer grapher in degree
mode, graph

and estimate Compare your estimate with
Is there any reason to believe the limit should be

p>180?
p>180.

limh:0 ƒshd .

ƒshd =

sin h
h

y = ssin kxd>x x : 0?y = ssin s -3xdd>xy = ssin 5xd>x

-2 … x … 2.y = ssin 4xd>x y = ssin 2xd>x ,y = ssin xd>x ,/

0 6 x 6 p .
y = cot x

162 Chapter 3: Differentiation

b. With your grapher still in degree mode, estimate

c. Now go back to the derivation of the formula for the deriva-
tive of sin x in the text and carry out the steps of the deriva-
tion using degree-mode limits. What formula do you obtain
for the derivative?

d. Work through the derivation of the formula for the derivative
of cos x using degree-mode limits. What formula do you 
obtain for the derivative?

e. The disadvantages of the degree-mode formulas become ap-
parent as you start taking derivatives of higher order. Try it.
What are the second and third degree-mode derivatives of
sin x and cos x?

lim
h:0

 
cos h - 1

h
.

T

T

T

3.6 The Chain Rule

How do we differentiate This function is the composite of two
functions and that we know how to differentiate.
The answer, given by the Chain Rule, says that the derivative is the product of the deriva-
tives of ƒ and g. We develop the rule in this section.

Derivative of a Composite Function

The function is the composite of the functions and 

We have

Since we see in this case that

If we think of the derivative as a rate of change, our intuition allows us to see that this rela-
tionship is reasonable. If changes half as fast as u and changes three
times as fast as x, then we expect y to change times as fast as x. This effect is much like
that of a multiple gear train (Figure 3.25). Let’s look at another example.

EXAMPLE 1 The function

y = s3x2
+ 1d2

3>2 u = g sxdy = ƒsud

dy
dx

=

dy
du

# du
dx

.

3
2

=
1
2

# 3,

dy
dx

=
3
2

, dy
du

=
1
2

, and du
dx

= 3.

u = 3x .y =
1
2

 uy =
3
2

 x =
1
2

 s3xd

u = g sxd = x2
- 4y = ƒ(u) = sin u

ƒ � gF(x) = sin (x2
- 4)?

32

1

C: y turns B: u turns A: x turns

FIGURE 3.25 When gear A makes x
turns, gear B makes u turns and gear
C makes y turns. By comparing
circumferences or counting teeth, we 
see that (C turns one-half turn 
for each B turn) and (B turns 
three times for A’s one), so 
Thus, 
sdy>dudsdu>dxd .

s1>2ds3d =dy>dx = 3>2 =
y = 3x>2.

u = 3x
y = u>2
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is the composite of and Calculating derivatives, we
see that

Calculating the derivative from the expanded formula gives
the same result:

The derivative of the composite function ƒ(g(x)) at x is the derivative of ƒ at g(x) times
the derivative of g at x. This is known as the Chain Rule (Figure 3.26).

 = 36x3
+ 12x .

 
dy
dx

=
d
dx

 (9x4
+ 6x2

+ 1)

(3x2
+ 1)2

= 9x4
+ 6x2

+ 1

 = 36x3
+ 12x .

 = 2s3x2
+ 1d # 6x

 
dy
du

# du
dx

= 2u # 6x

u = g(x) = 3x2
+ 1.y = ƒ(u) = u2

3.6 The Chain Rule 163

x

g f

Composite f ˚ g

Rate of change at
x is f '(g(x)) • g'(x).

Rate of change
at x is g'(x).

Rate of change
at g(x) is f '(g(x)).

u � g(x) y � f (u) � f (g(x))

FIGURE 3.26 Rates of change multiply: The derivative of at x is the
derivative of ƒ at g(x) times the derivative of g at x.

ƒ � g

THEOREM 2—The Chain Rule If ƒ(u) is differentiable at the point 
and is differentiable at x, then the composite function 
is differentiable at x, and

In Leibniz’s notation, if and then

where is evaluated at u = g sxd .dy>du

dy
dx

=

dy
du

# du
dx

,

u = g sxd ,y = ƒsud

sƒ � gd¿sxd = ƒ¿sg sxdd # g¿sxd .

sƒ � gdsxd = ƒsg sxddg (x)
u = g sxd

Intuitive “Proof” of the Chain Rule:

Let be the change in u when x changes by so that

Then the corresponding change in y is

If we can write the fraction as the product

(1)
¢y

¢x
=

¢y

¢u
# ¢u

¢x

¢y>¢x¢u Z 0,

¢y = ƒsu + ¢ud - ƒsud .

¢u = g sx + ¢xd - g sxd.

¢x,¢u
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and take the limit as 

The problem with this argument is that it could be true that even when so
the cancellation of in Equation (1) would be invalid. A proof requires a different ap-
proach that avoids this flaw, and we give one such proof in Section 3.11.

EXAMPLE 2 An object moves along the x-axis so that its position at any time is
given by Find the velocity of the object as a function of t.

Solution We know that the velocity is . In this instance, x is a composite function:
and We have

By the Chain Rule,

“Outside-Inside” Rule

A difficulty with the Leibniz notation is that it doesn’t state specifically where the deriva-
tives in the Chain Rule are supposed to be evaluated. So it sometimes helps to think about
the Chain Rule using functional notation. If , then

In words, differentiate the “outside” function ƒ and evaluate it at the “inside” function g(x)
left alone; then multiply by the derivative of the “inside function.”

EXAMPLE 3 Differentiate with respect to x.

Solution We apply the Chain Rule directly and find

d
dx

 sin (x2
+ ex) = cos (x2

+ ex) # (2x + ex).

sin sx2
+ exd

dy
dx

= ƒ¿sg sxdd # g¿sxd .

y = ƒ(g(x))

 = -2t sin st2
+ 1d .

 = -sin st2
+ 1d # 2t

 = -sin sud # 2t

 
dx
dt

=
dx
du

# du
dt

u = t2
+ 1 

du
dt

= 2t .

x = cossud 
dx
du

= -sin sud

u = t2
+ 1.x = cos sud

dx>dt

xstd = cos st2
+ 1d .

t Ú 0

¢u
¢x Z 0,¢u = 0

 =

dy
du

# du
dx

.

 = lim
¢u:0

 
¢y

¢u
# lim

¢x:0
 
¢u
¢x

 = lim
¢x:0

 
¢y

¢u
# lim

¢x:0
 
¢u
¢x

 = lim
¢x:0

 
¢y

¢u
# ¢u

¢x

 
dy
dx

= lim
¢x:0

 
¢y

¢x

¢x : 0:

164 Chapter 3: Differentiation

(Note that as
since g is continuous.)

¢x : 0¢u : 0

(+)+*

inside
(+)+*

inside
left alone

(+)+*

derivative of
the inside

evaluated at u
dx
du
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3.6 The Chain Rule 165

Derivative of tan u with
u = 5 - sin 2t

Derivative of 
with u = 2t

5 - sin u

HISTORICAL BIOGRAPHY

Johann Bernoulli
(1667–1748)

EXAMPLE 4 Differentiate 

Solution Here the inside function is and the outside function is the
exponential function Applying the Chain Rule, we get

Generalizing Example 4, we see that the Chain Rule gives the formula

dy
dx

=
d
dx

 (ecos x) = ecos x 
d
dx

 (cos x) = ecos x (-sin x) = -ecos x sin x.

ƒ(x) = ex.
u = g (x) = cos x

y = ecos x.

.
d
dx

 eu
= eu 

du
dx

Thus, for example,

and

Repeated Use of the Chain Rule

We sometimes have to use the Chain Rule two or more times to find a derivative.

EXAMPLE 5 Find the derivative of 

Solution Notice here that the tangent is a function of whereas the sine is 
a function of 2t, which is itself a function of t. Therefore, by the Chain Rule,

The Chain Rule with Powers of a Function

If ƒ is a differentiable function of u and if u is a differentiable function of x, then substitut-
ing into the Chain Rule formula

leads to the formula

If n is any real number and ƒ is a power function, the Power Rule tells us
that If u is a differentiable function of x, then we can use the Chain Rule to
extend this to the Power Chain Rule:

d
du

 Aun B = nun - 1d
dx

 sund = nun - 1 
du
dx

.

ƒ¿sud = nun - 1 .
ƒsud = un ,

d
dx

 ƒsud = ƒ¿sud 
du
dx

.

dy
dx

=

dy
du

# du
dx

y = ƒsud

 = -2scos 2td sec2 s5 - sin 2td .

 = sec2 s5 - sin 2td # s -cos 2td # 2

 = sec2 s5 - sin 2td # a0 - cos 2t #
d
dt

 (2t)b
 = sec2 s5 - sin 2td # d

dt
 (5 - sin 2t)

 g¿std =
d
dt

 (tan (5 - sin 2t))

5 - sin 2t ,

g std = tan s5 - sin 2td .

d
dx

 Aex2 B = ex2
# d
dx

 (x2) = 2xex2

.

d
dx

 (ekx) = ekx # d
dx

 (kx) = kekx,  for any constant k
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EXAMPLE 6 The Power Chain Rule simplifies computing the derivative of a power of
an expression.

(a)

(b)

In part (b) we could also find the derivative with the Derivative Quotient Rule.

(c)
Power Chain Rule with ,

(d)

Power Chain Rule with 

EXAMPLE 7 In Section 3.2, we saw that the absolute value function is not
differentiable at x � 0. However, the function is differentiable at all other real numbers as

we now show. Since , we can derive the following formula:

EXAMPLE 8 Show that the slope of every line tangent to the curve is
positive.

Solution We find the derivative:

Power Chain Rule with 

 =
6

s1 - 2xd4.

 = -3s1 - 2xd-4 # s -2d

u = s1 - 2xd, n = -3 = -3s1 - 2xd-4 # d
dx

 s1 - 2xd

 
dy
dx

=
d
dx

 s1 - 2xd-3

y = 1>s1 - 2xd3

 =
x

ƒ x ƒ

,  x Z 0.

 =
1

2 ƒ x ƒ

# 2x

 =
1

22x2
# d
dx

 (x2)

d
dx

 ( ƒ x ƒ ) =
d
dx
2x2

ƒ x ƒ = 2x2

y = ƒ x ƒ

 =
3

223x + 1
 e23x + 1

u = 3x + 1, n = 1>2 = e23x + 1 # 1
2

 (3x + 1)-1>2 # 3

d
dx

 Ae23x + 1 B = e23x + 1 # d
dx

 A23x + 1 B
 = 5 sin4 x cos x

u = sin x, n = 5d
dx

 (sin5 x) = 5 sin4 x # d
dx

 sin x

 = -
3

s3x - 2d2

 = -1s3x - 2d-2s3d

 = -1s3x - 2d-2 
d
dx

 s3x - 2d

 
d
dx

 a 1
3x - 2

b =
d
dx

s3x - 2d-1

 = 7s5x3
- x4d6s15x2

- 4x3d

 = 7s5x3
- x4d6s5 # 3x2

- 4x3d

 
d
dx

 s5x3
- x4d7

= 7s5x3
- x4d6 

d
dx

 (5x3
- x4)

166 Chapter 3: Differentiation

Derivative of the 
Absolute Value Function

d
dx

 ( ƒ x ƒ ) =

x
ƒ x ƒ

, x Z 0

Power Chain Rule with
u = 5x3

- x4, n = 7

Power Chain Rule with
u = 3x - 2, n = -1

because sinn x means ssin xdn, n Z -1.

Power Chain Rule with

u = x2, n = 1>2, x Z 0

2x2
= ƒ x ƒ
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3.6 The Chain Rule 167

x

y

1

180
y � sin x

y � sin(x°) � sin �x
180

FIGURE 3.27 oscillates only times as often as oscillates. Its
maximum slope is at (Example 9).x = 0p>180

sin xp>180Sin sx°d

Exercises 3.6

Derivative Calculations
In Exercises 1–8, given and find 

1. 2.

3. 4.

5. 6.

7. 8.

In Exercises 9–22, write the function in the form and
Then find as a function of x.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18. y = 5 cos-4 xy = sin3 x

y = cot ap -

1
x by = sec stan xd

y = 23x2
- 4x + 6y = ax2

8
+ x -

1
x b

4

y = ax
2

- 1b-10

y = a1 -

x
7
b-7

y = s4 - 3xd9y = s2x + 1d5

dy>dxu = gsxd .
y = ƒsud

y = -sec u, u = x2
+ 7xy = tan u, u = 10x - 5

y = sin u, u = x - cos xy = cos u, u = sin x

y = cos u, u = -x>3y = sin u, u = 3x + 1

y = 2u3, u = 8x - 1y = 6u - 9, u = s1>2dx4

ƒ¿sgsxddg¿sxd .
dy>dx =u = gsxd ,y = ƒsud

19. 20.

21. 22.

Find the derivatives of the functions in Exercises 23–50.

23. 24.

25. 26.

27. 28.

29. 30.

31.

32.

33. 34.

35. 36.

37. 38.

39. 40. k sxd = x2 sec a1x bhsxd = x tan A21x B + 7

y = (9x2
- 6x + 2)e x3

y = (x2
- 2x + 2)e 5x>2

y = (1 + 2x)e-2xy = xe-x
+ e 3x

y = s2x - 5d-1sx2
- 5xd6y = s4x + 3d4sx + 1d-3

y = s5 - 2xd-3
+

1
8

 a2x + 1b4

y =

1
21

 s3x - 2d7
+ a4 -

1
2x2 b

-1

y =

1
x  sin-5 x -

x
3

 cos3 xy = x2 sin4 x + x cos-2 x

r = 6ssec u - tan ud3>2r = scsc u + cot ud-1

s = sin a3pt
2
b + cos a3pt

2
bs =

4
3p

 sin 3t +

4
5p

 cos 5t

q = 23 2r - r2p = 23 - t

y = e A42x + x2By = e 5 - 7x

y = e 2x>3y = e-5x

At any point (x, y) on the curve, and the slope of the tangent line is

the quotient of two positive numbers.

EXAMPLE 9 The formulas for the derivatives of both sin x and cos x were obtained un-
der the assumption that x is measured in radians, not degrees. The Chain Rule gives us new
insight into the difference between the two. Since radians, radi-
ans where x° is the size of the angle measured in degrees.

By the Chain Rule,

See Figure 3.27. Similarly, the derivative of 
The factor would compound with repeated differentiation. We see here the 

advantage for the use of radian measure in computations.
p>180

cos sx°d is - sp>180d sin sx°d .

d
dx

 sin sx°d =
d
dx

 sin a px
180
b =

p
180

 cos a px
180
b =

p
180

 cos sx°d .

x° = px>180180° = p

dy
dx

=
6

s1 - 2xd4 ,

x Z 1>2
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41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

In Exercises 51–70, find .

51. 52.

53. 54.

55. 56.

57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

67. 68.

69. 70.

Second Derivatives
Find in Exercises 71–78.

71. 72.

73. 74.

75. 76.

77. 78.

Finding Derivative Values
In Exercises 79–84, find the value of at the given value of x.

79.

80.

81.

82.

83.

84.

85. Assume that and 
What is at 

86. If and then what is 
at t = 0?

dr>dtƒ¿s0d = 4,r = sin sƒstdd, ƒs0d = p>3,

x = 2?y¿

y = ƒsgsxdd.ƒ¿s3d = -1, g¿s2d = 5, gs2d = 3,

ƒsud = au - 1
u + 1

b2

, u = g sxd =

1
x2 - 1, x = -1

ƒsud =

2u

u2
+ 1

 , u = g sxd = 10x2
+ x + 1, x = 0

ƒsud = u +

1
cos2 u

 , u = g sxd = px, x = 1>4
ƒsud = cot 

pu
10

 , u = g sxd = 51x, x = 1

ƒsud = 1 -

1
u , u = g sxd =

1
1 - x

 , x = -1

ƒsud = u5
+ 1, u = g sxd = 1x, x = 1

sƒ � gd¿

y = sin (x2ex)y = ex2

+ 5x

y = x2 sx3
- 1d5y = x s2x + 1d4

y = 9 tan ax
3
by =

1
9

 cot s3x - 1d

y = A1 - 1x B-1y = a1 +

1
x b

3

y–

y = 43t + 32 + 21 - ty = 3t s2t2
- 5d4

y = cos4 ssec2 3tdy = tan2 ssin3 td
y = 4 sin A21 + 1t By = 21 + cos st2d

y =

1
6

 A1 + cos2 s7td B3y = a1 + tan4 a t
12
b b3

y = cos a5 sin a t
3
b by = sin scos s2t - 5dd

y = a3t - 4
5t + 2

b-5

y = a t2

t3
- 4t

b3

y = Ae sin (t>2) B3y = ecos2 (pt - 1)

y = st -3>4 sin td4>3y = st tan td10

y = s1 + cot st>2dd-2y = s1 + cos 2td-4

y = sec2 pty = sin2 spt - 2d

dy>dt

y = u3e-2u cos 5uy = cos Ae-u2 B
q = cot asin t

t bq = sin a t

2t + 1
b

r = sec2u tan a1
u
br = sin su2d cos s2ud

g std = a1 + sin 3t
3 - 2t

b-1

ƒsud = a sin u

1 + cos u
b2

g sxd =

tan 3x

sx + 7d4ƒsxd = 27 + x sec x
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87. Suppose that functions ƒ and g and their derivatives with respect
to x have the following values at and 

x ƒ(x) g(x) ƒ�(x) g�(x)

2 8 2
3 3 5

Find the derivatives with respect to x of the following combina-
tions at the given value of x.

a. b.

c. d.

e. f.

g. h.

88. Suppose that the functions ƒ and g and their derivatives with re-
spect to x have the following values at and 

x ƒ(x) g(x) ƒ�(x) g�(x)

0 1 1 5
1 3

Find the derivatives with respect to x of the following combina-
tions at the given value of x.

a. b.

c. d.

e. f.

g.

89. Find when if and 

90. Find when if and 

Theory and Examples
What happens if you can write a function as a composite in different
ways? Do you get the same derivative each time? The Chain Rule says
you should. Try it with the functions in Exercises 91 and 92.

91. Find if by using the Chain Rule with y as a compos-
ite of

a.

b.

92. Find if by using the Chain Rule with y as a com-
posite of

a.

b.

93. Find the tangent to at 

94. Find the tangent to at 

95. a. Find the tangent to the curve 

b. Slopes on a tangent curve What is the smallest value the
slope of the curve can ever have on the interval 

Give reasons for your answer.

96. Slopes on sine curves

a. Find equations for the tangents to the curves and
at the origin. Is there anything special about

how the tangents are related? Give reasons for your answer.
y = -sin sx>2d

y = sin 2x

-2 6 x 6 2?

y = 2 tan spx>4d at x = 1.

x = 2.y = 2x2
- x + 7

x = 0.y = ssx - 1d>sx + 1dd2

y = 1u and u = x3 .

y = u3 and u = 1x

y = x3>2dy>dx

y = 1 + s1>ud and u = 1>sx - 1d .

y = su>5d + 7 and u = 5x - 35

y = xdy>dx

dx>dt = 1>3.y = x2
+ 7x - 5x = 1dy>dt

du>dt = 5.s = cos uu = 3p>2ds>dt

ƒsx + g sxdd, x = 0

sx11
+ ƒsxdd-2, x = 1g sƒsxdd, x = 0

ƒsg sxdd, x = 0
ƒsxd

g sxd + 1
 , x = 1

ƒsxdg3sxd, x = 05ƒsxd - g sxd, x = 1

-8>3-1>3-4
1>3

x = 1.x = 0

2ƒ2sxd + g2sxd, x = 21>g2sxd, x = 3

2ƒsxd, x = 2ƒsg sxdd, x = 2

ƒsxd>g sxd, x = 2ƒsxd # g sxd, x = 3

ƒsxd + g sxd, x = 32ƒsxd, x = 2

2p-4
-31>3

x = 3.x = 2
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b. Can anything be said about the tangents to the curves
and at the origin

Give reasons for your answer.

c. For a given m, what are the largest values the slopes of the
curves and can ever have? Give
reasons for your answer.

d. The function completes one period on the interval
the function completes two periods, the

function completes half a period, and so on. Is
there any relation between the number of periods 
completes on and the slope of the curve 
at the origin? Give reasons for your answer.

97. Running machinery too fast Suppose that a piston is moving
straight up and down and that its position at time t sec is

with A and b positive. The value of A is the amplitude of the mo-
tion, and b is the frequency (number of times the piston moves up
and down each second). What effect does doubling the frequency
have on the piston’s velocity, acceleration, and jerk? (Once you
find out, you will know why some machinery breaks when you
run it too fast.)

98. Temperatures in Fairbanks, Alaska The graph in the accom-
panying figure shows the average Fahrenheit temperature in
Fairbanks, Alaska, during a typical 365-day year. The equation
that approximates the temperature on day x is

and is graphed in the accompanying figure.

a. On what day is the temperature increasing the fastest?

b. About how many degrees per day is the temperature increas-
ing when it is increasing at its fastest?

99. Particle motion The position of a particle moving along a co-
ordinate line is with s in meters and t in seconds.
Find the particle’s velocity and acceleration at 

100. Constant acceleration Suppose that the velocity of a falling
body is (k a constant) at the instant the body
has fallen s m from its starting point. Show that the body’s accel-
eration is constant.

101. Falling meteorite The velocity of a heavy meteorite entering
Earth’s atmosphere is inversely proportional to when it is 
s km from Earth’s center. Show that the meteorite’s acceleration
is inversely proportional to s2 .

1s

y = k1s m>sec

t = 6 sec.
s = 21 + 4t ,

Ja
n

Feb M
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M
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n Ju

l
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Nov Dec Ja
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T
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tu
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 (
˚F

)

y = 37 sin c 2p
365

 sx - 101d d + 25

s = A cos s2pbtd ,

y = sin mx[0, 2p]
y = sin mx

y = sin sx>2d
y = sin 2x[0, 2p] ,

y = sin x

y = -sin sx>mdy = sin mx

sm a constant Z 0d?
y = -sin sx>mdy = sin mx
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102. Particle acceleration A particle moves along the x-axis with
velocity Show that the particle’s acceleration is

103. Temperature and the period of a pendulum For oscillations
of small amplitude (short swings), we may safely model the rela-
tionship between the period T and the length L of a simple pen-
dulum with the equation

where g is the constant acceleration of gravity at the pendulum’s lo-
cation. If we measure g in centimeters per second squared, we
measure L in centimeters and T in seconds. If the pendulum is made
of metal, its length will vary with temperature, either increasing or
decreasing at a rate that is roughly proportional to L. In symbols,
with u being temperature and k the proportionality constant,

Assuming this to be the case, show that the rate at which the pe-
riod changes with respect to temperature is .

104. Chain Rule Suppose that and Then the
composites

are both differentiable at even though g itself is not differ-
entiable at Does this contradict the Chain Rule? Explain.

105. The derivative of sin 2x Graph the function for
Then, on the same screen, graph

for and 0.2. Experiment with other values of h, in-
cluding negative values. What do you see happening as 
Explain this behavior.

106. The derivative of Graph for
Then, on the same screen, graph

for Experiment with other values of h.
What do you see happening as Explain this behavior.

Using the Chain Rule, show that the Power Rule 
holds for the functions in Exercises 107 and 108.

107. 108.

COMPUTER EXPLORATIONS
Trigonometric Polynomials
109. As the accompanying figure shows, the trigonometric “polynomial”

gives a good approximation of the sawtooth function 
on the interval How well does the derivative of ƒ ap-
proximate the derivative of g at the points where is de-
fined? To find out, carry out the following steps.

dg>dt
[-p, p] .

s = g std

- 0.02546 cos 10t - 0.01299 cos 14t

 s = ƒstd = 0.78540 - 0.63662 cos 2t - 0.07074 cos 6t

x3>4
= 2x1xx1>4

= 21x

xn
sd>dxdxn

= nxn - 1

h : 0?
h = 1.0, 0.7, and 0.3 .

y =

cos ssx + hd2d - cos sx2d
h

-2 … x … 3.
y = -2x sin sx2dcos sx2d

h : 0?
h = 1.0, 0.5 ,

y =

sin 2sx + hd - sin 2x

h

-2 … x … 3.5 .
y = 2 cos 2x

x = 0.
x = 0

sƒ � gdsxd = ƒ x ƒ
2

= x2 and sg � ƒdsxd = ƒ x2
ƒ = x2

g sxd = ƒ x ƒ .ƒsxd = x2

kT>2

dL
du

= kL .

T = 2pA
L
g  ,

ƒsxdƒ¿sxd .
dx>dt = ƒsxd .

T
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a. Graph (where defined) over 

b. Find .

c. Graph . Where does the approximation of by
seem to be best? Least good? Approximations by

trigonometric polynomials are important in the theories of
heat and oscillation, but we must not expect too much of
them, as we see in the next exercise.

110. (Continuation of Exercise 109.) In Exercise 109, the trigonometric
polynomial that approximated the sawtooth function g(t) on

had a derivative that approximated the derivative of the
sawtooth function. It is possible, however, for a trigonometric
polynomial to approximate a function in a reasonable way with-
out its derivative approximating the function’s derivative at all
well. As a case in point, the “polynomial”

[-p, p]
ƒ(t)

t

s

0–� �

2
�

s � g(t)

s � f (t)

dƒ>dt
dg>dtdƒ>dt

dƒ>dt

[-p, p] .dg>dt
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x

y

0 5

5

A

x3 � y3 � 9xy � 0

y � f1(x)
(x0, y1)

y � f2(x)

y � f3(x)

(x0, y2)

(x0, y3)

x0

FIGURE 3.28 The curve
is not the graph of

any one function of x. The curve can,
however, be divided into separate arcs that
are the graphs of functions of x. This
particular curve, called a folium, dates to
Descartes in 1638.

x3
+ y3

- 9xy = 0

graphed in the accompanying figure approximates the step func-
tion shown there. Yet the derivative of h is nothing like
the derivative of k.

a. Graph (where defined) over 

b. Find 

c. Graph to see how badly the graph fits the graph of
. Comment on what you see.dk>dt

dh>dt

dh>dt.

[-p, p] .dk>dt

1

t

s

0 �
2

�–� �
2

–

–1

s � k(t)

s � h(t)

s = kstd

 + 0.18189 sin 14t + 0.14147 sin 18t

 s = hstd = 1.2732 sin 2t + 0.4244 sin 6t + 0.25465 sin 10t

3.7 Implicit Differentiation

Most of the functions we have dealt with so far have been described by an equation of the
form that expresses y explicitly in terms of the variable x. We have learned rules
for differentiating functions defined in this way. Another situation occurs when we en-
counter equations like

(See Figures 3.28, 3.29, and 3.30.) These equations define an implicit relation between the
variables x and y. In some cases we may be able to solve such an equation for y as an ex-
plicit function (or even several functions) of x. When we cannot put an equation

in the form to differentiate it in the usual way, we may still be able
to find by implicit differentiation. This section describes the technique.

Implicitly Defined Functions

We begin with examples involving familiar equations that we can solve for y as a function
of x to calculate in the usual way. Then we differentiate the equations implicitly, and
find the derivative to compare the two methods. Following the examples, we summarize
the steps involved in the new method. In the examples and exercises, it is always assumed
that the given equation determines y implicitly as a differentiable function of x so that

exists.

EXAMPLE 1 Find if 

Solution The equation defines two differentiable functions of x that we can actu-
ally find, namely and (Figure 3.29). We know how to calculate the
derivative of each of these for 

dy1

dx
=

1
21x
 and dy2

dx
= -

1
21x

 .

x 7 0:
y2 = -1xy1 = 1x

y2
= x

y2
= x .dy>dx

dy>dx

dy>dx

dy>dx
y = ƒsxdFsx, yd = 0

x3
+ y3

- 9xy = 0, y2
- x = 0, or   x2

+ y2
- 25 = 0.

y = ƒsxd

7001_AWLThomas_ch03p122-221.qxd  10/12/09  2:22 PM  Page 170



But suppose that we knew only that the equation defined y as one or more differ-
entiable functions of x for without knowing exactly what these functions were.
Could we still find ?

The answer is yes. To find , we simply differentiate both sides of the equation
with respect to x, treating as a differentiable function of x:

This one formula gives the derivatives we calculated for both explicit solutions 
and 

EXAMPLE 2 Find the slope of the circle at the point 

Solution The circle is not the graph of a single function of x. Rather it is the combined
graphs of two differentiable functions, and (Figure
3.30). The point lies on the graph of so we can find the slope by calculating the
derivative directly, using the Power Chain Rule:

We can solve this problem more easily by differentiating the given equation of the
circle implicitly with respect to x:

The slope at is 

Notice that unlike the slope formula for which applies only to points 
below the x-axis, the formula applies everywhere the circle has a slope.
Notice also that the derivative involves both variables x and y, not just the independent
variable x.

To calculate the derivatives of other implicitly defined functions, we proceed as in 
Examples 1 and 2: We treat y as a differentiable implicit function of x and apply the usual
rules to differentiate both sides of the defining equation.

dy>dx = -x>y dy2>dx ,

-
x
y `

s3, -4d
= -

3
-4

=
3
4

 .s3, -4d

 
dy
dx

= -
x
y .

 2x + 2y 
dy
dx

= 0

 
d
dx

 (x2) +
d
dx

 (y2) =
d
dx

 (25)

dy2

dx
`
x = 3

= -
-2x

2225 - x2
`
x = 3

= -
-6

2225 - 9
=

3
4

 .

y2 ,s3, -4d
y2 = -225 - x2y1 = 225 - x2

s3, -4d .x2
+ y2

= 25

dy1

dx
=

1
2y1

=
1

21x
 and dy2

dx
=

1
2y2

=
1

2 A -1x B = -
1

21x
 .

y2 = -1x :
y1 = 1x

 
dy
dx

=
1
2y

 .

 2y 
dy
dx

= 1

 y2
= x

y = ƒsxdy2
= x

dy>dx
dy>dx

x 7 0
y2

= x
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x

y

0

y2 � x

Slope � �
2y1

1
2�x

1

Slope � � �
2y2

1
2�x

1

y1 � �x

y2 � ��x

P(x, �x )

Q(x, ��x )

FIGURE 3.29 The equation 
or as it is usually written, defines
two differentiable functions of x on the
interval Example 1 shows how to
find the derivatives of these functions
without solving the equation for y.y2

= x

x 7 0.

y2
= x

y2
- x = 0,

-

1
2

 (25 - x2)-1>2(-2x)

d
dx

- (25 - x2)1>2
=

The Chain Rule gives 

d
dx

 [ƒsxd]2
= 2ƒsxdƒ¿sxd = 2y 

dy

dx
.

d
dx

 Ay2 B =

0 5–5
x

y

Slope � – �y
x

4
3

(3, –4)

y1 � �25 � x2

y2 � –�25 � x2

FIGURE 3.30 The circle combines the
graphs of two functions. The graph of is
the lower semicircle and passes through
s3, -4d .

y2
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EXAMPLE 3 Find if (Figure 3.31).

Solution We differentiate the equation implicitly.

Treat xy as a product.

Collect terms with .

Solve for 

Notice that the formula for applies everywhere that the implicitly defined curve has
a slope. Notice again that the derivative involves both variables x and y, not just the inde-
pendent variable x.

Derivatives of Higher Order

Implicit differentiation can also be used to find higher derivatives.

EXAMPLE 4 Find if

Solution To start, we differentiate both sides of the equation with respect to x in order to
find 

Treat y as a function of x.

Solve for 

We now apply the Quotient Rule to find 

Finally, we substitute to express in terms of x and y.

y– =
2x
y -

x2

y2 ax2

y b =
2x
y -

x4

y3 , when y Z 0

y–y¿ = x2>y
y– =

d
dx

 ax2

y b =

2xy - x2y¿

y2 =
2x
y -

x2

y2
# y¿

y– .

y¿. y¿ =
x2

y , when y Z 0

 6x2
- 6yy¿ = 0

 
d
dx

 (2x3
- 3y2) =

d
dx

 s8d

y¿ = dy>dx .

2x3
- 3y2

= 8.d2y>dx2

dy>dx

dy>dx. 
dy
dx

=

2x + y cos xy
2y - x cos xy

 s2y - x cos xyd 
dy
dx

= 2x + y cos xy

dy>dx 2y 
dy
dx

- scos xyd ax 
dy
dx
b = 2x + scos xydy

 2y 
dy
dx

= 2x + scos xyd ay + x 
dy
dx
b

 2y 
dy
dx

= 2x + scos xyd 
d
dx

 Axy B
 
d
dx

 Ay2 B =
d
dx

 Ax2 B +
d
dx

 Asin xy B
 y2

= x2
+ sin xy

y2
= x2

+ sin xydy>dx
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y2 � x2 � sin xy

y

x

4

2

0 2 4–2–4

–2

–4

FIGURE 3.31 The graph of
in Example 3.y2

= x2
+ sin xy

Implicit Differentiation
1. Differentiate both sides of the equation with respect to x, treating y as a differ-

entiable function of x.

2. Collect the terms with on one side of the equation and solve for .dy>dxdy>dx

Differentiate both sides with
respect to x Á

treating y as a function of
x and using the Chain Rule.
Á
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Lenses, Tangents, and Normal Lines

In the law that describes how light changes direction as it enters a lens, the important an-
gles are the angles the light makes with the line perpendicular to the surface of the lens at
the point of entry (angles A and B in Figure 3.32). This line is called the normal to the sur-
face at the point of entry. In a profile view of a lens like the one in Figure 3.32, the normal
is the line perpendicular to the tangent of the profile curve at the point of entry.

EXAMPLE 5 Show that the point (2, 4) lies on the curve Then
find the tangent and normal to the curve there (Figure 3.33).

Solution The point (2, 4) lies on the curve because its coordinates satisfy the equation
given for the curve: 

To find the slope of the curve at (2, 4), we first use implicit differentiation to find a
formula for :

Solve for .

We then evaluate the derivative at 

The tangent at (2, 4) is the line through (2, 4) with slope :

The normal to the curve at (2, 4) is the line perpendicular to the tangent there, the line
through (2, 4) with slope 

The quadratic formula enables us to solve a second-degree equation like
for y in terms of x. There is a formula for the three roots of a cubic

equation that is like the quadratic formula but much more complicated. If this formula is
used to solve the equation in Example 5 for y in terms of x, then three
functions determined by the equation are

y = ƒsxd =
3C-

x3

2
+ B

x6

4
- 27x3

+
3C-

x3

2
- B

x6

4
- 27x3

x3
+ y3

= 9xy

y2
- 2xy + 3x2

= 0

 y = -
5
4

 x +
13
2

.

 y = 4 -
5
4

 sx - 2d

-5>4:

 y =
4
5 x +

12
5 .

 y = 4 +
4
5 sx - 2d

4>5

dy
dx
`
s2, 4d

=

3y - x2

y2
- 3x

`
s2, 4d

=

3s4d - 22

42
- 3s2d

=
8

10
=

4
5 .

sx, yd = s2, 4d :

dy>dx 
dy
dx

=

3y - x2

y2
- 3x

 .

 3sy2
- 3xd 

dy
dx

= 9y - 3x2

 s3y2
- 9xd 

dy
dx

+ 3x2
- 9y = 0

 3x2
+ 3y2 

dy
dx

- 9 ax 
dy
dx

+ y 
dx
dx
b = 0

 
d
dx

 (x3) +
d
dx

 (y3) -
d
dx

 (9xy) =
d
dx

 (0)

 x3
+ y3

- 9xy = 0

dy>dx

23
+ 43

- 9s2ds4d = 8 + 64 - 72 = 0.

x3
+ y3

- 9xy = 0.
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A

Normal line

Light ray
Tangent

Point of entry
P

B

Curve of lens
surface

FIGURE 3.32 The profile of a lens,
showing the bending (refraction) of a ray
of light as it passes through the lens
surface.

x

y

0 2

4

 Tan
gen

t

N
orm

alx3 � y3 � 9xy � 0

FIGURE 3.33 Example 5 shows how to
find equations for the tangent and normal
to the folium of Descartes at (2, 4).

Differentiate both sides
with respect to x.

Treat xy as a product and y
as a function of x.
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and

Using implicit differentiation in Example 5 was much simpler than calculating di-
rectly from any of the above formulas. Finding slopes on curves defined by higher-degree
equations usually requires implicit differentiation.

dy>dx

y =
1
2

 c-ƒsxd ; 2-3 aC3 -
x3

2
+ B

x6

4
- 27x3

- C3 -
x3

2
- B

x6

4
- 27x3b d .

Exercise 3.7

Differentiating Implicitly
Use implicit differentiation to find in Exercises 1–16.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

Find in Exercises 17–20.

17. 18.

19. 20.

Second Derivatives
In Exercises 21–26, use implicit differentiation to find and then

21. 22.

23. 24.

25. 26.

27. If find the value of at the point (2, 2).

28. If find the value of at the point 

In Exercises 29 and 30, find the slope of the curve at the given points.

29. and 

30. and 

Slopes, Tangents, and Normals
In Exercises 31–40, verify that the given point is on the curve and find
the lines that are (a) tangent and (b) normal to the curve at the given
point.

31.

32.

33.

34.

35. 6x2
+ 3xy + 2y2

+ 17y - 6 = 0, s -1, 0d
y2

- 2x - 4y - 1 = 0, s -2, 1d
x2y2

= 9, s -1, 3d
x2

+ y2
= 25, s3, -4d

x2
+ xy - y2

= 1, s2, 3d

s1, -1dsx2
+ y2d2

= sx - yd2 at s1, 0d
s -2, -1dy2

+ x2
= y4

- 2x at s -2, 1d

s0, -1d .d 2y>dx2xy + y2
= 1,

d 2y>dx2x3
+ y3

= 16,

xy + y2
= 121y = x - y

y2
- 2x = 1 - 2yy2

= ex2

+ 2x

x2>3
+ y2>3

= 1x2
+ y2

= 1

d 2y>dx 2 .
dy>dx

cos r + cot u = erusin srud =

1
2

r - 22u =

3
2

 u2>3
+

4
3

 u3>4u1>2
+ r1>2

= 1

dr>du
ex2y

= 2x + 2ye2x
= sin (x + 3y)

x cos s2x + 3yd = y sin xy sin a1y b = 1 - xy

x4
+ sin y = x3y2x + tan (xy) = 0

xy = cot sxydx = tan y

x3
=

2x - y

x + 3y
y2

=

x - 1
x + 1

s3xy + 7d2
= 6yx2sx - yd2

= x2
- y2

x3
- xy + y3

= 12xy + y2
= x + y

x3
+ y3

= 18xyx2y + xy2
= 6

dy>dx
36.

37.

38.

39.

40.

41. Parallel tangents Find the two points where the curve
crosses the x-axis, and show that the tangents

to the curve at these points are parallel. What is the common
slope of these tangents?

42. Normals parallel to a line Find the normals to the curve
that are parallel to the line 

43. The eight curve Find the slopes of the curve at
the two points shown here.

44. The cissoid of Diocles (from about 200 B.C.) Find equations for
the tangent and normal to the cissoid of Diocles 
at (1, 1).

45. The devil’s curve (Gabriel Cramer, 1750) Find the slopes of
the devil’s curve at the four indicated points.y4

- 4y2
= x4

- 9x2

x

y

1

1

(1, 1)

0

y2(2 2 x) 5 x3

y2s2 - xd = x3

x

y

0

1

–1

y4 5 y2 2 x2

⎛
⎝

⎛
⎝

�3
4

�3
2

,

⎛
⎝

⎛
⎝

�3
4

1
2

,

y4
= y2

- x2

2x + y = 0.xy + 2x - y = 0

x2
+ xy + y2

= 7

x2 cos2 y - sin y = 0, s0, pd
y = 2 sin spx - yd, s1, 0d
x sin 2y = y cos 2x, sp>4, p>2d
2xy + p sin y = 2p, s1, p>2d
x2

- 23xy + 2y2
= 5, A23, 2 B
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46. The folium of Descartes (See Figure 3.28.)

a. Find the slope of the folium of Descartes 
at the points (4, 2) and (2, 4).

b. At what point other than the origin does the folium have a
horizontal tangent?

c. Find the coordinates of the point A in Figure 3.28, where the
folium has a vertical tangent.

Theory and Examples
47. Intersecting normal The line that is normal to the curve 

at (1, 1) intersects the curve at what other
point?

48. Power rule for rational exponents Let p and q be integers with
If differentiate the equivalent equation 

implicitly and show that, for 

49. Normals to a parabola Show that if it is possible to draw three
normals from the point (a, 0) to the parabola shown in the
accompanying diagram, then a must be greater than . One of
the normals is the x-axis. For what value of a are the other two
normals perpendicular?

50. Is there anything special about the tangents to the curves 
and at the points Give reasons for your
answer.

x

y

0

(1, 1)

y2 � x3

2x2 � 3y2 � 5

(1, –1)

s1, ;1d?2x2
+ 3y2

= 5
y2

= x3

x

y

0 (a, 0)

x � y2

1>2x = y2

d
dx

xp>q
=

p
q x(p>q)-1.

y Z 0,
yq

= xpy = xp>q,q 7 0.

2xy - 3y 2
= 0x2 +

x3
+ y3

- 9xy = 0

x

y

3–3

2

–2

(3, 2)

(3, –2)

(–3, 2)

(–3, –2)

y4 2 4y2 5 x4 2 9x2
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51. Verify that the following pairs of curves meet orthogonally.

a.

b.

52. The graph of is called a semicubical parabola and is
shown in the accompanying figure. Determine the constant b so
that the line meets this graph orthogonally.

In Exercises 53 and 54, find both (treating y as a differentiable
function of x) and (treating x as a differentiable function of y).
How do and seem to be related? Explain the relationship
geometrically in terms of the graphs.

53.

54.

COMPUTER EXPLORATIONS
Use a CAS to perform the following steps in Exercises 55–62.

a. Plot the equation with the implicit plotter of a CAS. Check to
see that the given point P satisfies the equation.

b. Using implicit differentiation, find a formula for the deriva-
tive and evaluate it at the given point P.

c. Use the slope found in part (b) to find an equation for the tan-
gent line to the curve at P. Then plot the implicit curve and
tangent line together on a single graph.

55.

56.

57.

58.

59.

60.

61.

62. x21 + 2y + y = x2, P s1, 0d

2y2
+ sxyd1>3

= x2
+ 2, Ps1, 1d

xy3
+ tan (x + yd = 1, P ap

4
, 0b

x + tan ayx b = 2, P a1, 
p

4
b

y3
+ cos xy = x2, Ps1, 0d

y2
+ y =

2 + x
1 - x

 , Ps0, 1d

x5
+ y3x + yx2

+ y4
= 4, Ps1, 1d

x3
- xy + y3

= 7, Ps2, 1d

dy>dx

x3
+ y2

= sin2 y

xy3
+ x2y = 6

dx>dydy>dx
dx>dy

dy>dx

x

y

0

y2 5 x3

y 5 2   x 1 b1
3

y = -
1
3 x + b

y2
= x3

x = 1 - y2, x =

1
3

 y2

x2
+ y2

= 4, x2
= 3y2

T
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3.8 Derivatives of Inverse Functions and Logarithms

In Section 1.6 we saw how the inverse of a function undoes, or inverts, the effect of that
function. We defined there the natural logarithm function as the inverse of
the natural exponential function This is one of the most important function-
inverse pairs in mathematics and science. We learned how to differentiate the exponential
function in Section 3.3. Here we learn a rule for differentiating the inverse of a differen-
tiable function and we apply the rule to find the derivative of the natural logarithm function.

Derivatives of Inverses of Differentiable Functions

We calculated the inverse of the function as in
Example 3 of Section 1.6. Figure 3.34 shows again the graphs of both functions. If we cal-
culate their derivatives, we see that

The derivatives are reciprocals of one another, so the slope of one line is the reciprocal of
the slope of its inverse line. (See Figure 3.34.)

This is not a special case. Reflecting any nonhorizontal or nonvertical line across the
line always inverts the line’s slope. If the original line has slope , the reflected
line has slope 1 m.> m Z 0y = x

 
d
dx

 ƒ -1sxd =
d
dx

 s2x - 2d = 2.

 
d
dx

 ƒsxd =
d
dx

 a1
2

 x + 1b =
1
2

ƒ -1sxd = 2x - 2ƒsxd = s1>2dx + 1

ƒ(x) = ex.
ƒ -1(x) = ln x
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x

y

–2

1

–2

1

y � 2x � 2
y � x

y � x � 11
2

FIGURE 3.34 Graphing a line and its
inverse together shows the graphs’
symmetry with respect to the line 
The slopes are reciprocals of each other.

y = x .

x

y

0 a
x

y

0

b = f (a) (a,  b)

y = f (x)

(b, a)

y = f –1(x)

b

a = f –1(b)

The slopes are reciprocal: ( f –1)'(b) =          or ( f –1)'(b) =1
f'(a)

1
f '( f –1(b))

FIGURE 3.35 The graphs of inverse functions have reciprocal
slopes at corresponding points.

The reciprocal relationship between the slopes of ƒ and holds for other functions
as well, but we must be careful to compare slopes at corresponding points. If the slope of

at the point (a, ƒ(a)) is and then the slope of at the
point (ƒ(a), a) is the reciprocal (Figure 3.35). If we set then

If has a horizontal tangent line at (a, ƒ(a)) then the inverse function has a
vertical tangent line at (ƒ(a), a), and this infinite slope implies that is not differentiable
at ƒ(a). Theorem 3 gives the conditions under which is differentiable in its domain
(which is the same as the range of ƒ).

ƒ -1
ƒ -1

ƒ -1y = ƒsxd

sƒ -1d¿sbd =
1

ƒ¿sad
=

1
ƒ¿sƒ -1sbdd

.

b = ƒsad ,1>ƒ¿sad
y = ƒ -1sxdƒ¿sad Z 0,ƒ¿sady = ƒsxd

ƒ -1
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Theorem 3 makes two assertions. The first of these has to do with the conditions
under which is differentiable; the second assertion is a formula for the derivative of

when it exists. While we omit the proof of the first assertion, the second one is proved
in the following way:

Inverse function relationship

Differentiating both sides

Chain Rule

Solving for the derivative

EXAMPLE 1 The function and its inverse have deriva-

tives and 
Let’s verify that Theorem 3 gives the same formula for the derivative of :

Theorem 3 gives a derivative that agrees with the known derivative of the square root
function.

Let’s examine Theorem 3 at a specific point. We pick (the number a) and
(the value b). Theorem 3 says that the derivative of ƒ at 2, and the 

derivative of at ƒ(2), are reciprocals. It states that

See Figure 3.36.

We will use the procedure illustrated in Example 1 to calculate formulas for the derivatives
of many inverse functions throughout this chapter. Equation (1) sometimes enables us to
find specific values of without knowing a formula for ƒ -1 .dƒ -1>dx

sƒ -1d¿s4d =
1

ƒ¿sƒ -1s4dd
=

1
ƒ¿s2d

=
1
2x
`
x = 2

=
1
4

 .

sƒ -1d¿s4d ,ƒ -1
ƒ¿s2d = 4,ƒs2d = 4

x = 2

 =
1

2s1xd
.

 =
1

2sƒ -1sxdd

 sƒ -1d¿sxd =
1

ƒ¿sƒ -1sxdd

ƒ -1sxd
sƒ -1d¿sxd = 1> A21x B .ƒ¿sxd = 2x

ƒ-1sxd = 1xƒsxd = x2, x Ú 0

 
d
dx

 ƒ -1sxd =
1

ƒ¿sƒ -1sxdd
.

 ƒ¿sƒ -1sxdd # d
dx

 ƒ -1sxd = 1

 
d
dx

 ƒsƒ -1sxdd = 1

 ƒsƒ -1sxdd = x

ƒ -1
ƒ -1
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THEOREM 3—The Derivative Rule for Inverses If ƒ has an interval I as domain
and exists and is never zero on I, then is differentiable at every point in
its domain (the range of ƒ). The value of at a point b in the domain of 
is the reciprocal of the value of at the point 

(1)

or

dƒ -1

dx
 `

x = b
=

1
dƒ
dx
`

 
 

x = ƒ -1sbd

sƒ -1d¿sbd =
1

ƒ¿sƒ -1sbdd

a = ƒ -1sbd :ƒ¿

ƒ -1sƒ -1d¿

ƒ -1ƒ¿sxd

x

y

Slope

1

10

1–
4

Slope 4

2 3 4

2

3

4 (2, 4)

(4, 2)

y � x2, x � 0

y � �x

FIGURE 3.36 The derivative of
at the point (4, 2) is the

reciprocal of the derivative of 
at (2, 4) (Example 1).

ƒsxd = x2
ƒ -1sxd = 1x

with x replaced

by ƒ-1sxd
ƒ¿sxd = 2x
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EXAMPLE 2 Let Find the value of at without
finding a formula for 

Solution We apply Theorem 3 to obtain the value of the derivative of at 

. Eq. (1)

See Figure 3.37.

Derivative of the Natural Logarithm Function

Since we know the exponential function is differentiable everywhere, we can
apply Theorem 3 to find the derivative of its inverse 

Theorem 3

Inverse function relationship

Alternate Derivation Instead of applying Theorem 3 directly, we can find the derivative
of using implicit differentiation, as follows:

Inverse function relationship

Differentiate implicitly

Chain Rule

No matter which derivation we use, the derivative of with respect to x is

The Chain Rule extends this formula for positive functions 

d
dx

 ln u =
d

du
 ln u # du

dx

usxd:

d
dx

 (ln x) =
1
x , x 7 0.

y = ln x

ey
= x 

dy
dx

=
1
ey =

1
x .

 ey 
dy
dx

= 1

d
dx

 (ey) =
d
dx

 (x)

 ey
= x

 y = ln x

y = ln x

 =
1
x .

 =
1

e ln x

ƒ¿(u) = eu =
1

eƒ -1(x)

(ƒ -1)¿(x) =
1

ƒ¿(ƒ -1(x))

ƒ -1(x) = ln x:
ƒ(x) = ex

 
dƒ -1

dx
 `

x = ƒs2d
=

1
dƒ
dx

 `
x = 2

=
1

12

 
dƒ
dx

 `
x = 2

= 3x2 `
x = 2

= 12

x = 6:ƒ -1

ƒ -1sxd .
x = 6 = ƒs2ddƒ -1>dxƒsxd = x3

- 2.
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x

y

0

–2

–2 6

6 (2, 6)

Reciprocal slope:

(6, 2)

y � x3 � 2
Slope 3x2 � 3(2)2 � 12

1
12

FIGURE 3.37 The derivative of
at tells us the

derivative of at (Example 2).x = 6ƒ -1
x = 2ƒsxd = x3

- 2

(2)
d
dx

 ln u =
1
u

 
du
dx

 , u 7 0.
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EXAMPLE 3 We use Equation (2) to find derivatives.

(a)

(b) Equation (2) with gives

Notice the remarkable occurrence in Example 3a. The function has the
same derivative as the function This is true of for any constant b, pro-
vided that :

(3)

If and then and Equation (3) still applies. In particular, if and
we get

for 

Since when and when , we have the following important
result.

x 6 0ƒ x ƒ = -xx 7 0ƒ x ƒ = x

x 6 0.
d
dx

 ln (-x) =
1
x

b = -1
x 6 0bx 7 0b 6 0,x 6 0

d
dx

 ln bx =
1
bx

# d
dx

 sbxd =
1
bx

 sbd =
1
x  .

bx 7 0
y = ln bxy = ln x .

y = ln 2x

d
dx

 ln sx2
+ 3d =

1
x2

+ 3
# d
dx

 sx2
+ 3d =

1
x2

+ 3
# 2x =

2x
x2

+ 3
.

u = x2
+ 3

d
dx

 ln 2x =
1
2x

 
d
dx

 s2xd =
1
2x

 s2d =
1
x , x 7 0
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, (4)x Z 0
d
dx

 ln ƒ x ƒ =
1
x

EXAMPLE 4 A line with slope m passes through the origin and is tangent to the graph of
What is the value of m?

Solution Suppose the point of tangency occurs at the unknown point Then we
know that the point (a, ln a) lies on the graph and that the tangent line at that point has slope

(Figure 3.38). Since the tangent line passes through the origin, its slope is

Setting these two formulas for m equal to each other, we have

The Derivatives of and logau

We start with the equation which was established in Section 1.6:

 = ax ln a .

d
dx

 eu
= eu 

du
dx

 
d
dx

 ax
=

d
dx

 ex ln a
= ex ln a # d

dx
 sx ln ad

ax
= e ln (a x )

= ex ln a ,

au

 m =
1
e .

 a = e
e ln a

= e1

ln a = 1

ln a
a =

1
a

m =
ln a - 0

a - 0
=

ln a
a .

m = 1>a
x = a 7 0.

y = ln x.

1 2 3 4 5

1

0

2

x

y

(a, ln a)

y � ln x

Slope � a
1

FIGURE 3.38 The tangent line intersects
the curve at some point (a, ln a), where the
slope of the curve is (Example 4).1>a
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If then

This equation shows why is the exponential function preferred in calculus. If 
then and the derivative of simplifies to

With the Chain Rule, we get a more general form for the derivative of a general expo-
nential function.

d
dx

 ex
= ex ln e = ex .

axln a = 1
a = e ,ex

d
dx

 ax
= ax ln a .

a 7 0,

180 Chapter 3: Differentiation

EXAMPLE 5 We illustrate using Equation (5). 

(a) Eq. (5) with

(b) Eq. (5) with 

(c)

In Section 3.3 we looked at the derivative for the exponential functions 
at various values of the base a. The number is the limit, , and

gives the slope of the graph of when it crosses the y-axis at the point (0, 1). We now see
that the value of this slope is

(6)

In particular, when we obtain

However, we have not fully justified that these limits actually exist. While all of the argu-
ments given in deriving the derivatives of the exponential and logarithmic functions are
correct, they do assume the existence of these limits. In Chapter 7 we will give another de-
velopment of the theory of logarithmic and exponential functions which fully justifies
that both limits do in fact exist and have the values derived above.

To find the derivative of for an arbitrary base we start with the
change-of-base formula for logarithms (reviewed in Section 1.6) and express in
terms of natural logarithms,

loga x =
ln x
ln a

.

loga u
(a 7 0, a Z 1),loga u

lim
h:0

 
eh

- 1
h

= ln e = 1.

a = e

lim
h:0

 
ah

- 1
h

= ln a.

ax
limh:0 (a

h
- 1)>hƒ¿(0)ax

f (x) =ƒ¿(0)

Á , u = sin x
d
dx

 3sin x
= 3sin xsln 3d 

d
dx

 ssin xd = 3sin x sln 3d cos x

a = 3, u = -x
d
dx

 3-x
= 3-x sln 3d 

d
dx

 s -xd = -3-x ln 3

 a = 3, u = x
d
dx

 3x
= 3x ln 3

If and u is a differentiable function of x, then is a differentiable function
of x and

(5)
d
dx

 au
= au ln a  

du
dx

.

aua 7 0
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Taking derivatives, we have

ln a is a constant.

If u is a differentiable function of x and the Chain Rule gives the following formula.u 7 0,

 =
1

x ln a
.

 =
1

ln a
# 1
x

 =
1

ln a
# d
dx

 ln x

d
dx

 loga x =
d
dx

 aln x
ln a
b

3.8 Derivatives of Inverse Functions and Logarithms 181

For and 

(7)
d
dx

 loga u =
1

u ln a
 
du
dx

.

a Z 1,a 7 0

Logarithmic Differentiation

The derivatives of positive functions given by formulas that involve products, quotients,
and powers can often be found more quickly if we take the natural logarithm of both sides
before differentiating. This enables us to use the laws of logarithms to simplify the formu-
las before differentiating. The process, called logarithmic differentiation, is illustrated in
the next example.

EXAMPLE 6 Find dy dx if

Solution We take the natural logarithm of both sides and simplify the result with the al-
gebraic properties of logarithms from Theorem 1 in Section 1.6:

Rule 2

Rule 1

Rule 4

We then take derivatives of both sides with respect to x, using Equation (2) on the left:

Next we solve for dy dx:

dy
dx

= y a 2x
x2

+ 1
+

1
2x + 6

-
1

x - 1
b .

>
1
y  

dy
dx

=
1

x2
+ 1

 # 2x +
1
2

 #  
1

x + 3
-

1
x - 1

.

 = ln sx2
+ 1d +

1
2

 ln sx + 3d - ln sx - 1d .

 = ln sx2
+ 1d + ln sx + 3d1>2

- ln sx - 1d

 = ln ssx2
+ 1dsx + 3d1>2d - ln sx - 1d

 ln y = ln 
sx2

+ 1dsx + 3d1>2
x - 1

y =

sx2
+ 1dsx + 3d1>2

x - 1
 ,    x 7 1.

>
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Finally, we substitute for y:

Proof of the Power Rule (General Version)

The definition of the general exponential function enables us to make sense of raising any
positive number to a real power n, rational or irrational. That is, we can define the power
function for any exponent n.y = xn

dy
dx

=

sx2
+ 1dsx + 3d1>2

x - 1
 a 2x

x2
+ 1

+
1

2x + 6
-

1
x - 1

b .
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DEFINITION For any and for any real number n,

xn
= en ln x.

x 7 0

General Power Rule for Derivatives
For and any real number n,

If then the formula holds whenever the derivative, and all exist.xn - 1xn,x … 0,

d
dx

 xn
= nxn - 1.

x 7 0

Because the logarithm and exponential functions are inverses of each other, the defi-
nition gives

That is, the Power Rule for the natural logarithm holds for all real exponents n, not just for
rational exponents.

The definition of the power function also enables us to establish the derivative Power
Rule for any real power n, as stated in Section 3.3.

ln xn
= n ln x, for all real numbers n.

Proof Differentiating with respect to x gives

Definition of 

Chain Rule for 

Definition and derivative of ln x

In short, whenever 

For , if , and all exist, then

ln ƒ y ƒ = ln ƒ x ƒ
n

= n ln ƒ x ƒ.

xn - 1y = xn, y¿x 6 0

d
dx

 xn
= nxn - 1 .

x 7 0,

xn # x-1
= xn - 1 = nxn - 1 .

 = xn # n
x

eu = en ln x # d
dx

 sn ln xd

 xn,  x 7 0 
d
dx

 xn
=

d
dx

 en ln x

xn
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Using implicit differentiation (which assumes the existence of the derivative ) and Equa-
tion (4), we have

.

Solving for the derivative,

.

It can be shown directly from the definition of the derivative that the derivative equals 0
when and . This completes the proof of the general version of the Power Rule
for all values of x.

EXAMPLE 7 Differentiate 

Solution We note that so differentiation gives

The Number e Expressed as a Limit

In Section 1.5 we defined the number e as the base value for which the exponential func-
tion has slope 1 when it crosses the y-axis at (0, 1). Thus e is the constant that sat-
isfies the equation

Slope equals ln e from Eq. (6)

We also stated that e could be calculated as or by substituting
as We now prove this result.limx:0 (1 + x)1>x.y = 1>x,

limy: q  (1 + 1>y)y,

lim
h:0

 
eh

- 1
h

= ln e = 1.

y = ax

x 7 0 = xx (ln x + 1).

 = ex ln x aln x + x # 1
x b

d
dx eu, u = x ln x = ex ln x 

d
dx

 (x ln x)

ƒ¿(x) =
d
dx

 (ex ln x)

ƒ(x) = xx
= ex ln x,

x 7 0.ƒ(x) = xx,

n Ú 1x = 0

y¿ = n 
y
x = n 

xn

x = nxn - 1

y¿

y =
n
x

y¿
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Proof If then so But, by the definition of derivative,

 = lim
x:0

 ln s1 + xd1>x
= ln c lim

x:0
s1 + xd1>x d .

ln 1 = 0 = lim
x:0

 
ln s1 + xd - ln 1

x = lim
x:0

  
1
x   ln s1 + xd

ƒ¿s1d = lim
h:0

 
ƒs1 + hd - ƒs1d

h
= lim

x:0
 
ƒs1 + xd - ƒs1d

x

ƒ¿s1d = 1.ƒ¿sxd = 1>x ,ƒsxd = ln x ,

THEOREM 4—The Number e as a Limit The number e can be calculated as the
limit

e = lim
x:0

 s1 + xd1>x .

ln is continuous,
Theorem 10 in
Chapter 2
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Because we have

.

Therefore, exponentiating both sides we get

.

Approximating the limit in Theorem 4 by taking x very small gives approximations to e.
Its value is to 15 decimal places.e L 2.718281828459045

lim
x:0

 s1 + xd1>x
= e

ln c lim
x:0

s1 + xd1>x d = 1

ƒ¿s1d = 1,
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Exercises 3.8

Derivatives of Inverse Functions
In Exercises 1–4:

a. Find 

b. Graph ƒ and together.

c. Evaluate dƒ dx at and at to show that at
these points 

1. 2.

3. 4.

5. a. Show that and are inverses of one an-
other.

b. Graph ƒ and g over an x-interval large enough to show the
graphs intersecting at (1, 1) and Be sure the pic-
ture shows the required symmetry about the line 

c. Find the slopes of the tangents to the graphs of ƒ and g at
(1, 1) and (four tangents in all).

d. What lines are tangent to the curves at the origin?

6. a. Show that and are inverses of one
another.

b. Graph h and k over an x-interval large enough to show the
graphs intersecting at (2, 2) and Be sure the pic-
ture shows the required symmetry about the line 

c. Find the slopes of the tangents to the graphs at h and k at
(2, 2) and 

d. What lines are tangent to the curves at the origin?

7. Let Find the value of at
the point 

8. Let Find the value of at the
point 

9. Suppose that the differentiable function has an inverse
and that the graph of ƒ passes through the point (2, 4) and has a
slope of 1 3 there. Find the value of at 

10. Suppose that the differentiable function has an inverse
and that the graph of g passes through the origin with slope 2.
Find the slope of the graph of at the origin.

Derivatives of Logarithms
In Exercises 11–40, find the derivative of y with respect to x, t, or as
appropriate.

11. 12. y = ln kx, k constanty = ln 3x

u ,

g-1

y = gsxd
x = 4.dƒ -1>dx>

y = ƒsxd
x = 0 = ƒs5d .

dƒ -1>dxƒsxd = x2
- 4x - 5, x 7 2.

x = -1 = ƒs3d .
dƒ -1>dxƒsxd = x3

- 3x2
- 1, x Ú 2.

s -2, -2d .

y = x .
s -2, -2d .

ksxd = s4xd1>3hsxd = x3>4
s -1, -1d

y = x .
s -1, -1d .

g sxd = 1 
3 xƒsxd = x3

ƒsxd = 2x2, x Ú 0, a = 5ƒsxd = 5 - 4x, a = 1>2
ƒsxd = s1>5dx + 7, a = -1ƒsxd = 2x + 3, a = -1

dƒ -1>dx = 1>sdƒ>dxd .
x = ƒsaddƒ -1>dxx = a>

ƒ -1

ƒ -1sxd .

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31.

32.

33. 34.

35. 36.

37. 38.

39. 40.

Logarithmic Differentiation
In Exercises 41–54, use logarithmic differentiation to find the deriva-
tive of y with respect to the given independent variable.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52. y = C
sx + 1d10

s2x + 1d5y =

x2x2
+ 1

sx + 1d2>3

y =

u sin u

2sec u
y =

u + 5
u cos u

y =

1
t st + 1dst + 2d

y = t st + 1dst + 2d

y = stan ud22u + 1y = 2u + 3 sin u

y = A
1

t st + 1d
y = A

t
t + 1

y = 2sx2
+ 1dsx - 1d2y = 2xsx + 1d

y = ln C
sx + 1d5

sx + 2d20y = ln asx2
+ 1d5

21 - x
b

y = ln a2sin u cos u

1 + 2 ln u
by = ln ssec sln udd

y = 2ln 1ty =

1 + ln t
1 - ln t

y =

1
2

 ln 
1 + x
1 - x

y = ln 
1

x2x + 1

y = ln ssec u + tan ud

y = ussin sln ud + cos sln udd

y = ln sln sln xddy = ln sln xd

y =

x ln x
1 + ln x

y =

ln x
1 + ln x

y =

1 + ln t
ty =

ln t
t

y = (x2 ln x)4y =

x4

4
 ln x -

x4

16

y = t2ln ty = t sln td2

y = sln xd3y = ln x3

y = ln s2u + 2dy = ln su + 1d

y = ln 
10
xy = ln 

3
x

y = ln st3>2dy = ln st2d
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53. 54.

Finding Derivatives
In Exercises 55–62, find the derivative of y with respect to x, t, or as
appropriate.

55. 56.

57. 58.

59. 60.

61. 62.

In Exercises 63–66, find dy dx.

63. 64.

65. 66.

In Exercises 67–88, find the derivative of y with respect to the given
independent variable.

67. 68.

69. 70.

71. 72.

73. 74.

75. 76.

77. 78.

79. 80.

81. 82.

83. 84.

85. 86.

87. 88.

Logarithmic Differentiation with Exponentials
In Exercises 89–96, use logarithmic differentiation to find the deriva-
tive of y with respect to the given independent variable.

89. 90.

91. 92.

93. 94.

95. 96.

Theory and Applications

97. If we write g(x) for Equation (1) can be written as

If we then write x for a, we get

The latter equation may remind you of the Chain Rule, and indeed
there is a connection.

Assume that ƒ and g are differentiable functions that are in-
verses of one another, so that Differentiate bothsg � ƒdsxd = x .

g¿sƒsxdd # ƒ¿sxd = 1.

g¿sƒsadd =

1
ƒ¿sad

, or g¿sƒsadd # ƒ¿sad = 1.

ƒ -1sxd ,

y = sln xdln xy = x ln x

y = xsin xy = ssin xdx

y = t2ty = s1tdt

y = xsx + 1dy = sx + 1dx

y = t log 3 Aessin tdsln 3d By = log 2 s8t ln 2d
y = 3 log8 slog2 tdy = 3log2 t

y = log2 a x2e2

22x + 1
by = log5 ex

y = log7 asin u cos u

eu 2u
by = u sin slog7 ud

y = log5 B a
7x

3x + 2
b ln 5

y = log3 a ax + 1
x - 1

b ln 3b
y = log3 r # log9 ry = log2 r # log4 r

y = log25 ex
- log51xy = log4 x + log4 x2

y = log3 s1 + u ln 3dy = log2 5u

y = t 1 - ey = xp
y = 2ss2dy = 52s

y = 3-xy = 2x

tan y = ex
+ ln xxy

= yx

ln xy = ex + yln y = ey sin x

>
y = esin t sln t2

+ 1dy = escos t +  ln td

y = ln a 2u
1 + 2u by = ln a eu

1 + eu
b

y = ln s2e-t sin tdy = ln s3te-td

y = ln s3ue-udy = ln (cos2 u)

u ,

y = B
3 xsx + 1dsx - 2d

sx2
+ 1ds2x + 3d

y = B
3 xsx - 2d

x2
+ 1

sides of this equation with respect to x, using the Chain Rule to
express as a product of derivatives of g and ƒ.
What do you find? (This is not a proof of Theorem 3 because
we assume here the theorem’s conclusion that is
differentiable.)

98. Show that for any 

99. If where A and B are constants,
show that

100. Using mathematical induction, show that

COMPUTER EXPLORATIONS
In Exercises 101–108, you will explore some functions and their in-
verses together with their derivatives and tangent line approximations
at specified points. Perform the following steps using your CAS:

a. Plot the function together with its derivative over
the given interval. Explain why you know that ƒ is one-to-one
over the interval.

b. Solve the equation for x as a function of y, and
name the resulting inverse function g.

c. Find the equation for the tangent line to ƒ at the specified
point 

d. Find the equation for the tangent line to g at the point
located symmetrically across the 45° line 

(which is the graph of the identity function). Use Theorem 3
to find the slope of this tangent line.

e. Plot the functions ƒ and g, the identity, the two tangent lines,
and the line segment joining the points and

Discuss the symmetries you see across the main
diagonal.

101.

102.

103.

104.

105.

106.

107.

108.

In Exercises 109 and 110, repeat the steps above to solve for the func-
tions and defined implicitly by the given equa-
tions over the interval.

109.

110. cos y = x1>5, 0 … x … 1, x0 = 1>2
y1>3

- 1 = sx + 2d3, -5 … x … 5, x0 = -3>2
x = ƒ -1sydy = ƒsxd

y = sin x, -

p

2
… x …

p

2
, x0 = 1

y = ex, -3 … x … 5, x0 = 1

y = 2 - x - x3, -2 … x … 2, x0 =

3
2

y = x3
- 3x2

- 1, 2 … x … 5, x0 =

27
10

y =

x3

x2
+ 1

, -1 … x … 1, x0 = 1>2
y =

4x

x 2
+ 1

, -1 … x … 1, x0 = 1>2
y =

3x + 2
2x - 11

, -2 … x … 2, x0 = 1>2
y = 23x - 2, 2

3
… x … 4, x0 = 3

sƒsx0d, x0d .
sx0 , ƒsx0dd

y = xsƒsx0d, x0d

sx0 , ƒsx0dd .

y = ƒsxd

y = ƒsxd

dn

dxn ln x = (-1)n - 1 
(n - 1)!

xn .

x2y– + xy¿ + y = 0.

y = A sin (ln x) + B cos (ln x),

x 7 0.lim n: q a1 +

x
n b

n

= ex

g = ƒ -1

sg � ƒd¿sxd
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3.9 Inverse Trigonometric Functions

We introduced the six basic inverse trigonometric functions in Section 1.6, but focused
there on the arcsine and arccosine functions. Here we complete the study of how all six in-
verse trigonometric functions are defined, graphed, and evaluated, and how their deriva-
tives are computed.

Inverses of and 

The graphs of all six basic inverse trigonometric functions are shown in Figure 3.39. We
obtain these graphs by reflecting the graphs of the restricted trigonometric functions (as
discussed in Section 1.6) through the line Let’s take a closer look at the arctangent,
arccotangent, arcsecant, and arccosecant functions.

y = x.

csc xtan x, cot x, sec x,

186 Chapter 3: Differentiation

x

y

�
2

�
2

–

1–1

(a)

Domain:
Range:

–1 � x � 1
� y ��

2
– �

2

y � sin–1x

x

y

�

�

2

1–1

Domain:
Range:

–1 � x � 1
0 � y � �

(b)

y � cos–1x

x

y

(c)

Domain:
Range:

–∞ � x � ∞
� y ��

2
– �

2

1–1–2 2

�
2

�
2

–

y � tan–1x

x

y

(d)

Domain:
Range:

x � –1 or x � 1
0 � y � �, y �

1–1–2 2

y � sec–1x

�

�
2

�
2

x

y

Domain:
Range:

x � –1 or x � 1
� y � , y � 0�

2
– �

2

(e)

1–1–2 2

�
2

�
2

–

y � csc–1x

x

y

Domain:
Range: 0 � y � �

(f )

�

�
2

1–1–2 2

y � cot–1x

–∞ � x � ∞

FIGURE 3.39 Graphs of the six basic inverse trigonometric functions.

DEFINITION

 y � cot�1 x is the number in s0, pd for which cot y = x .

 y � tan�1 x is the number in s -p>2, p>2d for which tan y = x .

The arctangent of x is a radian angle whose tangent is x. The arccotangent of x is an angle
whose cotangent is x. The angles belong to the restricted domains of the tangent and cotan-
gent functions.

7001_AWLThomas_ch03p122-221.qxd  10/12/09  2:22 PM  Page 186



We use open intervals to avoid values where the tangent and cotangent are undefined.
The graph of is symmetric about the origin because it is a branch of the

graph that is symmetric about the origin (Figure 3.39c). Algebraically this
means that

the arctangent is an odd function. The graph of has no such symmetry
(Figure 3.39f). Notice from Figure 3.39c that the graph of the arctangent function has two
horizontal asymptotes; one at and the other at .

The inverses of the restricted forms of sec x and csc x are chosen to be the functions
graphed in Figures 3.39d and 3.39e.

Caution There is no general agreement about how to define for negative values
of x. We chose angles in the second quadrant between and This choice makes

It also makes an increasing function on each interval of its
domain. Some tables choose to lie in for and some texts
choose it to lie in (Figure 3.40). These choices simplify the formula for the de-
rivative (our formula needs absolute value signs) but fail to satisfy the computational
equation From this, we can derive the identity

(1)

by applying Equation (5) in Section 1.6.

EXAMPLE 1 The accompanying figures show two values of tan�1 x.

sec-1 x = cos-1 a1x b =
p
2

 -  sin-1 a1x b

sec-1 x = cos-1 s1>xd .

[p, 3p>2d
x 6 0[-p, -p>2dsec-1 x

sec-1 xsec-1 x = cos-1 s1>xd .
p .p>2 sec-1 x

y = -p>2y = p>2
y = cot-1 x

tan-1 s -xd = - tan-1 x ;

x = tan y
y = tan-1 x

3.9 Inverse Trigonometric Functions 187

The angles come from the first and fourth quadrants because the range of is

The Derivative of 

We know that the function is differentiable in the interval 
and that its derivative, the cosine, is positive there. Theorem 3 in Section 3.8 therefore as-
sures us that the inverse function is differentiable throughout the interval

We cannot expect it to be differentiable at or because the
tangents to the graph are vertical at these points (see Figure 3.41).

x = -1x = 1-1 6 x 6 1.
y = sin-1 x

-p>2 6 y 6 p>2x = sin y

y = sin-1 u

s -p>2, p>2d .
tan-1 x

3�
2

y � sec–1x

–1 10

�
2

3�
2

�
2

–

–

x

y

�

–�

Domain: �x� � 1
Range: 0 � y � �, y � �

2

B

A

C

FIGURE 3.40 There are several logical
choices for the left-hand branch of

With choice A,
a useful identity

employed by many calculators.
sec-1 x = cos-1 s1>xd ,
y = sec-1 x .

x

1

-p>3-23

-p>4-1

-p>6-23>3
p>623>3
p>4
p>323

tan-1 x

x

y

0
x

y

0
1

2

3
�3tan–1 1

�3
�
6

tan–1   –�3   �
3

2
1

�3
–�3

�
6

tan     ��
6

1
�3

⎛
⎝

⎛
⎝tan           � –�3�

3
–

�
3

–

� tan–1 � � –⎛
⎝

⎛
⎝
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We find the derivative of by applying Theorem 3 with and

Theorem 3

If u is a differentiable function of x with we apply the Chain Rule to getƒ u ƒ 6 1,

sin ssin-1 xd = x =
1

21 - x2
.

cos u = 21 - sin2 u =
1

21 - sin2 ssin-1 xd

 ƒ¿sud = cos u =
1

cos ssin-1 xd

 sƒ -1d¿sxd =
1

ƒ¿sƒ -1sxdd

ƒ -1sxd = sin-1 x:
ƒsxd = sin xy = sin-1 x

188 Chapter 3: Differentiation

y

1–1
x

y � sin–1x
Domain:
Range:

– �
2

�
2 –1 � x � 1

–�/2 � y � �/2

FIGURE 3.41 The graph of 
has vertical tangents at and x = 1.x = -1

y = sin-1 x

d
dx

 ssin-1 ud =
1

21 - u2
 
du
dx

 , ƒ u ƒ 6 1.

EXAMPLE 2 Using the Chain Rule, we calculate the derivative

.

The Derivative of 

We find the derivative of by applying Theorem 3 with and
Theorem 3 can be applied because the derivative of tan x is positive for

Theorem 3

The derivative is defined for all real numbers. If u is a differentiable function of x, we get
the Chain Rule form:

tan stan-1 xd = x =
1

1 + x2.

sec2 u = 1 + tan2 u =
1

1 + tan2 stan-1 xd

ƒ¿sud = sec2 u =
1

sec2 stan-1 xd

 sƒ -1d¿sxd =
1

ƒ¿sƒ -1sxdd

-p>2 6 x 6 p>2:
ƒ -1sxd = tan-1 x .

ƒsxd = tan xy = tan-1 x

y = tan-1 u

d
dx

 ssin-1 x2d =
1

21 - sx2d2
 #  

d
dx

 sx2d =
2x

21 - x4

d
dx

  stan-1 ud =
1

1 + u2 
du
dx

.

The Derivative of 

Since the derivative of sec x is positive for and Theorem 3
says that the inverse function is differentiable. Instead of applying the formulay = sec-1 x

p>2 6 x 6 p ,0 6 x 6 p/2

y = sec-1 u

7001_AWLThomas_ch03p122-221.qxd  10/12/09  2:22 PM  Page 188



in Theorem 3 directly, we find the derivative of using implicit dif-
ferentiation and the Chain Rule as follows:

Inverse function relationship

Differentiate both sides.

Chain Rule

.

To express the result in terms of x, we use the relationships

to get

Can we do anything about the sign? A glance at Figure 3.42 shows that the slope of the
graph is always positive. Thus,

With the absolute value symbol, we can write a single expression that eliminates the 
ambiguity:

If u is a differentiable function of x with we have the formulaƒ u ƒ 7 1,

d
dx

 sec-1 x =
1

ƒ x ƒ2x2
- 1

 .

“;”

d
dx

 sec-1 x = d +  
1

x2x2
- 1

if x 7 1

-  
1

x2x2
- 1

if x 6 -1.

y = sec-1 x
;

dy
dx

= ;  
1

x2x2
- 1

 .

sec y = x and tan y = ;2sec2 y - 1 = ;2x2
- 1

 
dy
dx

=
1

sec y tan y

 sec y tan y 
dy
dx

= 1

 
d
dx

 ssec yd =
d
dx

 x

 sec y = x

 y = sec-1 x

y = sec-1 x, ƒ x ƒ 7 1,

3.9 Inverse Trigonometric Functions 189

x

y

0

�

1–1

y � sec–1x

�
2

FIGURE 3.42 The slope of the curve
is positive for both 

and x 7 1.
x 6 -1y = sec-1 x

d
dx

 ssec-1 ud =
1

ƒ u ƒ2u2
- 1

 
du
dx

 , ƒ u ƒ 7 1.

EXAMPLE 3 Using the Chain Rule and derivative of the arcsecant function, we find

 =
4

x225x8
- 1

.

5x4
7 1 7 0 =

1

5x4225x8
- 1

 s20x3d

 
d
dx

 sec-1 s5x4d =
1

ƒ5x4
ƒ2s5x4d2

- 1
 
d
dx

 s5x4d

Since lies in
and

sec y tan y Z 0.
s0, p>2d ´ sp>2, pd

ƒ x ƒ 7 1, y
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190 Chapter 3: Differentiation

Derivatives of the Other Three Inverse Trigonometric Functions

We could use the same techniques to find the derivatives of the other three inverse trigono-
metric functions—arccosine, arccotangent, and arccosecant—but there is an easier way,
thanks to the following identities.

TABLE 3.1 Derivatives of the inverse trigonometric functions

1.

2.

3.

4.

5.

6.
dscsc-1 ud

dx
= -

1

ƒ u ƒ2u2
- 1

 
du
dx

, ƒ u ƒ 7 1

dssec-1 ud
dx

=
1

ƒ u ƒ2u2
- 1

 
du
dx

, ƒ u ƒ 7 1

dscot-1 ud
dx

= -
1

1 + u2 
du
dx

dstan-1 ud
dx

=
1

1 + u2 
du
dx

dscos-1 ud
dx

= -
1

21 - u2
 
du
dx

,  ƒ u ƒ 6 1

dssin-1 ud
dx

=
1

21 - u2
 
du
dx

,  ƒ u ƒ 6 1

Inverse Function–Inverse Cofunction Identities

 csc-1 x = p>2 - sec-1 x

 cot-1 x = p>2 - tan-1 x

 cos-1 x = p>2 - sin-1 x

We saw the first of these identities in Equation (5) of Section 1.6. The others are de-
rived in a similar way. It follows easily that the derivatives of the inverse cofunctions are
the negatives of the derivatives of the corresponding inverse functions. For example, the
derivative of is calculated as follows:

Identity

Derivative of arcsine

The derivatives of the inverse trigonometric functions are summarized in Table 3.1.

 = -
1

21 - x2
.

 = -
d
dx

 (sin-1 x)

 
d
dx

 (cos-1 x) =
d
dx

 ap
2

- sin-1 xb

cos-1 x
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3.9 Inverse Trigonometric Functions 191

Exercises 3.9

Common Values
Use reference triangles like those in Example 1 to find the angles in
Exercises 1–8.

1. a. b. c.

2. a. b. c.

3. a. b. c.

4. a. b. c.

5. a. b. c.

6. a. b. c.

7. a. b. c.

8. a. b. c.

Evaluations
Find the values in Exercises 9–12.

9. 10.

11. 12.

Limits
Find the limits in Exercises 13–20. (If in doubt, look at the function’s
graph.)

13. 14.

15. 16.

17. 18.

19. 20.

Finding Derivatives
In Exercises 21–42, find the derivative of y with respect to the appro-
priate variable.

21. 22.

23. 24.

25. 26.

27.

28.

29. 30.

31. 32.

33. 34. y = tan-1 sln xdy = ln stan-1 xd

y = cot-1 2t - 1y = cot-1 2t

y = sin-1 
3
t2y = sec-1 

1
t , 0 6 t 6 1

y = csc-1 
x
2

y = csc-1 sx2
+ 1d, x 7 0

y = sec-1 5sy = sec-1 s2s + 1d

y = sin-1 s1 - tdy = sin-122 t

y = cos-1 s1>xdy = cos-1 sx2d

lim
x: -q

 csc-1 xlim
x: q

 csc-1 x

lim
x: -q

 sec-1 xlim
x: q

 sec-1 x

lim
x: -q

 tan-1 xlim
x: q

 tan-1 x

lim
x: -1+

 cos-1 xlim
x:1-

 sin-1 x

cot asin-1 a- 23
2
b btan asin-1 a- 1

2
b b

sec acos-1 
1
2
bsin acos-1 a22

2
b b

cot-1 a -1

23
bcot-1 A23 Bcot-1 s -1d

sec-1s -2dsec-1 a 2

23
bsec-1 A -22 B

csc-1 2csc-1 a -2

23
bcsc-1 22

cos-1 a23
2
bcos-1 a -1

22
bcos-1 a1

2
b

sin-1 a23
2
bsin-1 a -1

22
bsin-1 a1

2
b

sin-1 a-23
2
bsin-1 a 1

22
bsin-1 a-1

2
b

tan-1 a -1

23
btan-123tan-1s -1d

tan-1 a 1

23
btan-1 A -23 Btan-1 1

35. 36.

37. 38.

39.

40. 41.

42.

Theory and Examples

43. You are sitting in a classroom next to the wall looking at the
blackboard at the front of the room. The blackboard is 12 ft long
and starts 3 ft from the wall you are sitting next to. Show that your
viewing angle is

if you are x ft from the front wall.

44. Find the angle 

45. Here is an informal proof that 
Explain what is going on.

tan-1 1 + tan-1 2 + tan-1 3 = p .

65°

21

50
�

�

a .

B
la

ck
bo

ar
d

12'

3'
Wall

You
�

x

a = cot-1 
x

15
- cot-1 

x
3

y = ln sx2
+ 4d - x tan-1 ax

2
b

y = x sin-1 x + 21 - x2y = cot-1 
1
x - tan-1 x

y = tan-12x2
- 1 + csc-1 x, x 7 1

y = 2s2
- 1 - sec-1 sy = s21 - s2

+ cos-1 s

y = cos-1 se-tdy = csc-1 setd
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46. Two derivations of the identity

a. (Geometric) Here is a pictorial proof that 
See if you can tell what is going on.

b. (Algebraic) Derive the identity by
combining the following two equations from the text:

Eq. (4), Section 1.6

Eq. (1)

Which of the expressions in Exercises 47–50 are defined, and which
are not? Give reasons for your answers.

47. a. b.

48. a. b.

49. a. b.

50. a. b.

51. Use the identity

to derive the formula for the derivative of in Table 3.1
from the formula for the derivative of 

52. Derive the formula

for the derivative of by differentiating both sides of
the equivalent equation 

53. Use the Derivative Rule in Section 3.8, Theorem 3, to derive

54. Use the identity

to derive the formula for the derivative of in Table 3.1
from the formula for the derivative of tan-1 u .

cot-1 u

cot-1 u =

p

2
- tan-1 u

d
dx

 sec-1 x =

1

ƒ x ƒ2x2
- 1

, ƒ x ƒ 7 1.

tan y = x .
y = tan-1 x

dy

dx
=

1
1 + x2

sec-1 u .
csc-1 u

csc-1 u =

p

2
- sec-1 u

cos-1 s -5dcot-1 s -1>2d
sin-122sec-1 0

csc-1 2csc-1 (1>2)

cos-1 2tan-1 2

sec-1 x = cos-1 s1>xd

cos-1 s -xd = p - cos-1 x

sec-1 s -xd = p - sec-1 x

x

y

0

�

1 x–1–x

y � sec–1x

�
2

p - sec-1 x .
sec-1 s -xd =

sec-1 s �xd = P � sec�1 x

192 Chapter 3: Differentiation

55. What is special about the functions

Explain.

56. What is special about the functions

Explain.

57. Find the values of

a. b. c.

58. Find the values of

a. b. c.

In Exercises 59–61, find the domain and range of each composite
function. Then graph the composites on separate screens. Do the
graphs make sense in each case? Give reasons for your answers. Com-
ment on any differences you see.

59. a. b.

60. a. b.

61. a. b.

Use your graphing utility for Exercises 62–66.

62. Graph Explain what you
see.

63. Newton’s serpentine Graph Newton’s serpentine, 
Then graph in the same graph-

ing window. What do you see? Explain.

64. Graph the rational function Then graph 
in the same graphing window. What do you see?

Explain.

65. Graph together with its first two derivatives. Com-
ment on the behavior of ƒ and the shape of its graph in relation to
the signs and values of and 

66. Graph together with its first two derivatives. Com-
ment on the behavior of ƒ and the shape of its graph in relation to
the signs and values of and ƒ–.ƒ¿

ƒsxd = tan-1 x

ƒ–.ƒ¿

ƒsxd = sin-1 x

cos s2 sec-1 xd
y =y = s2 - x2d>x2 .

y = 2 sin s2 tan-1 xd4x>sx2
+ 1d .

y =

y = sec ssec-1 xd = sec scos-1s1>xdd .

y = cos scos-1 xdy = cos-1 scos xd
y = sin ssin-1 xdy = sin-1 ssin xd
y = tan stan-1 xdy = tan-1 stan xd

cot-1 s -2dcsc-1 1.7sec-1s -3d

cot-1 2csc-1 s -1.5dsec-1 1.5

ƒsxd = sin-1 
1

2x2
+ 1

 and g sxd = tan-1  
1
x ?

ƒsxd = sin-1  
x - 1
x + 1

, x Ú 0, and g sxd = 2 tan-1 1x?

3.10 Related Rates

In this section we look at problems that ask for the rate at which some variable changes
when it is known how the rate of some other related variable (or perhaps several variables)
changes. The problem of finding a rate of change from other known rates of change is
called a related rates problem.

T

T

T

T
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3.10 Related Rates 193

Related Rates Equations

Suppose we are pumping air into a spherical balloon. Both the volume and radius of the
balloon are increasing over time. If V is the volume and r is the radius of the balloon at an
instant of time, then

Using the Chain Rule, we differentiate both sides with respect to t to find an equation 
relating the rates of change of V and r,

So if we know the radius r of the balloon and the rate at which the volume is in-
creasing at a given instant of time, then we can solve this last equation for to find
how fast the radius is increasing at that instant. Note that it is easier to directly measure the
rate of increase of the volume (the rate at which air is being pumped into the balloon) than
it is to measure the increase in the radius. The related rates equation allows us to calculate

from .
Very often the key to relating the variables in a related rates problem is drawing a picture

that shows the geometric relations between them, as illustrated in the following example.

EXAMPLE 1 Water runs into a conical tank at the rate of The tank stands
point down and has a height of 10 ft and a base radius of 5 ft. How fast is the water level
rising when the water is 6 ft deep?

Solution Figure 3.43 shows a partially filled conical tank. The variables in the problem are

We assume that V, x, and y are differentiable functions of t. The constants are the dimen-
sions of the tank. We are asked for when

The water forms a cone with volume

This equation involves x as well as V and y. Because no information is given about x and
at the time in question, we need to eliminate x. The similar triangles in Figure 3.43

give us a way to express x in terms of y:

Therefore, find

to give the derivative

dV
dt

=
p
12

# 3y2 
dy
dt

=
p
4

 y2 
dy
dt

.

V =
1
3

 p ay
2
b2

y =
p
12

 y3

x
y =

5
10
 or x =

y
2

.

dx>dt

V =
1
3

 px2y .

y = 6 ft and dV
dt

= 9 ft3>min.

dy>dt

 y = depth sftd of the water in the tank at time t .

 x = radius sftd of the surface of the water at time t

 V = volume sft3d of the water in the tank at time t smind

9 ft3>min.

dV>dtdr>dt

dr>dt
dV>dt

dV
dt

=
dV
dr

 
dr
dt

= 4pr2 
dr
dt

.

V =
4
3

 pr3 .

10 ft

y

5 ft

x
dy
dt

� ?

when y � 6 ft

dV
dt

� 9 ft3/min

FIGURE 3.43 The geometry of the
conical tank and the rate at which water
fills the tank determine how fast the water
level rises (Example 1).
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Finally, use and to solve for .

At the moment in question, the water level is rising at about 0.32 ft min.>
 
dy
dt

=
1
p L 0.32

 9 =
p
4

 s6d2 
dy
dt

dy>dtdV>dt = 9y = 6
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Related Rates Problem Strategy
1. Draw a picture and name the variables and constants. Use t for time. Assume

that all variables are differentiable functions of t.

2. Write down the numerical information (in terms of the symbols you have chosen).

3. Write down what you are asked to find (usually a rate, expressed as a derivative).

4. Write an equation that relates the variables. You may have to combine two or
more equations to get a single equation that relates the variable whose rate
you want to the variables whose rates you know.

5. Differentiate with respect to t. Then express the rate you want in terms of the
rates and variables whose values you know.

6. Evaluate. Use known values to find the unknown rate.

� ?
y

Range
finder

Balloon

500 ft

�

� 0.14  rad/min
dt
d�

when � � �/4 
dt
dywhen � � �/4 

FIGURE 3.44 The rate of change of the
balloon’s height is related to the rate of
change of the angle the range finder makes
with the ground (Example 2).

EXAMPLE 2 A hot air balloon rising straight up from a level field is tracked by a range
finder 500 ft from the liftoff point. At the moment the range finder’s elevation angle is

the angle is increasing at the rate of 0.14 rad min. How fast is the balloon rising at
that moment?

Solution We answer the question in six steps.

1. Draw a picture and name the variables and constants (Figure 3.44). The variables in
the picture are

angle in radians the range finder makes with the ground.

height in feet of the balloon.

We let t represent time in minutes and assume that and y are differentiable functions of t.
The one constant in the picture is the distance from the range finder to the liftoff point

(500 ft). There is no need to give it a special symbol.

2. Write down the additional numerical information.

3. Write down what we are to find. We want when 

4. Write an equation that relates the variables y and

5. Differentiate with respect to t using the Chain Rule. The result tells how (which
we want) is related to (which we know).

6. Evaluate with and to find .

At the moment in question, the balloon is rising at the rate of 140 ft min.>
sec 
p

4
= 22

dy
dt

= 500 A22 B2s0.14d = 140

dy>dtdu>dt = 0.14u = p>4
dy
dt

= 500 ssec2 ud 
du
dt

du>dt
dy>dt

y
500

= tan u or y = 500 tan u

u .

u = p>4.dy>dt

du
dt

= 0.14 rad>min when u =
p
4

u

y = the

u = the

>p>4,
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EXAMPLE 3 A police cruiser, approaching a right-angled intersection from the north, is
chasing a speeding car that has turned the corner and is now moving straight east. When the
cruiser is 0.6 mi north of the intersection and the car is 0.8 mi to the east, the police deter-
mine with radar that the distance between them and the car is increasing at 20 mph. If the
cruiser is moving at 60 mph at the instant of measurement, what is the speed of the car?

Solution We picture the car and cruiser in the coordinate plane, using the positive x-axis
as the eastbound highway and the positive y-axis as the southbound highway (Figure 3.45).
We let t represent time and set

We assume that x, y, and s are differentiable functions of t.
We want to find when

Note that is negative because y is decreasing.
We differentiate the distance equation

(we could also use ), and obtain

Finally, we use and solve for .

At the moment in question, the car’s speed is 70 mph.

EXAMPLE 4 A particle P moves clockwise at a constant rate along a circle of radius 10 ft
centered at the origin. The particle’s initial position is (0, 10) on the y-axis and its final
destination is the point (10, 0) on the x-axis. Once the particle is in motion, the tangent line
at P intersects the x-axis at a point Q (which moves over time). If it takes the particle 30 sec
to travel from start to finish, how fast is the point Q moving along the x-axis when it is 20 ft
from the center of the circle?

Solution We picture the situation in the coordinate plane with the circle centered at the
origin (see Figure 3.46). We let t represent time and let denote the angle from the x-axis
to the radial line joining the origin to P. Since the particle travels from start to finish in
30 sec, it is traveling along the circle at a constant rate of radians in or

In other words, with t being measured in minutes. The negative
sign appears because is decreasing over time.u

du>dt = -p,p rad>min.
1>2 min,p>2

u

 
dx
dt

=

202s0.8d2
+ s0.6d2

+ s0.6ds60d
0.8

= 70

 20 =
1

2s0.8d2
+ s0.6d2

 a0.8 
dx
dt

+ (0.6)(-60)b
dx>dtx = 0.8, y = 0.6, dy>dt = -60, ds>dt = 20,

 =
1

2x2
+ y2

 ax 
dx
dt

+ y 
dy
dt
b .

 
ds
dt

=
1
s  ax 

dx
dt

+ y 
dy
dt
b

 2s 
ds
dt

= 2x 
dx
dt

+ 2y 
dy
dt

s = 2x2
+ y2

s2
= x2

+ y2

dy>dt

x = 0.8 mi, y = 0.6 mi, dy
dt

= -60 mph, ds
dt

= 20 mph.

dx>dt

 s = distance between car and cruiser at time t .

 y = position of cruiser at time t

 x = position of car at time t

x

y

0 x

y

Situation when
x � 0.8, y � 0.6

� –60
� 20

� ?dx
dt

dy
dt

ds
dt

FIGURE 3.45 The speed of the car is
related to the speed of the police cruiser
and the rate of change of the distance
between them (Example 3).

x
0

10

u

y

P

Q

(x, 0)

FIGURE 3.46 The particle P
travels clockwise along the circle
(Example 4).
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Setting to be the distance at time t from the point Q to the origin, we want to find
when

and

To relate the variables x and we see from Figure 3.46 that or
Differentiation of this last equation gives

Note that is negative because x is decreasing (Q is moving towards the origin).

When and Also, It
follows that

At the moment in question, the point Q is moving towards the origin at the speed of

EXAMPLE 5 A jet airliner is flying at a constant altitude of 12,000 ft above sea level as it
approaches a Pacific island. The aircraft comes within the direct line of sight of a radar station
located on the island, and the radar indicates the initial angle between sea level and its line of
sight to the aircraft is 30°. How fast (in miles per hour) is the aircraft approaching the island
when first detected by the radar instrument if it is turning upward (counterclockwise) at the
rate of in order to keep the aircraft within its direct line of sight?

Solution The aircraft A and radar station R are pictured in the coordinate plane, using
the positive x-axis as the horizontal distance at sea level from R to A, and the positive 
y-axis as the vertical altitude above sea level. We let t represent time and observe that

is a constant. The general situation and line-of-sight angle are depicted in
Figure 3.47. We want to find when rad and 

From Figure 3.47, we see that

or

Using miles instead of feet for our distance units, the last equation translates to

Differentiation with respect to t gives

When so Converting to radians
per hour, we find

Substitution into the equation for then gives

The negative sign appears because the distance x is decreasing, so the aircraft is approaching
the island at a speed of approximately  when first detected by the radar.380 mi>hr

dx
dt

= a-
1200
528
b s4d a2

3
b a p

180
b s3600d L -380.

dx>dt

1 hr = 3600 sec, 1 deg = p>180 rad
du
dt

=
2
3
a p

180
b s3600d rad>hr.

du>dt = 2>3 deg>seccsc2 u = 4.u = p>6, sin2 u = 1>4,

dx
dt

= -
1200
528

 csc2 u 
du
dt

.

x =

12,000
5280

 cot u.

x = 12,000 cot u.
12,000

x = tan u

du>dt = 2>3 deg>sec.u = p>6dx>dt
uy = 12,000

2>3 deg>sec

2023p L 108.8 ft>min.

dx
dt

= s -10pds2d A23 B = -2023p.

tan u = 2sec2 u - 1 = 23.sec u = 2.x = 20, cos u = 1>2
dx>dt

dx
dt

= 10 sec u tan u 
du
dt

= -10p sec u tan u.

x = 10 sec u.
x cos u = 10,u,

du
dt

= -p rad>min.x = 20 ft

dx>dt
xstd

R

12,000

A

u
x

FIGURE 3.47 Jet airliner A
traveling at constant altitude
toward radar station R
(Example 5).
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EXAMPLE 6 Figure 3.48(a) shows a rope running through a pulley at P and bearing a
weight W at one end. The other end is held 5 ft above the ground in the hand M of a worker.
Suppose the pulley is 25 ft above ground, the rope is 45 ft long, and the worker is walking
rapidly away from the vertical line PW at the rate of How fast is the weight being
raised when the worker’s hand is 21 ft away from PW ?

Solution We let OM be the horizontal line of length x ft from a point O directly below
the pulley to the worker’s hand M at any instant of time (Figure 3.48). Let h be the height
of the weight W above O, and let z denote the length of rope from the pulley P to the
worker’s hand. We want to know when given that Note that the
height of P above O is 20 ft because O is 5 ft above the ground. We assume the angle at O
is a right angle.

At any instant of time t we have the following relationships (see Figure 3.48b):

Total length of rope is 45 ft.

Angle at O is a right angle.

If we solve for in the first equation, and substitute into the second equation,
we have

(1)

Differentiating both sides with respect to t gives

and solving this last equation for we find

(2)

Since we know it remains only to find at the instant when From
Equation (1),

so that

or

Equation (2) now gives

as the rate at which the weight is being raised when  x = 21 ft.

dh
dt

=
21
29

# 6 =
126
29

L 4.3 ft>sec

25 + h = 29.s25 + hd2
= 841,

202
+ 212

= s25 + hd2

x = 21.25 + hdx>dt,

dh
dt

=
x

25 + h
 
dx
dt

.

dh>dt

2x 
dx
dt

= 2s25 + hd 
dh
dt

,

202
+ x2

= s25 + hd2.

z = 25 + h

 202
+ x2

= z2.

 20 - h + z = 45

dx>dt = 6.x = 21dh>dt

6 ft>sec.
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x

z

h

M

P

O

W
20 ft

(b)

x

M

P

O

W

5 ft

6 ft/sec

(a)

FIGURE 3.48 A worker at M
walks to the right pulling the
weight W upwards as the rope
moves through the pulley P
(Example 6).

Exercises 3.10

1. Area Suppose that the radius r and area of a circle are
differentiable functions of t. Write an equation that relates 
to .

2. Surface area Suppose that the radius r and surface area
of a sphere are differentiable functions of t. Write an

equation that relates to .

3. Assume that and Find 

4. Assume that and Find 

5. If and then what is when x = -1?dy>dtdx>dt = 3,y = x2

dx>dt.dy>dt = -2.2x + 3y = 12

dy>dt.dx>dt = 2.y = 5x

dr>dtdS>dt
S = 4pr2

dr>dt
dA>dt

A = pr2 6. If and then what is when 

7. If and then what is when 
and 

8. If and then what is when 

9. If and find when
and 

10. If and find 
when and s = 1.r = 3

dy>dtds>dt = -3,r + s2
+ y3

= 12, dr>dt = 4,

y = 12.x = 5
dL>dtdy>dt = 3,L = 2x2

+ y2, dx>dt = -1,

x = 2?dx>dtdy>dt = 1>2,x2y3
= 4>27

y = -4?
x = 3dy>dtdx>dt = -2,x2

+ y2
= 25

y = 2?dx>dtdy>dt = 5,x = y3
- y
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11. If the original 24 m edge length x of a cube decreases at the rate
of when m at what rate does the cube’s

a. surface area change?

b. volume change?

12. A cube’s surface area increases at the rate of At what rate
is the cube’s volume changing when the edge length is 

13. Volume The radius r and height h of a right circular cylinder are
related to the cylinder’s volume V by the formula 

a. How is related to if r is constant?

b. How is related to if h is constant?

c. How is related to and if neither r nor h is
constant?

14. Volume The radius r and height h of a right circular cone are re-
lated to the cone’s volume V by the equation 

a. How is related to if r is constant?

b. How is related to if h is constant?

c. How is related to and if neither r nor h is
constant?

15. Changing voltage The voltage V (volts), current I (amperes),
and resistance R (ohms) of an electric circuit like the one shown
here are related by the equation Suppose that V is in-
creasing at the rate of 1 volt sec while I is decreasing at the rate
of 1 3 amp sec. Let t denote time in seconds.

a. What is the value of ?

b. What is the value of ?

c. What equation relates to and ?

d. Find the rate at which R is changing when volts and
amp. Is R increasing, or decreasing?

16. Electrical power The power P (watts) of an electric circuit is
related to the circuit’s resistance R (ohms) and current I (amperes)
by the equation 

a. How are , , and related if none of P, R, and I
are constant?

b. How is related to if P is constant?

17. Distance Let x and y be differentiable functions of t and let
be the distance between the points (x, 0) and (0, y)

in the xy-plane.

a. How is related to if y is constant?

b. How is related to and if neither x nor y is
constant?

c. How is related to if s is constant?

18. Diagonals If x, y, and z are lengths of the edges of a rectangular
box, the common length of the box’s diagonals is 

2x2
+ y2

+ z2 .

s =

dy>dtdx>dt

dy>dtdx>dtds>dt

dx>dtds>dt

s = 2x2
+ y2

dI>dtdR>dt

dI>dtdR>dtdP>dt

P = RI2 .

I = 2
V = 12

dI>dtdV>dtdR>dt

dI>dt

dV>dt

V

R

I

� �

>> > V = IR .

dh>dtdr>dtdV>dt

dr>dtdV>dt

dh>dtdV>dt

V = s1>3dpr2h .

dh>dtdr>dtdV>dt

dr>dtdV>dt

dh>dtdV>dt

V = pr2h .

x = 3 in?
72 in2>sec.

x = 35 m>min,
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a. Assuming that x, y, and z are differentiable functions of t, how
is related to , , and ?

b. How is related to and if x is constant?

c. How are , , and related if s is constant?

19. Area The area A of a triangle with sides of lengths a and b
enclosing an angle of measure is

a. How is related to if a and b are constant?

b. How is related to and if only b is constant?

c. How is related to and if none of a,
b, and are constant?

20. Heating a plate When a circular plate of metal is heated in an
oven, its radius increases at the rate of 0.01 cm min. At what rate
is the plate’s area increasing when the radius is 50 cm?

21. Changing dimensions in a rectangle The length l of a rectangle
is decreasing at the rate of 2 cm sec while the width w is increasing
at the rate of 2 cm sec. When and find the
rates of change of (a) the area, (b) the perimeter, and (c) the
lengths of the diagonals of the rectangle. Which of these quantities
are decreasing, and which are increasing?

22. Changing dimensions in a rectangular box Suppose that the
edge lengths x, y, and z of a closed rectangular box are changing
at the following rates:

Find the rates at which the box’s (a) volume, (b) surface area, and

(c) diagonal length are changing at the 
instant when and 

23. A sliding ladder A 13-ft ladder is leaning against a house when
its base starts to slide away (see accompanying figure). By the
time the base is 12 ft from the house, the base is moving at the
rate of 5 ft sec.

a. How fast is the top of the ladder sliding down the wall then?

b. At what rate is the area of the triangle formed by the ladder,
wall, and ground changing then?

c. At what rate is the angle between the ladder and the ground
changing then?

24. Commercial air traffic Two commercial airplanes are flying at
an altitude of 40,000 ft along straight-line courses that intersect at
right angles. Plane A is approaching the intersection point at a
speed of 442 knots (nautical miles per hour; a nautical mile is
2000 yd). Plane B is approaching the intersection at 481 knots. At
what rate is the distance between the planes changing when A is 5

x
0

y

13-ft ladder

y(t)

x(t)

�

u

>

z = 2.x = 4, y = 3,
s = 2x2

+ y2
+ z2

dx
dt

= 1 m>sec, 
dy

dt
= -2 m>sec, dz

dt
= 1 m>sec .

w = 5 cm,l = 12 cm> >

>
u

db>dtdu>dt, da>dt ,dA>dt

da>dtdu>dtdA>dt

du>dtdA>dt

A =

1
2

 ab sin u .

u

dz>dtdy>dtdx>dt

dz>dtdy>dtds>dt

dz>dtdy>dtdx>dtds>dt
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nautical miles from the intersection point and B is 12 nautical
miles from the intersection point?

25. Flying a kite A girl flies a kite at a height of 300 ft, the wind car-
rying the kite horizontally away from her at a rate of 25 ft sec. How
fast must she let out the string when the kite is 500 ft away from her?

26. Boring a cylinder The mechanics at Lincoln Automotive are
reboring a 6-in.-deep cylinder to fit a new piston. The machine
they are using increases the cylinder’s radius one thousandth of an
inch every 3 min. How rapidly is the cylinder volume increasing
when the bore (diameter) is 3.800 in.?

27. A growing sand pile Sand falls from a conveyor belt at the rate
of onto the top of a conical pile. The height of the pile
is always three-eighths of the base diameter. How fast are the (a)
height and (b) radius changing when the pile is 4 m high? Answer
in centimeters per minute.

28. A draining conical reservoir Water is flowing at the rate of
from a shallow concrete conical reservoir (vertex

down) of base radius 45 m and height 6 m.

a. How fast (centimeters per minute) is the water level falling
when the water is 5 m deep?

b. How fast is the radius of the water’s surface changing then?
Answer in centimeters per minute.

29. A draining hemispherical reservoir Water is flowing at the rate
of from a reservoir shaped like a hemispherical bowl of
radius 13 m, shown here in profile. Answer the following ques-
tions, given that the volume of water in a hemispherical bowl of ra-
dius R is when the water is y meters deep.

a. At what rate is the water level changing when the water is 8 m
deep?

b. What is the radius r of the water’s surface when the water is
y m deep?

c. At what rate is the radius r changing when the water is 8 m deep?

30. A growing raindrop Suppose that a drop of mist is a perfect
sphere and that, through condensation, the drop picks up moisture
at a rate proportional to its surface area. Show that under these
circumstances the drop’s radius increases at a constant rate.

31. The radius of an inflating balloon A spherical balloon is in-
flated with helium at the rate of How fast is the
balloon’s radius increasing at the instant the radius is 5 ft? How
fast is the surface area increasing?

32. Hauling in a dinghy A dinghy is pulled toward a dock by a
rope from the bow through a ring on the dock 6 ft above the bow.
The rope is hauled in at the rate of 2 ft sec.

a. How fast is the boat approaching the dock when 10 ft of rope
are out?

b. At what rate is the angle changing at this instant (see the
figure)?

u

>

100p ft3>min.

r

y

13

Center of sphere

Water level

V = sp>3dy2s3R - yd

6 m3>min

50 m3>min

10 m3>min

>
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33. A balloon and a bicycle A balloon is rising vertically above a
level, straight road at a constant rate of 1 ft sec. Just when the
balloon is 65 ft above the ground, a bicycle moving at a constant
rate of 17 ft sec passes under it. How fast is the distance s(t)
between the bicycle and balloon increasing 3 sec later?

34. Making coffee Coffee is draining from a conical filter into 
a cylindrical coffeepot at the rate of 

a. How fast is the level in the pot rising when the coffee in the
cone is 5 in. deep?

b. How fast is the level in the cone falling then?

6"

6"

6"

How fast
is this
level rising?

How fast
is this
level falling?

10 in3>min.

y

x
0

y(t)

s(t)

x(t)

>
>

�

Ring at edge
of dock

6'
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35. Cardiac output In the late 1860s, Adolf Fick, a professor of
physiology in the Faculty of Medicine in Würzberg, Germany, 
developed one of the methods we use today for measuring how
much blood your heart pumps in a minute. Your cardiac output as
you read this sentence is probably about 7 L min. At rest it is
likely to be a bit under 6 L min. If you are a trained marathon run-
ner running a marathon, your cardiac output can be as high as
30 L min.

Your cardiac output can be calculated with the formula

where Q is the number of milliliters of you exhale in a
minute and D is the difference between the concentration
(ml L) in the blood pumped to the lungs and the concentra-
tion in the blood returning from the lungs. With 
and 

fairly close to the 6 L min that most people have at basal (resting)
conditions. (Data courtesy of J. Kenneth Herd, M.D., Quillan Col-
lege of Medicine, East Tennessee State University.)

Suppose that when and we also know
that D is decreasing at the rate of 2 units a minute but that Q re-
mains unchanged. What is happening to the cardiac output?

36. Moving along a parabola A particle moves along the parabola
in the first quadrant in such a way that its x-coordinate

(measured in meters) increases at a steady 10 m sec. How fast is
the angle of inclination of the line joining the particle to the ori-
gin changing when 

37. Motion in the plane The coordinates of a particle in the metric
xy-plane are differentiable functions of time t with 

How fast is the particle’s
distance from the origin changing as it passes through the point
(5, 12)?

38. Videotaping a moving car You are videotaping a race from a
stand 132 ft from the track, following a car that is moving at
180 mi h (264 ft sec), as shown in the accompanying figure.
How fast will your camera angle be changing when the car is
right in front of you? A half second later?

39. A moving shadow A light shines from the top of a pole 50 ft
high. A ball is dropped from the same height from a point 30 ft

Car

Camera

132'

�

u

>>

-1 m>sec and dy>dt = -5 m>sec .
dx>dt =

x = 3 m?
u

>y = x2

D = 41,Q = 233

>
y =

233 ml>min

41 ml>L L 5.68 L>min,

D = 97 - 56 = 41 ml>L,
Q = 233 ml>min

CO2> CO2

CO2

y =

Q

D
,

>
> >
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away from the light. (See accompanying figure.) How fast is the
shadow of the ball moving along the ground sec later? 
(Assume the ball falls a distance )

40. A building’s shadow On a morning of a day when the sun will
pass directly overhead, the shadow of an 80-ft building on level
ground is 60 ft long. At the moment in question, the angle the
sun makes with the ground is increasing at the rate of 0.27° min.
At what rate is the shadow decreasing? (Remember to use radians.
Express your answer in inches per minute, to the nearest tenth.)

41. A melting ice layer A spherical iron ball 8 in. in diameter is
coated with a layer of ice of uniform thickness. If the ice melts at
the rate of how fast is the thickness of the ice de-
creasing when it is 2 in. thick? How fast is the outer surface area
of ice decreasing?

42. Highway patrol A highway patrol plane flies 3 mi above a
level, straight road at a steady 120 mi h. The pilot sees an oncom-
ing car and with radar determines that at the instant the line-of-
sight distance from plane to car is 5 mi, the line-of-sight distance
is decreasing at the rate of 160 mi h. Find the car’s speed along
the highway.

43. Baseball players A baseball diamond is a square 90 ft on a
side. A player runs from first base to second at a rate of 16 ft sec.

a. At what rate is the player’s distance from third base changing
when the player is 30 ft from first base?

b. At what rates are angles and (see the figure) changing at
that time?

u2u1

>

>

>

10 in3>min,

80'

�

>u

x

Light

30

Shadow

0

50-ft
pole

Ball at time t � 0

1/2 sec later

x(t)

NOT TO SCALE

s = 16t2 ft in t sec .
1>2
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c. The player slides into second base at the rate of 15 ft sec. At
what rates are angles and changing as the player touches
base?

90'

Second base

Player

Home

30' First
base

Third
base

�1

�2

u2u1

> 44. Ships Two ships are steaming straight away from a point O
along routes that make a 120° angle. Ship A moves at 14 knots
(nautical miles per hour; a nautical mile is 2000 yd). Ship B
moves at 21 knots. How fast are the ships moving apart when

and OB = 3 nautical miles?OA = 5

3.11 Linearization and Differentials

Sometimes we can approximate complicated functions with simpler ones that give the ac-
curacy we want for specific applications and are easier to work with. The approximating
functions discussed in this section are called linearizations, and they are based on tangent
lines. Other approximating functions, such as polynomials, are discussed in Chapter 10.

We introduce new variables dx and dy, called differentials, and define them in a way
that makes Leibniz’s notation for the derivative a true ratio. We use dy to esti-
mate error in measurement, which then provides for a precise proof of the Chain Rule
(Section 3.6).

Linearization

As you can see in Figure 3.49,  the tangent to the curve lies close to the curve near
the point of tangency. For a brief interval to either side, the y-values along the tangent line

y = x2

dy>dx

4

0
3–1

2

0
20

y � x2 and its tangent y � 2x � 1 at (1, 1). Tangent and curve very close near (1, 1).

1.2

0.8
1.20.8

1.003

0.997
1.0030.997

Tangent and curve very close throughout
entire x-interval shown.

Tangent and curve closer still. Computer
screen cannot distinguish tangent from
curve on this x-interval.

y � x2

y � 2x � 1

(1, 1)

y � x2

y � 2x � 1

(1, 1)

y � x2

y � 2x � 1

(1, 1)

y � x2

y � 2x � 1

(1, 1)

FIGURE 3.49 The more we magnify the graph of a function near a point where the
function is differentiable, the flatter the graph becomes and the more it resembles its
tangent.
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give good approximations to the y-values on the curve. We observe this phenomenon by
zooming in on the two graphs at the point of tangency or by looking at tables of values for
the difference between ƒ(x) and its tangent line near the x-coordinate of the point of tan-
gency. The phenomenon is true not just for parabolas; every differentiable curve behaves
locally like its tangent line.

In general, the tangent to at a point where ƒ is differentiable
(Figure 3.50), passes through the point (a, ƒ(a)), so its point-slope equation is

Thus, this tangent line is the graph of the linear function

For as long as this line remains close to the graph of ƒ, L(x) gives a good approximation to
ƒ(x).

Lsxd = ƒsad + ƒ¿sadsx - ad .

y = ƒsad + ƒ¿sadsx - ad .

x = a ,y = ƒsxd

x

y

0–1

2

1

1 2 3 4

y � �
5
4

x
4y � 1 � x

2

y � �1 � x

FIGURE 3.51 The graph of and its
linearizations at and Figure 3.52 shows a
magnified view of the small window about 1 on the y-axis.

x = 3.x = 0
y = 21 + x

1.0

0–0.1 0.1 0.2

1.1

0.9

y � 1 �

y � �1 � x

2
x

FIGURE 3.52 Magnified view of the
window in Figure 3.51.

x

y

0 a

Slope � f '(a)

y � f (x)

y � L(x)(a,  f (a))

FIGURE 3.50 The tangent to the curve

Lsxd = ƒsad + ƒ¿sadsx - ad .
y = ƒsxd at x = a is the line

Solution Since

we have and giving the linearization

See Figure 3.52.

The following table shows how accurate the approximation 
from Example 1 is for some values of x near 0. As we move away from zero, we lose 

21 + x L 1 + sx>2d

Lsxd = ƒsad + ƒ¿sadsx - ad = 1 +
1
2

 sx - 0d = 1 +
x
2

.

ƒ¿s0d = 1>2,ƒs0d = 1

ƒ¿sxd =
1
2

 s1 + xd-1>2 ,

DEFINITIONS If ƒ is differentiable at then the approximating function

is the linearization of ƒ at a. The approximation

of ƒ by L is the standard linear approximation of ƒ at a. The point is the
center of the approximation.

x = a

ƒsxd L Lsxd

Lsxd = ƒsad + ƒ¿sadsx - ad

x = a ,

EXAMPLE 1 Find the linearization of (Figure 3.51).ƒsxd = 21 + x at x = 0

7001_AWLThomas_ch03p122-221.qxd  10/12/09  2:22 PM  Page 202



3.11 Linearization and Differentials 203

accuracy. For example, for the linearization gives 2 as the approximation for 
which is not even accurate to one decimal place.

23,x = 2,

Approximation True value

1.095445

1.024695

1.002497 610-521.005 L 1 +
0.005

2
= 1.00250

610-321.05 L 1 +
0.05

2
 = 1.025

610-221.2 L 1 +
0.2
2

   = 1.10

ƒ True value � approximation ƒ

Do not be misled by the preceding calculations into thinking that whatever we do
with a linearization is better done with a calculator. In practice, we would never use a
linearization to find a particular square root. The utility of a linearization is its ability to
replace a complicated formula by a simpler one over an entire interval of values. If we
have to work with for x close to 0 and can tolerate the small amount of error in-
volved, we can work with instead. Of course, we then need to know how much
error there is. We further examine the estimation of error in Chapter 10.

A linear approximation normally loses accuracy away from its center. As Figure 3.51
suggests, the approximation will probably be too crude to be use-
ful near There, we need the linearization at 

EXAMPLE 2 Find the linearization of at 

Solution We evaluate the equation defining With

we have

At the linearization in Example 2 gives

which differs from the true value by less than one one-thousandth. The
linearization in Example 1 gives

a result that is off by more than 25%.

EXAMPLE 3 Find the linearization of at (Figure 3.53).

Solution Since and 
we find the linearization at to be

 = -x +
p
2

.

 = 0 + s -1d ax -
p
2
b

 Lsxd = ƒsad + ƒ¿sadsx - ad

a = p>2-1,
-sin sp>2d =ƒ¿sp>2d =ƒ¿sxd = -sin x,ƒsp>2d = cos sp>2d = 0,

x = p>2ƒsxd = cos x

21 + x = 21 + 3.2 L 1 +
3.2
2

= 1 + 1.6 = 2.6,

24.2 L 2.04939

21 + x = 21 + 3.2 L
5
4

+
3.2
4

= 1.250 + 0.800 = 2.050,

x = 3.2,

Lsxd = 2 +
1
4

 (x - 3) =
5
4

+
x
4

.

ƒs3d = 2, ƒ¿s3d =
1
2

 s1 + xd-1>2 `
x = 3

=
1
4

,

Lsxd at a = 3.

x = 3.ƒsxd = 21 + x

x = 3.x = 3.
21 + x L 1 + sx>2d

1 + sx>2d
21 + x

x

y

0 �
2 y � cos x

y � –x � �
2

FIGURE 3.53 The graph of 
and its linearization at Near

(Example 3).
x = p>2, cos x L -x + sp>2d

x = p>2.
ƒsxd = cos x
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An important linear approximation for roots and powers is

(Exercise 15). This approximation, good for values of x sufficiently close to zero, has
broad application. For example, when x is small,

Differentials

We sometimes use the Leibniz notation to represent the derivative of y with respect
to x. Contrary to its appearance, it is not a ratio. We now introduce two new variables dx
and dy with the property that when their ratio exists, it is equal to the derivative.

dy>dx

 
1

21 - x2
= s1 - x2d-1>2

L 1 + a- 1
2
b s -x2d = 1 +

1
2

 x2

k = 1>3;  replace x by 5x4 . 23 1 + 5x4
= s1 + 5x4d1>3

L 1 +
1
3

 s5x4d = 1 +
5
3

 x4

k = -1;  replace x by -x . 
1

1 - x
= s1 - xd-1

L 1 + s -1ds -xd = 1 + x

k = 1>2 21 + x L 1 +
1
2

 x

s1 + xdk
L 1 + kx sx near 0; any number kd

204 Chapter 3: Differentiation

replace x by -x2 .

k = -1>2;

DEFINITION Let be a differentiable function. The differential dx is
an independent variable. The differential dy is

dy = ƒ¿sxd dx .

y = ƒsxd

Unlike the independent variable dx, the variable dy is always a dependent variable. It
depends on both x and dx. If dx is given a specific value and x is a particular number in the
domain of the function ƒ, then these values determine the numerical value of dy.

EXAMPLE 4

(a) Find dy if 

(b) Find the value of dy when and 

Solution

(a)

(b) Substituting and in the expression for dy, we have

The geometric meaning of differentials is shown in Figure 3.54. Let and set
The corresponding change in is

The corresponding change in the tangent line L is

 = ƒ¿(a) dx.

 = ƒ(a) + ƒ¿(a)[(a + dx) - a] - ƒ(a)

 ¢L = L(a + dx) - L(a)

¢y = ƒsa + dxd - ƒsad .

y = ƒsxddx = ¢x .
x = a

dy = s5 # 14
+ 37d0.2 = 8.4.

dx = 0.2x = 1

dy = s5x4
+ 37d dx

dx = 0.2.x = 1

y = x5
+ 37x .

(++++++)++++++*

L(a � dx)
()*

L(a)
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That is, the change in the linearization of ƒ is precisely the value of the differential dy
when and Therefore, dy represents the amount the tangent line rises or
falls when x changes by an amount 

If then the quotient of the differential dy by the differential dx is equal to the
derivative because

We sometimes write

in place of calling dƒ the differential of ƒ. For instance, if 
then

Every differentiation formula like

has a corresponding differential form like

EXAMPLE 5 We can use the Chain Rule and other differentiation rules to find differ-
entials of functions.

(a)

(b)

Estimating with Differentials

Suppose we know the value of a differentiable function ƒ(x) at a point a and want to esti-
mate how much this value will change if we move to a nearby point If dx � is
small, then we can see from Figure 3.54 that is approximately equal to the differential
dy. Since

¢x = dxƒsa + dxd = ƒsad + ¢y ,

¢y
¢xa + dx .

d a x
x + 1

b =

sx + 1d dx - x dsx + 1d
sx + 1d2 =

x dx + dx - x dx
sx + 1d2 =

dx
sx + 1d2

dstan 2xd = sec2s2xd ds2xd = 2 sec2 2x dx

dsu + yd = du + dy or dssin ud = cos u du .

dsu + yd
dx

=
du
dx

+
dy
dx
 or dssin ud

dx
= cos u  

du
dx

dƒ = ds3x2
- 6d = 6x dx .

ƒsxd = 3x2
- 6,dy = ƒ¿sxd dx ,

dƒ = ƒ¿sxd dx

dy , dx =

ƒ¿sxd dx
dx

= ƒ¿sxd =

dy
dx

.

ƒ¿sxd
dx Z 0,

dx = ¢x.
dx = ¢x .x = a

3.11 Linearization and Differentials 205

x

y

0 a

y � f (x)

�y � f (a � dx) � f (a)

�L � f '(a)dx

dx � �x

(a, f (a))

Tangent
line

a � dx

When dx is a small change in x,
the corresponding change in
the linearization is precisely dy.

(a � dx, f (a � dx))

FIGURE 3.54 Geometrically, the differential dy is the change
in the linearization of ƒ when changes by an amount

dx = ¢x .
x = a¢L
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the differential approximation gives

when Thus the approximation can be used to estimate 
when ƒ(a) is known and dx is small.

EXAMPLE 6 The radius r of a circle increases from to 10.1 m (Figure 3.55).
Use dA to estimate the increase in the circle’s area A. Estimate the area of the enlarged cir-
cle and compare your estimate to the true area found by direct calculation.

Solution Since the estimated increase is

Thus, since we have

The area of a circle of radius 10.1 m is approximately 
The true area is

The error in our estimate is which is the difference 

Error in Differential Approximation

Let ƒ(x) be differentiable at and suppose that is an increment of x. We
have two ways to describe the change in ƒ as x changes from a to 

How well does dƒ approximate 
We measure the approximation error by subtracting dƒ from 

As the difference quotient

ƒsa + ¢xd - ƒsad
¢x

¢x : 0,

 = P
#
¢x .

 = aƒ(a + ¢x) - ƒ(a)

¢x
- ƒ¿(a)b #

¢x

 = ƒ(a + ¢x) - ƒ(a) - ƒ¿(a)¢x

 = ¢ƒ - ƒ¿sad¢x

 Approximation error = ¢ƒ - dƒ

¢ƒ:
¢ƒ?

 The differential estimate: dƒ = ƒ¿sad ¢x .

The true change:  ¢ƒ = ƒsa + ¢xd - ƒsad

a + ¢x :
dx = ¢xx = a

¢A - dA .0.01p m2,

 = 102.01p m2.

 As10.1d = ps10.1d2

102p m2.

 = ps10d2
+ 2p = 102p .

 As10 + 0.1d L As10d + 2p

Asr + ¢rd L Asrd + dA,

dA = A¿sad dr = 2pa dr = 2ps10ds0.1d = 2p m2.

A = pr2 ,

a = 10 m

ƒsa + dxd¢y L dydx = ¢x .

ƒsa + dxd L ƒsad + dy

206 Chapter 3: Differentiation

�A ≈ dA � 2�a dr

a � 10

dr � 0.1

FIGURE 3.55 When dr is
small compared with a, the
differential gives the estimate

(Example 6).
Asa + drd = pa2

+ dA
dA

(++++)++++*

�ƒ

(+++++++)+++++++*

Call this part .P
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approaches (remember the definition of ), so the quantity in parentheses be-
comes a very small number (which is why we called it ). In fact, as When

is small, the approximation error is smaller still.

Although we do not know the exact size of the error, it is the product of two small
quantities that both approach zero as For many common functions, whenever 
is small, the error is still smaller.

¢x¢x : 0.
P
#
¢x

¢ƒ = ƒ¿(a)¢x + P ¢x

P ¢x¢x
¢x : 0.P : 0P

ƒ¿sadƒ¿sad

3.11 Linearization and Differentials 207

()*

true
change

(+)+*

estimated
change

()*

error

Change in near 

If is differentiable at and x changes from a to the
change in ƒ is given by

(1)

in which as ¢x : 0.P : 0

¢y = ƒ¿sad ¢x + P ¢x

¢y
a + ¢x ,x = ay = ƒsxd

x � ay � ƒsxd

In Example 6 we found that

so the approximation error is and 

Proof of the Chain Rule

Equation (1) enables us to prove the Chain Rule correctly. Our goal is to show that if ƒ(u)
is a differentiable function of u and is a differentiable function of x, then the
composite is a differentiable function of x. Since a function is differentiable
if and only if it has a derivative at each point in its domain, we must show that whenever g
is differentiable at and ƒ is differentiable at then the composite is differentiable at

and the derivative of the composite satisfies the equation

Let be an increment in x and let and be the corresponding increments in 
u and y. Applying Equation (1) we have

where Similarly,

where as Notice also that Combining the equations
for and gives

so

¢y

¢x
= ƒ¿su0dg¿sx0d + P2 g¿sx0d + ƒ¿su0dP1 + P2P1 .

¢y = sƒ¿su0d + P2dsg¿sx0d + P1d¢x ,

¢y¢u
¢u : 0 as ¢x : 0.¢u : 0.P2 : 0

¢y = ƒ¿su0d¢u + P2 ¢u = sƒ¿su0d + P2d¢u ,

P1 : 0 as ¢x : 0.

¢u = g¿sx0d¢x + P1 ¢x = sg¿sx0d + P1d¢x ,

¢y¢u¢x

dy
dx
`
x=x0

= ƒ¿s gsx0dd # g¿sx0d .

x0

g sx0d ,x0

y = ƒsg sxdd
u = g sxd

0.01p>0.1 = 0.1p m.
P = 0.01p>¢r =¢A - dA = P¢r = 0.01p

¢A = p(10.1)2
- p(10)2

= (102.01 - 100)p = (2p + 0.01p) m2
()*

error

()*

dA
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Since and go to zero as goes to zero, three of the four terms on the right vanish in
the limit, leaving

Sensitivity to Change

The equation tells how sensitive the output of ƒ is to a change in input at dif-
ferent values of x. The larger the value of at x, the greater the effect of a given change dx.
As we move from a to a nearby point we can describe the change in ƒ in three ways:

True Estimated

Absolute change

Relative change

Percentage change

EXAMPLE 7 You want to calculate the depth of a well from the equation by
timing how long it takes a heavy stone you drop to splash into the water below. How sensi-
tive will your calculations be to a 0.1-sec error in measuring the time?

Solution The size of ds in the equation

depends on how big t is. If the change caused by is about

Three seconds later at the change caused by the same dt is

For a fixed error in the time measurement, the error in using ds to estimate the depth is
larger when the time it takes until the stone splashes into the water is longer.

EXAMPLE 8 In the late 1830s, French physiologist Jean Poiseuille (“pwa-ZOY”) 
discovered the formula we use today to predict how much the radius of a partially clogged
artery decreases the normal volume of flow. His formula,

says that the volume V of fluid flowing through a small pipe or tube in a unit of time at a
fixed pressure is a constant times the fourth power of the tube’s radius r. How does a 10%
decrease in r affect V? (See Figure 3.56.)

Solution The differentials of r and V are related by the equation

The relative change in V is

The relative change in V is 4 times the relative change in r, so a 10% decrease in r will 
result in a 40% decrease in the flow.

dV
V

=
4kr3 dr

kr4 = 4 
dr
r .

dV =
dV
dr

 dr = 4kr3 dr .

V = kr4 ,

ds = 32s5ds0.1d = 16 ft .

t = 5 sec,

ds = 32s2ds0.1d = 6.4 ft .

dt = 0.1t = 2 sec,

ds = 32t dt

s = 16t2

dƒ

ƒsad
* 100

¢ƒ

ƒsad
* 100

dƒ

ƒsad
¢ƒ

ƒsad

dƒ = ƒ¿sad dx¢ƒ = ƒsa + dxd - ƒsad

a + dx ,
ƒ¿

df = ƒ¿sxd dx

dy
dx
`
x=x0

= lim
¢x:0

 
¢y

¢x
= ƒ¿su0dg¿sx0d = ƒ¿sgsx0dd # g¿sx0d .

¢xP2P1

208 Chapter 3: Differentiation
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EXAMPLE 9 Newton’s second law,

is stated with the assumption that mass is constant, but we know this is not strictly true be-
cause the mass of a body increases with velocity. In Einstein’s corrected formula, mass has
the value

where the “rest mass” represents the mass of a body that is not moving and c is the
speed of light, which is about 300,000 km sec. Use the approximation

(2)

to estimate the increase in mass resulting from the added velocity .

Solution When is very small compared with is close to zero and it is safe to
use the approximation

Eq. (2) with 

to obtain

or

(3)

Equation (3) expresses the increase in mass that results from the added velocity

Converting Mass to Energy

Equation (3) derived in Example 9 has an important interpretation. In Newtonian physics,
is the kinetic energy (KE) of the body, and if we rewrite Equation (3) in the

form

sm - m0dc2
L

1
2

 m0 y2 ,

s1>2dm0 y2

y.

m L m0 +
1
2

 m0 y2 a 1
c2 b .

m =

m0

21 - y2>c2
L m0 c1 +

1
2

 ay2

c2 b d = m0 +
1
2

 m0 y2 a 1
c2 b ,

x =

y
c

1

21 - y2>c2
L 1 +

1
2

 ay2

c2 b

c, y2>c2y

y¢m

1

21 - x2
L 1 +

1
2

 x2

>m0

m =

m0

21 - y2>c2
,

F =
d
dt

 smyd = m 
dy
dt

= ma ,
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Blockage

Opaque
dye

Inflatable
balloon on
    catheter

Angiography Angioplasty 

FIGURE 3.56 To unblock a clogged artery,
an opaque dye is injected into it to make the
inside visible under X-rays. Then a balloon-
tipped catheter is inflated inside the artery to
widen it at the blockage site.
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we see that

or

So the change in kinetic energy in going from velocity 0 to velocity is approxi-
mately equal to the change in mass times the square of the speed of light. Using

we see that a small change in mass can create a large change in
energy.
c L 3 * 108 m>sec,

s¢mdc2 ,
y¢sKEd

s¢mdc2
L ¢sKEd .

sm - m0dc2
L

1
2

 m0 y2
=

1
2

 m0 y2
-

1
2

 m0s0d2
= ¢sKEd ,
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Exercises 3.11

Finding Linearizations
In Exercises 1–5, find the linearization L(x) of ƒ(x) at 

1.

2.

3.

4.

5.

6. Common linear approximations at Find the lineariza-
tions of the following functions at 

(a) sin x (b) cos x (c) tan x (d) (e)

Linearization for Approximation
In Exercises 7–14, find a linearization at a suitably chosen integer near

at which the given function and its derivative are easy to evaluate.

7.

8.

9.

10.

11.

12.

13.

14.

15. Show that the linearization of at is

16. Use the linear approximation to find an ap-
proximation for the function ƒ(x) for values of x near zero.

a. b.

c. d.

e. f.

17. Faster than a calculator Use the approximation 
to estimate the following.

a. b. 23 1.009s1.0002d50

1 + kx
s1 + xdk L

ƒsxd =
3

B
a1 -

1
2 + x

b2

ƒsxd = s4 + 3xd1>3

ƒsxd = 22 + x2ƒsxd =

1

21 + x

ƒsxd =

2
1 - x

ƒsxd = s1 - xd6

s1 + xdk
L 1 + kx

Lsxd = 1 + kx .
x = 0ƒsxd = s1 + xdk

ƒ(x) = sin-1 x, x0 = p>12

ƒ(x) = e-x, x0 = -0.1

ƒsxd =

x
x + 1

, x0 = 1.3

ƒsxd = 23 x, x0 = 8.5

ƒsxd = 1 + x, x0 = 8.1

ƒsxd = 2x2
+ 3x - 3, x0 = -0.9

ƒsxd = x-1, x0 = 0.9

ƒsxd = x2
+ 2x, x0 = 0.1

x0

ln (1 + x)ex

x = 0.
x = 0

ƒ(x) = tan x, a = p

ƒsxd = 23 x, a = -8

ƒsxd = x +

1
x  , a = 1

ƒsxd = 2x2
+ 9, a = -4

ƒsxd = x3
- 2x + 3, a = 2

x = a .
18. Find the linearization of How

is it related to the individual linearizations of and sin x
at 

Derivatives in Differential Form
In Exercises 19–38, find dy.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

Approximation Error
In Exercises 39–44, each function ƒ(x) changes value when x changes
from Find

a. the change 

b. the value of the estimate and

c. the approximation error 

x

y

0

dx

x0 � dx

df � f '(x0) dx

� f � f (x0 � dx) � f (x0)

Tangent

(x0, f (x0))

y � f (x)

x0

ƒ ¢ƒ - dƒ ƒ .

dƒ = ƒ¿sx0d dx ;

¢ƒ = ƒsx0 + dxd - ƒsx0d ;

x0 to x0 + dx .

y = etan-1 2x2
+ 1y = sec-1 (e-x)

y = cot-1 a 1
x2 b + cos-1 2xy = tan-1 (ex2

)

y = ln a x + 1

2x - 1
by = ln (1 + x2)

y = xe-xy = e2x

y = 2 cot a 1
1x
by = 3 csc s1 - 21xd

y = sec sx2
- 1dy = 4 tan sx3>3d

y = cos sx2dy = sin s51xd
xy2

- 4x3>2
- y = 02y3>2

+ xy - x = 0

y =

21x

3s1 + 1xd
y =

2x

1 + x2

y = x21 - x2y = x3
- 31x

x = 0?
2x + 1

ƒsxd = 2x + 1 + sin x at x = 0.
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39.

40.

41.

42.

43.

44.

Differential Estimates of Change
In Exercises 45–50, write a differential formula that estimates the
given change in volume or surface area.

45. The change in the volume of a sphere when the 
radius changes from to 

46. The change in the volume of a cube when the edge
lengths change from to 

47. The change in the surface area of a cube when the edge
lengths change from to 

48. The change in the lateral surface area of a
right circular cone when the radius changes from to 
and the height does not change

49. The change in the volume of a right circular cylinder
when the radius changes from to and the height does
not change

50. The change in the lateral surface area of a right circular
cylinder when the height changes from to and the 
radius does not change

Applications
51. The radius of a circle is increased from 2.00 to 2.02 m.

a. Estimate the resulting change in area.

b. Express the estimate as a percentage of the circle’s original
area.

52. The diameter of a tree was 10 in. During the following year, the
circumference increased 2 in. About how much did the tree’s 
diameter increase? The tree’s cross-section area?

53. Estimating volume Estimate the volume of material in a cylindri-
cal shell with length 30 in., radius 6 in., and shell thickness 0.5 in.

54. Estimating height of a building A surveyor, standing 30 ft
from the base of a building, measures the angle of elevation to the
top of the building to be 75°. How accurately must the angle be
measured for the percentage error in estimating the height of the
building to be less than 4%?

55. Tolerance The radius r of a circle is measured with an error of
at most 2%. What is the maximum corresponding percentage 
error in computing the circle’s

a. circumference? b. area?

56. Tolerance The edge x of a cube is measured with an error of at
most 0.5%. What is the maximum corresponding percentage error
in computing the cube’s

a. surface area? b. volume?

6 in.
0.5 in.

30 in.

h0 + dhh0

S = 2prh

r0 + drr0

V = pr2h

r0 + drr0

S = pr2r2
+ h2

x0 + dxx0

S = 6x2

x0 + dxx0

V = x3

r0 + drr0

V = s4>3dpr 3

ƒsxd = x3
- 2x + 3, x0 = 2, dx = 0.1

ƒsxd = x-1, x0 = 0.5, dx = 0.1

ƒsxd = x4, x0 = 1, dx = 0.1

ƒsxd = x3
- x, x0 = 1, dx = 0.1

ƒsxd = 2x2
+ 4x - 3, x0 = -1, dx = 0.1

ƒsxd = x2
+ 2x, x0 = 1, dx = 0.1

3.11 Linearization and Differentials 211

57. Tolerance The height and radius of a right circular cylinder are
equal, so the cylinder’s volume is The volume is to be
calculated with an error of no more than 1% of the true value.
Find approximately the greatest error that can be tolerated in the
measurement of h, expressed as a percentage of h.

58. Tolerance

a. About how accurately must the interior diameter of a 10-m-
high cylindrical storage tank be measured to calculate the
tank’s volume to within 1% of its true value?

b. About how accurately must the tank’s exterior diameter be
measured to calculate the amount of paint it will take to paint
the side of the tank to within 5% of the true amount?

59. The diameter of a sphere is measured as and the vol-
ume is calculated from this measurement. Estimate the percent-
age error in the volume calculation.

60. Estimate the allowable percentage error in measuring the diameter D
of a sphere if the volume is to be calculated correctly to within 3%.

61. The effect of flight maneuvers on the heart The amount of
work done by the heart’s main pumping chamber, the left ventri-
cle, is given by the equation

where W is the work per unit time, P is the average blood pres-
sure, V is the volume of blood pumped out during the unit of time,

(“delta”) is the weight density of the blood, is the average ve-
locity of the exiting blood, and g is the acceleration of gravity.

When and remain constant, W becomes a function
of g, and the equation takes the simplified form

As a member of NASA’s medical team, you want to know how sen-
sitive W is to apparent changes in g caused by flight maneuvers,
and this depends on the initial value of g. As part of your investiga-
tion, you decide to compare the effect on W of a given change dg on
the moon, where with the effect the same change
dg would have on Earth, where Use the simplified
equation above to find the ratio of to 

62. Measuring acceleration of gravity When the length L of a
clock pendulum is held constant by controlling its temperature,
the pendulum’s period T depends on the acceleration of gravity g.
The period will therefore vary slightly as the clock is moved from
place to place on the earth’s surface, depending on the change in g.
By keeping track of we can estimate the variation in g from the
equation that relates T, g, and L.

a. With L held constant and g as the independent variable,
calculate dT and use it to answer parts (b) and (c).

b. If g increases, will T increase or decrease? Will a pendulum
clock speed up or slow down? Explain.

c. A clock with a 100-cm pendulum is moved from a location
where to a new location. This increases the
period by Find dg and estimate the value of
g at the new location.

63. The linearization is the best linear approximation Suppose
that is differentiable at and that 

is a linear function in which m and c are constants.msx - ad + c
g sxd =x = ay = ƒsxd

dT = 0.001 sec .
g = 980 cm>sec2

T = 2psL>gd1>2¢T ,

dWEarth .dWmoon

g = 32 ft>sec2 .
g = 5.2 ft>sec2 ,

W = a +

b
g  sa, b constantd .

yP, V, d ,

yd

W = PV +

Vdy2

2g
,

100 ; 1 cm

V = ph3 .
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If the error were small enough near 
we might think of using g as a linear approximation of ƒ instead
of the linearization Show that if we
impose on g the conditions

1. The approximation error is zero at 

2.

then Thus, the linearization L(x)
gives the only linear approximation whose error is both zero at

and negligible in comparison with 

64. Quadratic approximations

a. Let be a quadratic 
approximation to ƒ(x) at with the properties:

i)

ii)

iii)

Determine the coefficients and 

b. Find the quadratic approximation to at

c. Graph and its quadratic approximation at
Then zoom in on the two graphs at the point (0, 1).

Comment on what you see.

d. Find the quadratic approximation to at 
Graph g and its quadratic approximation together. Comment
on what you see.

e. Find the quadratic approximation to at
Graph h and its quadratic approximation together.

Comment on what you see.
x = 0.

hsxd = 21 + x

x = 1.gsxd = 1>x
x = 0.

ƒsxd = 1>s1 - xd
x = 0.

ƒsxd = 1>s1 - xd
b2 .b0 , b1 ,

Q–sad = ƒ–sad.
Q¿sad = ƒ¿sad
Qsad = ƒsad

x = a
Qsxd = b0 + b1sx - ad + b2sx - ad2

x
a

y � f (x)

(a, f (a))

The linearization, L(x):
y � f (a) � f '(a)(x � a)

Some other linear
approximation, g(x):
y � m(x � a) � c

x - a .x = a

g sxd = ƒsad + ƒ¿sadsx - ad .

lim
x:a

  
Esxd

x - a = 0

x = a .Esad = 0

Lsxd = ƒsad + ƒ¿sadsx - ad .

x = a ,Esxd = ƒsxd - g sxd
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f. What are the linearizations of ƒ, g, and h at the respective
points in parts (b), (d), and (e)?

65. The linearization of

a. Find the linearization of at Then round its
coefficients to two decimal places.

b. Graph the linearization and function together for
and 

66. The linearization of 

a. Find the linearization of at Then round
its coefficients to two decimal places.

b. Graph the linearization and function together in the window
and 

COMPUTER EXPLORATIONS
In Exercises 67–72, use a CAS to estimate the magnitude of the error
in using the linearization in place of the function over a specified in-
terval I. Perform the following steps:

a. Plot the function ƒ over I.

b. Find the linearization L of the function at the point a.

c. Plot ƒ and L together on a single graph.

d. Plot the absolute error and find its 
maximum value.

e. From your graph in part (d), estimate as large a as you
can, satisfying

for Then check graphically to see if
your holds true.

67.

68.

69.

70.

71.

72. ƒ(x) = 2x sin-1 x, [0, 1], a =

1
2

ƒ(x) = x2x, [0, 2], a = 1

ƒsxd = 1x - sin x, [0, 2p], a = 2

ƒsxd = x2>3sx - 2d, [-2, 3], a = 2

ƒsxd =

x - 1
4x2

+ 1
, c- 3

4, 1 d , a =

1
2

ƒsxd = x3
+ x2

- 2x, [-1, 2], a = 1

d-estimate
P = 0.5, 0.1, and 0.01.

ƒ x - a ƒ 6 d Q ƒ ƒsxd - Lsxd ƒ 6 P

d 7 0

ƒ ƒsxd - Lsxd ƒ  over I

2 … x … 4.0 … x … 8

x = 3.ƒsxd = log3 x

log3 x

-1 … x … 1.-3 … x … 3

x = 0.ƒsxd = 2x

2x

The error is negligible when compared
with x - a .

T

T

T

T

T

Chapter 3 Questions to Guide Your Review

1. What is the derivative of a function ƒ? How is its domain related
to the domain of ƒ? Give examples.

2. What role does the derivative play in defining slopes, tangents,
and rates of change?

3. How can you sometimes graph the derivative of a function when
all you have is a table of the function’s values?

4. What does it mean for a function to be differentiable on an open
interval? On a closed interval?

5. How are derivatives and one-sided derivatives related?

6. Describe geometrically when a function typically does not have a
derivative at a point.

7. How is a function’s differentiability at a point related to its conti-
nuity there, if at all?

8. What rules do you know for calculating derivatives? Give some
examples.
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9. Explain how the three formulas

a.

b.

c.

enable us to differentiate any polynomial.

10. What formula do we need, in addition to the three listed in Ques-
tion 9, to differentiate rational functions?

11. What is a second derivative? A third derivative? How many deriv-
atives do the functions you know have? Give examples.

12. What is the derivative of the exponential function ? How does the
domain of the derivative compare with the domain of the function?

13. What is the relationship between a function’s average and instan-
taneous rates of change? Give an example.

14. How do derivatives arise in the study of motion? What can you
learn about a body’s motion along a line by examining the deriva-
tives of the body’s position function? Give examples.

15. How can derivatives arise in economics?

16. Give examples of still other applications of derivatives.

17. What do the limits and 
have to do with the derivatives of the sine and cosine functions?
What are the derivatives of these functions?

18. Once you know the derivatives of sin x and cos x, how can you
find the derivatives of tan x, cot x, sec x, and csc x? What are the
derivatives of these functions?

19. At what points are the six basic trigonometric functions continu-
ous? How do you know?

20. What is the rule for calculating the derivative of a composite of
two differentiable functions? How is such a derivative evaluated?
Give examples.

limh:0 sscos h - 1d>hdlimh:0 sssin hd>hd

e x

d
dx

 su1 + u2 +
Á

+ und =

du1

dx
+

du2

dx
+

Á
+

dun

dx

d
dx

 scud = c 
du
dx

d
dx

 sxnd = nxn - 1
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21. If u is a differentiable function of x, how do you find if
n is an integer? If n is a real number? Give examples.

22. What is implicit differentiation? When do you need it? Give 
examples.

23. What is the derivative of the natural logarithm function ln x? How
does the domain of the derivative compare with the domain of the
function?

24. What is the derivative of the exponential function and
? What is the geometric significance of the limit of

as ? What is the limit when a is the number e?

25. What is the derivative of Are there any restrictions on a?

26. What is logarithmic differentiation? Give an example.

27. How can you write any real power of x as a power of e? Are there
any restrictions on x? How does this lead to the Power Rule for
differentiating arbitrary real powers?

28. What is one way of expressing the special number e as a limit?
What is an approximate numerical value of e correct to 7 decimal
places?

29. What are the derivatives of the inverse trigonometric functions?
How do the domains of the derivatives compare with the domains
of the functions?

30. How do related rates problems arise? Give examples.

31. Outline a strategy for solving related rates problems. Illustrate
with an example.

32. What is the linearization L(x) of a function ƒ(x) at a point 
What is required of ƒ at a for the linearization to exist? How are
linearizations used? Give examples.

33. If x moves from a to a nearby value how do you estimate
the corresponding change in the value of a differentiable function
ƒ(x)? How do you estimate the relative change? The percentage
change? Give an example.

a + dx ,

x = a?

loga x ?

h : 0(ah
- 1)>ha Z 1

ax, a 7 0

sd>dxdsund

Chapter 3 Practice Exercises

Derivatives of Functions
Find the derivatives of the functions in Exercises 1–64.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16. s = csc5 s1 - t + 3t2ds = ssec t + tan td5

s = cot3 a2t bs = cos4 s1 - 2td

y =

1
sin2 x

-

2
sin x

y = 2 tan2 x - sec2 x

s =

1
1t - 1

s =

1t

1 + 1t

y = a-1 -

csc u

2
-

u2

4
b2

y = su2
+ sec u + 1d3

y = s2x - 5ds4 - xd-1y = sx + 1d2sx2
+ 2xd

y = x7
+ 27x -

1
p + 1

y = x3
- 3sx2

+ p2d

y = 3 - 0.7x3
+ 0.3x7y = x5

- 0.125x2
+ 0.25x

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34. y = 4x2x + 1xy = B
x2

+ x

x2

y = a 21x

21x + 1
b2

y = a 1x
1 + x

b2

s =

-1
15s15t - 1d3s = a 4t

t + 1
b-2

y = x-2 sin2 sx3dy = x2 sin2 s2x2d
y = x2 cot 5xy = 5 cot x2

y = 1x csc sx + 1d3y = x-1>2 sec s2xd2

y = 21x sin 1xy =

1
2

 x2 csc 
2
x

r = sin Au + 2u + 1 Br = sin 22u

r = 2u2cos ur = 22u sin u
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35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

Implicit Differentiation
In Exercises 65–78, find by implicit differentiation.

65. 66.

67. 68.

69. 70.

71. 72.

73. 74.

75. 76.

77. 78.

In Exercises 79 and 80, find .

79. 80.

In Exercises 81 and 82, find .

81. 82.

83. Find by implicit differentiation:

a. b.

84. a. By differentiating implicitly, show that

b. Then show that d2y>dx2
= -1>y3 .

dy>dx = x>y .
x2

- y2
= 1

y2
= 1 -

2
xx3

+ y3
= 1

d2y>dx2

2rs - r - s + s2
= -3r cos 2s + sin2 s = p

dr>ds

q = s5p2
+ 2pd-3>2p3

+ 4pq - 3q2
= 2

dp>dq

xy
= 22ye tan-1 x

= 2

x sin-1 y = 1 + x2ln (x>y) = 1

y2
= 2e-1>xex + 2y

= 1

y2
= A

1 + x
1 - x

y2
=

x
x + 1

x2y2
= 11xy = 1

5x4>5
+ 10y6>5

= 15x3
+ 4xy - 3y4>3

= 2x

x2
+ xy + y2

- 5x = 2xy + 2x + 3y = 1

dy>dx

y = s1 + x2detan-1 x

y = csc-1 ssec ud, 0 6 u 6 p>2
y = 22x - 1  sec-1 1x

y = z sec-1 z - 2z2
- 1, z 7 1

y = s1 + t2d cot-1 2t

y = t tan-1 t -

1
2

 ln t

y = z cos-1 z - 21 - z2

y = ln cos-1 x

y = sin-1 a 1

2y b , y 7 1

y = sin-121 - u2, 0 6 u 6 1

y = 2sln xdx>2y = sx + 2dx + 2

y = 22x-22y = 5x3.6

y = 92ty = 8-t

y = log5 s3x - 7dy = log2 sx2>2d

y = ln ssec2 udy = ln ssin2 ud

y = x2e-2>xy =

1
4

 xe4x
-

1
16

 e4x

y = 22e22xy = 10e-x>5
y = s3 + cos3 3xd-1>3y =

3

s5x2
+ sin 2xd3>2

y = 20s3x - 4d1>4s3x - 4d-1>5y = s2x + 1d22x + 1

r = a1 + sin u

1 - cos u
b2

r = a sin u

cos u - 1
b2
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Numerical Values of Derivatives
85. Suppose that functions ƒ(x) and g(x) and their first derivatives

have the following values at and 

x ƒ(x) g (x) ƒ�(x) g�(x)

0 1 1
1 3 5

Find the first derivatives of the following combinations at the
given value of x.

a. b.

c. d.

e. f.

g.

86. Suppose that the function ƒ(x) and its first derivative have the 
following values at and 

x ƒ(x) ƒ�(x)

0 9
1

Find the first derivatives of the following combinations at the
given value of x.

a. b.

c. d.

e. f.

87. Find the value of at if and 

88. Find the value of at if and 

89. Find the value of at if and

90. Find the value of at if and

91. If find the value of at the point (0, 1).

92. If find at the point (8, 8).

Applying the Derivative Definition
In Exercises 93 and 94, find the derivative using the definition.

93.

94.

95. a. Graph the function

b. Is ƒ continuous at 

c. Is ƒ differentiable at 

Give reasons for your answers.

x = 0?

x = 0?

ƒsxd = e x2, -1 … x 6 0

-x2,   0 … x … 1.

g sxd = 2x2
+ 1

ƒstd =

1
2t + 1

d2y>dx2x1>3
+ y1>3

= 4,

d2y>dx2y3
+ y = 2 cos x ,

u2t + u = 1.
r = su2

+ 7d1>3t = 0dr>dt

r = 3 sin ss + p>6d .
w = sin Ae1r Bs = 0dw>ds

su2
+ 2ud1>3 .

t =s = t2
+ 5tu = 2ds>du

x = t2
+ p .y = 3 sin 2xt = 0dy>dt

10 sin apx
2
b  ƒ 2sxd, x = 1

ƒsxd
2 + cos x

 , x = 0

ƒs1 - 5 tan xd, x = 0ƒs1xd, x = 1

2ƒsxd, x = 01x ƒsxd, x = 1

1>5-3
-2

x = 1.x = 0

ƒsx + g sxdd, x = 0

sx + ƒsxdd3>2, x = 1g sƒsxdd, x = 0

ƒsg sxdd, x = 0
ƒsxd

g sxd + 1
, x = 1

ƒsxdg2sxd, x = 06ƒsxd - g sxd, x = 1

-41>2 1>2-3

x = 1.x = 0
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96. a. Graph the function

b. Is ƒ continuous at 

c. Is ƒ differentiable at 

Give reasons for your answers.
97. a. Graph the function

b. Is ƒ continuous at 

c. Is ƒ differentiable at 

Give reasons for your answers.
98. For what value or values of the constant m, if any, is

a. continuous at 

b. differentiable at 

Give reasons for your answers.

Slopes, Tangents, and Normals
99. Tangents with specified slope Are there any points on the

curve where the slope is If so,
find them.

100. Tangents with specified slope Are there any points on the
curve where the slope is 2? If so, find them.

101. Horizontal tangents Find the points on the curve 
where the tangent is parallel to the 

x-axis.

102. Tangent intercepts Find the x- and y-intercepts of the line that
is tangent to the curve at the point 

103. Tangents perpendicular or parallel to lines Find the points
on the curve where the tangent is

a. perpendicular to the line 

b. parallel to the line 

104. Intersecting tangents Show that the tangents to the curve
at and intersect at right angles.

105. Normals parallel to a line Find the points on the curve
where the normal is parallel to

the line Sketch the curve and normals together, la-
beling each with its equation.

106. Tangent and normal lines Find equations for the tangent and
normal to the curve at the point Sketch
the curve, tangent, and normal together, labeling each with its
equation.

107. Tangent parabola The parabola is to be tangent
to the line Find C.

108. Slope of tangent Show that the tangent to the curve at
any point meets the curve again at a point where the
slope is four times the slope at 

109. Tangent curve For what value of c is the curve 
tangent to the line through the points 

110. Normal to a circle Show that the normal line at any point of
the circle passes through the origin.x2

+ y2
= a2

s0, 3d and s5, -2d?
y = c>sx + 1d

sa, a3d .
sa, a3d

y = x3

y = x .
y = x2

+ C

sp>2, 1d .y = 1 + cos x

y = -x>2.
y = tan x, -p>2 6 x 6 p>2,

x = -px = py = sp sin xd>x
y = 22 - 12x .

y = 1 - sx>24d .

y = 2x3
- 3x2

- 12x + 20

s -2, -8d .y = x3

2x3
- 3x2

- 12x + 20
y =

y = x - e-x

-3>2?y = sx>2d + 1>s2x - 4d

x = 0?

x = 0?

ƒsxd = e sin 2x, x … 0

mx, x 7 0

x = 1?

x = 1?

ƒsxd = e x, 0 … x … 1

2 - x, 1 6 x … 2.

x = 0?

x = 0?

ƒsxd = e x, -1 … x 6 0

tan x,   0 … x … p>4.
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In Exercises 111–116, find equations for the lines that are tangent and
normal to the curve at the given point.

111.

112.

113.

114.

115.

116.

117. Find the slope of the curve at the points (1, 1)
and 

118. The graph shown suggests that the curve 
might have horizontal tangents at the x-axis. Does it? Give rea-
sons for your answer.

Analyzing Graphs
Each of the figures in Exercises 119 and 120 shows two graphs, the
graph of a function together with the graph of its derivative

Which graph is which? How do you know?

119. 120.

121. Use the following information to graph the function 
for 

i) The graph of ƒ is made of line segments joined end to end.

ii) The graph starts at the point 

iii) The derivative of ƒ, where defined, agrees with the step
function shown here.

x

y

1–1 2

1

–1
3 4 5 6

–2

y � f '(x)

s -1, 2d .

-1 … x … 6.
y = ƒsxd

ƒ¿sxd .
y = ƒsxd

x

y

0

–1

1
y � sin (x � sin x)

� 2�–2� –�

y = sin sx - sin xd
s1, -1d .

x3y3
+ y2

= x + y

x3>2
+ 2y3>2

= 17, s1, 4d
x + 1xy = 6, s4, 1d
s y - xd2

= 2x + 4, s6, 2d
xy + 2x - 5y = 2, s3, 2d
ex

+ y2
= 2, s0, 1d

x2
+ 2y2

= 9, s1, 2d

x

y

0 1–1

1

–1

–2

2A

B

x

y

0 1

1

A

B

2

2

3

4

7001_AWLThomas_ch03p122-221.qxd  10/12/09  2:23 PM  Page 215



122. Repeat Exercise 121, supposing that the graph starts at 
instead of 

Exercises 123 and 124 are about the accompanying graphs. The
graphs in part (a) show the numbers of rabbits and foxes in a small
arctic population. They are plotted as functions of time for 200 days.
The number of rabbits increases at first, as the rabbits reproduce. But
the foxes prey on rabbits and, as the number of foxes increases, the
rabbit population levels off and then drops. Part (b) shows the graph of
the derivative of the rabbit population, made by plotting slopes.

123. a. What is the value of the derivative of the rabbit population
when the number of rabbits is largest? Smallest?

b. What is the size of the rabbit population when its derivative is
largest? Smallest (negative value)?

124. In what units should the slopes of the rabbit and fox population
curves be measured?

s -1, 2d .
s -1, 0d
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Show how to extend the functions in Exercises 133 and 134 to be con-
tinuous at the origin.

133. 134.

Logarithmic Differentiation
In Exercises 135–140, use logarithmic differentiation to find the 
derivative of y with respect to the appropriate variable.

135. 136.

137.

138.

139. 140.

Related Rates
141. Right circular cylinder The total surface area S of a right cir-

cular cylinder is related to the base radius r and height h by the
equation 

a. How is related to if h is constant?

b. How is related to if r is constant?

c. How is related to and if neither r nor h is
constant?

d. How is related to if S is constant?

142. Right circular cone The lateral surface area S of a right circu-
lar cone is related to the base radius r and height h by the equa-
tion 

a. How is related to if h is constant?

b. How is related to if r is constant?

c. How is related to and if neither r nor h is
constant?

143. Circle’s changing area The radius of a circle is changing at
the rate of At what rate is the circle’s area chang-
ing when 

144. Cube’s changing edges The volume of a cube is increasing at
the rate of at the instant its edges are 20 cm long.
At what rate are the lengths of the edges changing at that instant?

145. Resistors connected in parallel If two resistors of and 
ohms are connected in parallel in an electric circuit to make an
R-ohm resistor, the value of R can be found from the equation

If is decreasing at the rate of 1 ohm sec and is increasing
at the rate of 0.5 ohm sec, at what rate is R changing when

and R2 = 50 ohms?R1 = 75 ohms
> R2>R1

�
R

�
R2R1

1
R

=

1
R1

+

1
R2

.

R2R1

1200 cm3>min

r = 10 m?
-2>p m>sec.

dh>dtdr>dtdS>dt

dh>dtdS>dt

dr>dtdS>dt

S = pr2r2
+ h2 .

dh>dtdr>dt

dh>dtdr>dtdS>dt

dh>dtdS>dt

dr>dtdS>dt

S = 2pr2
+ 2prh .

y = sln xd1>sln xdy = ssin ud2u

y =

2u2u

2u2
+ 1

y = ast + 1dst - 1d
st - 2dst + 3d

b5

, t 7 2

y =
10

A
3x + 4
2x - 4

y =

2sx2
+ 1d

2cos 2x

ƒsxd =

tan stan xd
sin ssin xd

g sxd =

tan stan xd
tan x

(20, 1700)

0 50 100 150 200

1000

2000

(a)

(20, 40)

0 50 100 150 200

50

–50

–100

Derivative of the rabbit population

0

(b)

Number
of rabbits

Initial no. rabbits � 1000
Initial no. foxes � 40

Time (days)

Number
of foxes

�100

Time (days)

Trigonometric Limits
Find the limits in Exercises 125–132.

125. 126.

127. 128.

129.

130.

131. 132. lim
u:0

 
1 - cos u

u2lim
x:0

  
x sin x

2 - 2 cos x

lim
u:0+

 
1 - 2 cot2 u

5 cot2 u - 7 cot u - 8

lim
u: sp>2d-

 
4 tan2 u + tan u + 1

tan2 u + 5

lim
u:0

 
sin ssin ud
u

lim
r:0

  
sin r

tan 2r

lim
x:0

 
3x - tan 7x

2x
lim
x:0

  
sin x

2x2
- x
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146. Impedance in a series circuit The impedance Z (ohms) in a
series circuit is related to the resistance R (ohms) and reactance
X (ohms) by the equation If R is increasing at
3 ohms sec and X is decreasing at 2 ohms sec, at what rate is Z
changing when and 

147. Speed of moving particle The coordinates of a particle mov-
ing in the metric xy-plane are differentiable functions of time t
with and How fast is the
particle moving away from the origin as it passes through the
point 

148. Motion of a particle A particle moves along the curve 
in the first quadrant in such a way that its distance from the origin in-
creases at the rate of 11 units per second. Find when 

149. Draining a tank Water drains from the conical tank shown in
the accompanying figure at the rate of 

a. What is the relation between the variables h and r in the figure?

b. How fast is the water level dropping when 

150. Rotating spool As television cable is pulled from a large spool
to be strung from the telephone poles along a street, it unwinds
from the spool in layers of constant radius (see accompanying
figure). If the truck pulling the cable moves at a steady 6 ft sec
(a touch over 4 mph), use the equation to find how fast
(radians per second) the spool is turning when the layer of radius
1.2 ft is being unwound.

151. Moving searchlight beam The figure shows a boat 1 km off-
shore, sweeping the shore with a searchlight. The light turns at a
constant rate, 

a. How fast is the light moving along the shore when it reaches
point A?

b. How many revolutions per minute is 0.6 rad sec?>

du>dt = -0.6 rad/sec.

1.2'

s = ru
>

r

h

Exit rate: 5 ft3/min

10'

4'

h = 6 ft?

5 ft3>min.

x = 3.dx>dt

y = x3>2
s3, -4d?

dy>dt = 5 m>sec .dx>dt = 10 m>sec

X = 20 ohms?R = 10 ohms
>> Z = 2R2

+ X 2 .
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152. Points moving on coordinate axes Points A and B move along
the x- and y-axes, respectively, in such a way that the distance r
(meters) along the perpendicular from the origin to the line AB
remains constant. How fast is OA changing, and is it increasing,
or decreasing, when and B is moving toward O at the
rate of 0.3r m sec?

Linearization
153. Find the linearizations of

a. b.

Graph the curves and linearizations together.

154. We can obtain a useful linear approximation of the function
by combining the approximations

to get

Show that this result is the standard linear approximation of
at 

155. Find the linearization of 

156. Find the linearization of 

Differential Estimates of Change
157. Surface area of a cone Write a formula that estimates the

change that occurs in the lateral surface area of a right circular
cone when the height changes from and the radius
does not change.

158. Controlling error

a. How accurately should you measure the edge of a cube to be
reasonably sure of calculating the cube’s surface area with 
an error of no more than 2%?

b. Suppose that the edge is measured with the accuracy
required in part (a). About how accurately can the cube’s

(Lateral surface area)

h

r

1
3

V 5    pr2h

S 5 pr�r2 1 h2

h0 to h0 + dh

at x = 0.
ƒsxd = 2>s1 - xd + 21 + x - 3.1

ƒsxd = 21 + x + sin x - 0.5 at x = 0.

x = 0.1>s1 + tan xd

1
1 + tan x

L 1 - x .

1
1 + x

L 1 - x and tan x L x

ƒsxd = 1>s1 + tan xd at x = 0

sec x at x = -p>4.tan x at x = -p>4

> OB = 2r

1 km
A

x

�
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volume be calculated from the edge measurement? To find
out, estimate the percentage error in the volume calculation
that might result from using the edge measurement.

159. Compounding error The circumference of the equator of a
sphere is measured as 10 cm with a possible error of 0.4 cm.
This measurement is then used to calculate the radius. The
radius is then used to calculate the surface area and volume 
of the sphere. Estimate the percentage errors in the calculated
values of

a. the radius.

b. the surface area.

c. the volume.

160. Finding height To find the height of a lamppost (see accom-
panying figure), you stand a 6 ft pole 20 ft from the lamp and

218 Chapter 3: Differentiation

measure the length a of its shadow, finding it to be 15 ft, give or
take an inch. Calculate the height of the lamppost using the
value and estimate the possible error in the result.

h

6 ft

20 ft
a

a = 15

Chapter 3 Additional and Advanced Exercises

1. An equation like is called an identity be-
cause it holds for all values of An equation like is
not an identity because it holds only for selected values of 
not all. If you differentiate both sides of a trigonometric iden-
tity in with respect to the resulting new equation will also
be an identity.

Differentiate the following to show that the resulting equa-
tions hold for all 

a.

b.

2. If the identity is differen-
tiated with respect to x, is the resulting equation also an identity?
Does this principle apply to the equation 
Explain.

3. a. Find values for the constants a, b, and c that will make

satisfy the conditions

b. Find values for b and c that will make

satisfy the conditions

c. For the determined values of a, b, and c, what happens for the
third and fourth derivatives of ƒ and g in each of parts 
(a) and (b)?

4. Solutions to differential equations

a. Show that and 
(a and b constants) all satisfy the equation

y– + y = 0.

y = a cos x + b sin xy = sin x, y = cos x ,

ƒs0d = g s0d and ƒ¿s0d = g¿s0d .

ƒsxd = sin sx + ad and g sxd = b sin x + c cos x

ƒs0d = g s0d, ƒ¿s0d = g¿s0d, and ƒ–s0d = g–s0d .

ƒsxd = cos x and g sxd = a + bx + cx2

x2
- 2x - 8 = 0?

sin sx + ad = sin x cos a + cos x sin a

cos 2u = cos2 u - sin2 u

sin 2u = 2 sin u cos u

u .

u ,u

u ,
sin u = 0.5u .

sin2 u + cos2 u = 1 b. How would you modify the functions in part (a) to satisfy the
equation

Generalize this result.

5. An osculating circle Find the values of h, k, and a that make
the circle tangent to the parabola

at the point (1, 2) and that also make the second de-
rivatives have the same value on both curves there. Cir-
cles like this one that are tangent to a curve and have the same
second derivative as the curve at the point of tangency are called
osculating circles (from the Latin osculari, meaning “to kiss”).
We encounter them again in Chapter 13.

6. Marginal revenue A bus will hold 60 people. The number x of
people per trip who use the bus is related to the fare charged
( p dollars) by the law Write an expression
for the total revenue r (x) per trip received by the bus company.
What number of people per trip will make the marginal revenue

equal to zero? What is the corresponding fare? (This fare is
the one that maximizes the revenue, so the bus company should
probably rethink its fare policy.)

7. Industrial production

a. Economists often use the expression “rate of growth” in
relative rather than absolute terms. For example, let 
be the number of people in the labor force at time t in a given
industry. (We treat this function as though it were differentiable
even though it is an integer-valued step function.)

Let be the average production per person in the
labor force at time t. The total production is then 
If the labor force is growing at the rate of 4% per year

and the production per worker is growing
at the rate of 5% per year find the rate of
growth of the total production, y.

sdy>dt = 0.05yd ,
sdu>dt = 0.04ud

y = uy .
y = g std

u = ƒstd

dr>dx

p = [3 - sx>40d]2 .

d2y>dx2
y = x2

+ 1
sx - hd2

+ s y - kd2
= a2

y– + 4y = 0?

7001_AWLThomas_ch03p122-221.qxd  10/12/09  2:23 PM  Page 218



b. Suppose that the labor force in part (a) is decreasing at
the rate of 2% per year while the production per person is
increasing at the rate of 3% per year. Is the total production
increasing, or is it decreasing, and at what rate?

8. Designing a gondola The designer of a 30-ft-diameter spherical
hot air balloon wants to suspend the gondola 8 ft below the bottom
of the balloon with cables tangent to the surface of the balloon, as
shown. Two of the cables are shown running from the top edges of
the gondola to their points of tangency, and 
How wide should the gondola be?

9. Pisa by parachute On August 5, 1988, Mike McCarthy of 
London jumped from the top of the Tower of Pisa. He then
opened his parachute in what he said was a world record low-level
parachute jump of 179 ft. Make a rough sketch to show the shape
of the graph of his speed during the jump. (Source: Boston Globe,
Aug. 6, 1988.)

10. Motion of a particle The position at time of a particle
moving along a coordinate line is

a. What is the particle’s starting position 

b. What are the points farthest to the left and right of the origin
reached by the particle?

c. Find the particle’s velocity and acceleration at the points in
part (b).

d. When does the particle first reach the origin? What are its
velocity, speed, and acceleration then?

11. Shooting a paper clip On Earth, you can easily shoot a paper
clip 64 ft straight up into the air with a rubber band. In t sec after
firing, the paper clip is above your hand.

a. How long does it take the paper clip to reach its maximum
height? With what velocity does it leave your hand?

b. On the moon, the same acceleration will send the paper clip
to a height of in t sec. About how long will
it take the paper clip to reach its maximum height, and how
high will it go?

12. Velocities of two particles At time t sec, the positions of two
particles on a coordinate line are 
and When do the particles have the
same velocities?

s2 = - t3
+ 9t2

- 12t m.
s1 = 3t3

- 12t2
+ 18t + 5 m

s = 64t - 2.6t2 ft

s = 64t - 16t2 ft

st = 0d?

s = 10 cos st + p>4d .

t Ú 0

x
0

15 ft

Suspension
cables

Gondola
Width

8 ft

y

x2 � y2 � 225

(12, –9)(–12, –9)

NOT TO SCALE

s12, -9d .s -12, -9d
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13. Velocity of a particle A particle of constant mass m moves
along the x-axis. Its velocity and position x satisfy the equation

where and are constants. Show that whenever 

14. Average and instantaneous velocity

a. Show that if the position x of a moving point is given by a
quadratic function of then the average
velocity over any time interval is equal to the
instantaneous velocity at the midpoint of the time interval.

b. What is the geometric significance of the result in part (a)?

15. Find all values of the constants m and b for which the function

is

a. continuous at 

b. differentiable at 

16. Does the function

have a derivative at Explain.

17. a. For what values of a and b will

be differentiable for all values of x?

b. Discuss the geometry of the resulting graph of ƒ.

18. a. For what values of a and b will

be differentiable for all values of x?

b. Discuss the geometry of the resulting graph of g.

19. Odd differentiable functions Is there anything special about
the derivative of an odd differentiable function of x? Give reasons
for your answer.

20. Even differentiable functions Is there anything special about
the derivative of an even differentiable function of x? Give rea-
sons for your answer.

21. Suppose that the functions ƒ and g are defined throughout an
open interval containing the point that ƒ is differentiable at 
that and that g is continuous at Show that the prod-
uct ƒg is differentiable at This process shows, for example,
that although is not differentiable at the product is
differentiable at x = 0.

x ƒ x ƒx = 0,ƒ x ƒ

x0 .
x0 .ƒsx0d = 0,

x0 ,x0 ,

g sxd = eax + b, x … -1

ax3
+ x + 2b, x 7 -1

ƒsxd = eax, x 6 2

ax2
- bx + 3, x Ú 2

x = 0?

ƒsxd = L
1 - cos x

x , x Z 0

0, x = 0

x = p .

x = p .

y = e sin x, x 6 p

mx + b, x Ú p

[t1, t2]
t, x = At2

+ Bt + C ,

m 
dy
dt

= -kx .

y Z 0,x0k, y0 ,

1
2

 msy2
- y0 

2d =

1
2

 k sx0 
2

- x2d ,

y
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22. (Continuation of Exercise 21.) Use the result of Exercise 21 to
show that the following functions are differentiable at 

a. b. c.

d.

23. Is the derivative of

continuous at How about the derivative of 
Give reasons for your answers.

24. Suppose that a function ƒ satisfies the following conditions for all
real values of x and y:

i)

ii) where 

Show that the derivative exists at every value of x and that

25. The generalized product rule Use mathematical induction to
prove that if is a finite product of differentiable
functions, then is differentiable on their common domain and

26. Leibniz’s rule for higher-order derivatives of products Leib-
niz’s rule for higher-order derivatives of products of differentiable
functions says that

a.

b.

c.

 +
Á

+ u 
dny

dxn .

 +

nsn - 1d Á sn - k + 1d
k!

 
dn - ku

dxn - k
 
dky

dxk

dnsuyd
dxn =

dnu
dxn  y + n 

dn - 1u

dxn - 1  
dy
dx

+
Á

d3suyd
dx3 =

d3u

dx3  y + 3 
d2u

dx2  
dy
dx

+ 3 
du
dx

 
d2y

dx2 + u 
d3y

dx3 .

d2suyd
dx2 =

d2u

dx2  y + 2 
du
dx

 
dy
dx

+ u 
d2y

dx2 .

dy

dx
=

du1

dx
 u2

Á un + u1 
du2

dx
Á un +

Á
+ u1 u2

Á un - 1 
dun

dx
.

y
y = u1 u2

Á un

ƒ¿sxd = ƒsxd .
ƒ¿sxd

limx:0 g sxd = 1.ƒsxd = 1 + xg sxd ,

ƒsx + yd = ƒsxd # ƒs yd .

k sxd = xhsxd?x = 0?

hsxd = e x2 sin s1>xd, x Z 0

0, x = 0

hsxd = e x2 sin s1>xd, x Z 0

0, x = 0

23 x s1 - cos xdx2>3 sin xƒ x ƒ sin x

x = 0.
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The equations in parts (a) and (b) are special cases of the
equation in part (c). Derive the equation in part (c) by
mathematical induction, using

27. The period of a clock pendulum The period T of a clock pen-
dulum (time for one full swing and back) is given by the formula

where T is measured in seconds, 
and L, the length of the pendulum, is measured in feet. Find 
approximately

a. the length of a clock pendulum whose period is 

b. the change dT in T if the pendulum in part (a) is lengthened
0.01 ft.

c. the amount the clock gains or loses in a day as a result of the
period’s changing by the amount dT found in part (b).

28. The melting ice cube Assume that an ice cube retains its cubi-
cal shape as it melts. If we call its edge length s, its volume is

and its surface area is We assume that V and s are dif-
ferentiable functions of time t. We assume also that the cube’s vol-
ume decreases at a rate that is proportional to its surface area.
(This latter assumption seems reasonable enough when we think
that the melting takes place at the surface: Changing the amount
of surface changes the amount of ice exposed to melt.) In mathe-
matical terms,

The minus sign indicates that the volume is decreasing. We assume
that the proportionality factor k is constant. (It probably depends on
many things, such as the relative humidity of the surrounding air, the
air temperature, and the incidence or absence of sunlight, to name
only a few.) Assume a particular set of conditions in which the cube
lost 1 4 of its volume during the first hour, and that the volume is 
when How long will it take the ice cube to melt?t = 0.

V0>

dV
dt

= -k s6s2d, k 7 0.

6s2 .V = s3

T = 1 sec .

32.2 ft>sec2 ,g =T 2
= 4p2L>g ,

am
k
b + a m

k + 1
b =

m!
k!sm - kd!

+

m!
sk + 1d!sm - k - 1d!

.
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Chapter 3 Technology Application Projects

Mathematica/Maple Modules:

Convergence of Secant Slopes to the Derivative Function
You will visualize the secant line between successive points on a curve and observe what happens as the distance between them becomes small.
The function, sample points, and secant lines are plotted on a single graph, while a second graph compares the slopes of the secant lines with the
derivative function.

Derivatives, Slopes, Tangent Lines, and Making Movies
Parts I–III. You will visualize the derivative at a point, the linearization of a function, and the derivative of a function. You learn how to plot the
function and selected tangents on the same graph.
Part IV (Plotting Many Tangents)
Part V (Making Movies). Parts IV and V of the module can be used to animate tangent lines as one moves along the graph of a function.

Convergence of Secant Slopes to the Derivative Function
You will visualize right-hand and left-hand derivatives.

Motion Along a Straight Line:
Observe dramatic animated visualizations of the derivative relations among the position, velocity, and acceleration functions. Figures in the text
can be animated.

Position : Velocity : Acceleration
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222

4
APPLICATIONS OF

DERIVATIVES

OVERVIEW In this chapter we use derivatives to find extreme values of functions, to
determine and analyze the shapes of graphs, and to find numerically where a function
equals zero. We also introduce the idea of recovering a function from its derivative. The
key to many of these applications is the Mean Value Theorem, which paves the way to
integral calculus in Chapter 5.

4.1 Extreme Values of Functions

This section shows how to locate and identify extreme (maximum or minimum) values of
a function from its derivative. Once we can do this, we can solve a variety of  problems in
which we find the optimal (best) way to do something in a given situation (see Section
4.6). Finding maximum and minimum values is one of the most important applications of
the derivative.

Maximum and minimum values are called extreme values of the function ƒ. Absolute
maxima or minima are also referred to as global maxima or minima.

For example, on the closed interval the function takes on
an absolute maximum value of 1 (once) and an absolute minimum value of 0 (twice). On
the same interval, the function takes on a maximum value of 1 and a
minimum value of (Figure 4.1).

Functions with the same defining rule or formula can have different extrema
(maximum or minimum values), depending on the domain. We see this in the following
example.

-1
g sxd = sin x

ƒsxd = cos x[-p>2, p>2]

DEFINITIONS Let ƒ be a function with domain D. Then ƒ has an absolute
maximum value on D at a point c if

and an absolute minimum value on D at c if

ƒsxd Ú ƒscd for all x in D .

ƒsxd … ƒscd for all x in D

FIGURE 4.1 Absolute extrema for
the sine and cosine functions on

These values can depend
on the domain of a function.
[-p>2, p>2] .

x

y

0

1
y � sin x

y � cos x

–1

�
2

–�
2
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4.1 Extreme Values of Functions 223

Function rule Domain D Absolute extrema on D

(a) No absolute maximum.
Absolute minimum of 0 at 

(b) [0, 2] Absolute maximum of 4 at 
Absolute minimum of 0 at 

(c) (0, 2] Absolute maximum of 4 at 
No absolute minimum.

(d) (0, 2) No absolute extrema.y = x2

x = 2.y = x2

x = 0.
x = 2.y = x2

x = 0.
s - q , q dy = x2

x
2

(b) abs max and min

 y � x2

D � [0, 2]

y

x
2

(c) abs max only

 y � x2

D � (0, 2]

y

x
2

(d) no max or min

 y � x2

D � (0, 2)

y

x
2

(a) abs min only

 y � x2

D � (–�, �)

y

FIGURE 4.2 Graphs for Example 1.

THEOREM 1—The Extreme Value Theorem If ƒ is continuous on a closed interval
[a, b], then ƒ attains both an absolute maximum value M and an absolute
minimum value m in [a, b]. That is, there are numbers and in 
[a, b] with and for every other x in
[a, b].

m … ƒsxd … Mƒsx1d = m, ƒsx2d = M ,
x2x1

HISTORICAL BIOGRAPHY

Daniel Bernoulli
(1700–1789)

The proof of the Extreme Value Theorem requires a detailed knowledge of the real
number system (see Appendix 6) and we will not give it here. Figure 4.3 illustrates possi-
ble locations for the absolute extrema of a continuous function on a closed interval [a, b].
As we observed for the function it is possible that an absolute minimum (or ab-
solute maximum) may occur at two or more different points of the interval.

The requirements in Theorem 1 that the interval be closed and finite, and that the
function be continuous, are key ingredients. Without them, the conclusion of the theorem

y = cos x ,

EXAMPLE 1 The absolute extrema of the following functions on their domains can be seen
in Figure 4.2. Notice that a function might not have a maximum or minimum if the domain is
unbounded or fails to contain an endpoint.

Some of the functions in Example 1 did not have a maximum or a minimum value.
The following theorem asserts that a function which is continuous at every point of a
closed interval [a, b] has an absolute maximum and an absolute minimum value on the in-
terval. We look for these extreme values when we graph a function.
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need not hold. Example 1 shows that an absolute extreme value may not exist if the inter-
val fails to be both closed and finite. Figure 4.4 shows that the continuity requirement can-
not be omitted.

Local (Relative) Extreme Values

Figure 4.5 shows a graph with five points where a function has extreme values on its do-
main [a, b]. The function’s absolute minimum occurs at a even though at e the function’s
value is smaller than at any other point nearby. The curve rises to the left and falls to the
right around c, making ƒ(c) a maximum locally. The function attains its absolute maxi-
mum at d. We now define what we mean by local extrema.

224 Chapter 4: Applications of Derivatives

x
a x2

x2

Maximum and minimum
at interior points

b

M

x
a b

M

m

Maximum and minimum
at endpoints

x
a

Maximum at interior point,
minimum at endpoint

M

b

m
x

a

Minimum at interior point,
maximum at endpoint

M

b

m

(x2, M)

(x1, m)

x1

y � f (x)

y � f (x)

y � f (x)

y � f (x)

x1

�m�

FIGURE 4.3 Some possibilities for a continuous function’s maximum and
minimum on a closed interval [a, b].

x

y

1
Smallest value

0

No largest value

1

y � x
0 � x � 1

FIGURE 4.4 Even a single point of
discontinuity can keep a function from
having either a maximum or minimum
value on a closed interval. The function

is continuous at every point of [0, 1]
except yet its graph over [0, 1]
does not have a highest point. 

x = 1,

y = e x, 0 … x 6 1

0, x = 1
DEFINITIONS A function ƒ has a local maximum value at a point c within its
domain D if

A function ƒ has a local minimum value at a point c within its domain D if
ƒsxd Ú ƒscd for all x H D lying in some open interval containing c .

ƒsxd … ƒscd for all x H D lying in some open interval containing c .

If the domain of ƒ is the closed interval [a, b], then ƒ has a local maximum at the endpoint
if for all x in some half-open interval Likewise, ƒ

has a local maximum at an interior point if for all x in some open inter-
val and a local maximum at the endpoint if for
all x in some half-open interval The inequalities are reversed for local
minimum values. In Figure 4.5, the function ƒ has local maxima at c and d and local min-
ima at a, e, and b. Local extrema are also called relative extrema. Some functions can
have infinitely many local extrema, even over a finite interval. One example is the func-
tion on the interval (0, 1]. (We graphed this function in Figure 2.40.)ƒ(x) = sin (1>x)

(b - d, b], d 7 0.
ƒ(x) … ƒ(b)x = b(c - d, c + d), d 7 0,

ƒ(x) … ƒ(c)x = c
[a, a + d), d 7 0.ƒ(x) … ƒ(a)x = a,
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4.1 Extreme Values of Functions 225

An absolute maximum is also a local maximum. Being the largest value overall, it is
also the largest value in its immediate neighborhood. Hence, a list of all local maxima will
automatically include the absolute maximum if there is one. Similarly, a list of all local
minima will include the absolute minimum if there is one.

Finding Extrema

The next theorem explains why we usually need to investigate only a few values to find a
function’s extrema.

x
ba c e d

Local minimum
No smaller value of
f  nearby.

Local minimum
No smaller value
of f  nearby.

Local maximum
No greater value of

f  nearby.

Absolute minimum
No smaller value of
f  anywhere. Also a

 local minimum.

Absolute maximum
No greater value of f anywhere.
Also a local maximum.

y � f (x)

FIGURE 4.5 How to identify types of maxima and minima for a function with domain
.a … x … b

THEOREM 2—The First Derivative Theorem for Local Extreme Values If ƒ has a
local maximum or minimum value at an interior point c of its domain, and if is
defined at c, then

ƒ¿scd = 0.

ƒ¿

x
c x

Local maximum value

x

Secant slopes � 0
(never negative)

Secant slopes � 0
(never positive)

y � f (x)

FIGURE 4.6 A curve with a local
maximum value. The slope at c,
simultaneously the limit of nonpositive
numbers and nonnegative numbers, is zero.

Proof To prove that is zero at a local extremum, we show first that cannot be
positive and second that cannot be negative. The only number that is neither positive
nor negative is zero, so that is what must be.

To begin, suppose that ƒ has a local maximum value at (Figure 4.6) so that
for all values of x near enough to c. Since c is an interior point of ƒ’s

domain, is defined by the two-sided limit

This means that the right-hand and left-hand limits both exist at and equal 
When we examine these limits separately, we find that

(1)

Similarly,

(2)

Together, Equations (1) and (2) imply 
This proves the theorem for local maximum values. To prove it for local minimum

values, we simply use which reverses the inequalities in Equations (1)
and (2).

ƒsxd Ú ƒscd ,

ƒ¿scd = 0.

ƒ¿scd = lim
x:c-

 
ƒsxd - ƒscd

x - c Ú 0.

ƒ¿scd = lim
x:c+

 
ƒsxd - ƒscd

x - c … 0.

ƒ¿scd .x = c

lim
x:c

 
ƒsxd - ƒscd

x - c .

ƒ¿scd
ƒsxd - ƒscd … 0

x = c
ƒ¿scd

ƒ¿scd
ƒ¿scdƒ¿scd

Because 
and  ƒsxd … ƒscd

sx - cd 7 0

Because 
and  ƒsxd … ƒscd

sx - cd 6 0
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Theorem 2 says that a function’s first derivative is always zero at an interior point
where the function has a local extreme value and the derivative is defined. Hence the only
places where a function ƒ can possibly have an extreme value (local or global) are

1. interior points where 

2. interior points where is undefined,

3. endpoints of the domain of ƒ.

The following definition helps us to summarize.

ƒ¿

ƒ¿ = 0,

226 Chapter 4: Applications of Derivatives

Thus the only domain points where a function can assume extreme values are critical
points and endpoints. However, be careful not to misinterpret what is being said here. A
function may have a critical point at without having a local extreme value there.
For instance, both of the functions have critical points at the origin
and a zero value there, but each function is positive to the right of the origin and negative
to the left. So neither function has a local extreme value at the origin. Instead, each func-
tion has a point of inflection there (see Figure 4.7). We define and explore inflection
points in Section 4.4.

Most problems that ask for extreme values call for finding the absolute extrema of a
continuous function on a closed and finite interval. Theorem 1 assures us that such values
exist; Theorem 2 tells us that they are taken on only at critical points and endpoints. Often
we can simply list these points and calculate the corresponding function values to find
what the largest and smallest values are, and where they are located. Of course, if the in-
terval is not closed or not finite (such as or ), we have seen that
absolute extrema need not exist. If an absolute maximum or minimum value does exist, it
must occur at a critical point or at an included right- or left-hand endpoint of the interval.

a 6 x 6 qa 6 x 6 b

y = x3 and y = x1>3x = c

DEFINITION An interior point of the domain of a function ƒ where is zero
or undefined is a critical point of ƒ.

ƒ¿

–1

x

y

1–1

1

0

(a)

y � x3

–1

x

y

1–1

1

0

(b)

y � x1/3

FIGURE 4.7 Critical points without
extreme values. (a) is 0 at 
but has no extremum there. 
(b) is undefined at 
but has no extremum there.y = x1>3

x = 0,y¿ = s1>3dx-2>3
y = x3

x = 0,y¿ = 3x2

How to Find the Absolute Extrema of a Continuous Function ƒ on a
Finite Closed Interval
1. Evaluate ƒ at all critical points and endpoints.

2. Take the largest and smallest of these values.

EXAMPLE 2 Find the absolute maximum and minimum values of on

Solution The function is differentiable over its entire domain, so the only critical point is
where namely We need to check the function’s values at 
and at the endpoints and 

Critical point value:

Endpoint values:

The function has an absolute maximum value of 4 at and an absolute minimum
value of 0 at 

EXAMPLE 3 Find the absolute maximum and minimum values of 
on the interval [1, e2].

ƒ(x) = 10x (2 - ln x)

x = 0.
x = -2

ƒs1d = 1

ƒs -2d = 4

ƒs0d = 0

x = 1:x = -2
x = 0x = 0.ƒ¿sxd = 2x = 0,

[-2, 1] .
ƒsxd = x2
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4.1 Extreme Values of Functions 227

Solution Figure 4.8 suggests that ƒ  has its absolute maximum value near and its
absolute minimum value of 0 at Let’s verify this observation.

We evaluate the function at the critical points and endpoints and take the largest and
smallest of the resulting values.

The first derivative is

.

The only critical point in the domain is the point , where ln The values
of ƒ at this one critical point and at the endpoints are

We can see from this list that the function’s absolute maximum value is it oc-
curs at the critical interior point The absolute minimum value is 0 and occurs at the
right endpoint 

EXAMPLE 4 Find the absolute maximum and minimum values of on the
interval 

Solution We evaluate the function at the critical points and endpoints and take the
largest and smallest of the resulting values.

The first derivative

has no zeros but is undefined at the interior point The values of ƒ at this one criti-
cal point and at the endpoints are

Critical point value:

Endpoint values:

We can see from this list that the function’s absolute maximum value is and it
occurs at the right endpoint The absolute minimum value is 0, and it occurs at the
interior point where the graph has a cusp (Figure 4.9).x = 0

x = 3.
23 9 L 2.08,

ƒs3d = s3d2>3
= 23 9 .

ƒs -2d = s -2d2>3
= 23 4

ƒs0d = 0

x = 0.

ƒ¿sxd =
2
3

 x-1>3
=

2

323 x

[-2, 3] .
ƒsxd = x2>3

x = e2.
x = e.

10e L 27.2;

 ƒ(e2) = 10e2(2 - 2 ln e) = 0.

Endpoint values:  ƒ(1) = 10(2 - ln 1) = 20

Critical point value:  ƒ(e) = 10e

x = 1.x = e[1, e2]

ƒ¿(x) = 10(2 - ln x) - 10x a1x b = 10(1 - ln x)

x = e2.
x = 3

x

y

10 2 3–1–2

1

2

Absolute maximum;
also a local maximumLocal

maximum

Absolute minimum;
also a local minimum

y � x2/3,  –2 ≤ x ≤ 3

FIGURE 4.9 The extreme values of
on occur at and

(Example 4).x = 3
x = 0[-2, 3]ƒsxd = x2>3

Exercises 4.1

Finding Extrema from Graphs
In Exercises 1–6, determine from the graph whether the function has
any absolute extreme values on [a, b]. Then explain how your answer
is consistent with Theorem 1.

1. 2.

x

y

0 a c b

y � f (x)

x

y

0 a c1 bc2

y � h(x)

3. 4.

x

y

0 a bc

y � h(x)

x

y

0 a bc

y � f (x)

1 2 3 4 5 6 7 8

5

10

0

15

20

25

30

(1, 20)

(e, 10e)

(e2, 0)
x

y

FIGURE 4.8 The extreme values of
on occur at

and (Example 3).x = e2x = e
[1, e2]ƒ(x) = 10x(2 - ln x)
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5. 6.

In Exercises 7–10, find the absolute extreme values and where they occur.

7. 8.

9. 10.

In Exercises 11–14, match the table with a graph.

11. 12.

13. 14.

a b c a b c

a b c a b c

(a) (b)

(c) (d)

x ƒ �(x)

a does not exist
b does not exist
c �1.7

x ƒ �(x)

a does not exist
b 0
c �2

x ƒ �(x)

a 0
b 0
c �5

x ƒ �(x)

a 0
b 0
c 5

2
(1, 2)

–3 2
–1

x

y

0 2

5

x

y

2

2

–2 0

y

x1–1

1

–1

y

x

x

y

0 a c b

y � g(x)

x

y

0 a c b

y � g(x)

228 Chapter 4: Applications of Derivatives

In Exercises 15–20, sketch the graph of each function and determine
whether the function has any absolute extreme values on its domain.
Explain how your answer is consistent with Theorem 1.

15.

16.

17.

18.

19.

20.

Absolute Extrema on Finite Closed Intervals
In Exercises 21–40, find the absolute maximum and minimum values
of each function on the given interval. Then graph the function. Iden-
tify the points on the graph where the absolute extrema occur, and in-
clude their coordinates.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40. g(x) = e-x2

, -2 … x … 1

ƒ(x) =

1
x + ln x, 0.5 … x … 4

h(x) = ln (x + 1), 0 … x … 3

g(x) = xe-x, -1 … x … 1

ƒstd = ƒ t - 5 ƒ , 4 … t … 7

ƒstd = 2 - ƒ t ƒ , -1 … t … 3

g sxd = sec x, -

p

3
… x …

p

6

g sxd = csc x, p
3

… x …

2p
3

ƒsud = tan u, -

p

3
… u …

p

4

ƒsud = sin u, -

p

2
… u …

5p
6

g sxd = -25 - x2, -25 … x … 0

g sxd = 24 - x2, -2 … x … 1

hsxd = -3x2>3, -1 … x … 1

hsxd = 23 x, -1 … x … 8

Fsxd = -

1
x  , -2 … x … -1

Fsxd = -

1
x2 , 0.5 … x … 2

ƒsxd = 4 - x2, -3 … x … 1

ƒsxd = x2
- 1, -1 … x … 2

ƒsxd = -x - 4, -4 … x … 1

ƒsxd =

2
3

 x - 5, -2 … x … 3

ƒ(x) = L x + 1, -1 … x 6 0

cos x,      0 … x …

p

2

y = 3 sin x, 0 6 x 6 2p

h(x) = L
1
x ,   -1 … x 6 0

2x, 0 … x … 4

g(x) = e -x,     0 … x 6 1

x - 1, 1 … x … 2

y =

6
x2

+ 2
, -1 6 x 6 1

ƒ(x) = ƒ x ƒ , -1 6 x 6 2
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4.1 Extreme Values of Functions 229

In Exercises 41–44, find the function’s absolute maximum and mini-
mum values and say where they are assumed.

41.

42.

43.

44.

Finding Critical Points
In Exercises 45–52, determine all critical points for each function.

45. 46.

47. 48.

49. 50.

51. 52.

Finding Extreme Values
In Exercises 53–68, find the extreme values (absolute and local) of the
function and where they occur.

53. 54.

55. 56.

57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

67. 68.

Local Extrema and Critical Points
In Exercises 69–76, find the critical points, domain endpoints, and ex-
treme values (absolute and local) for each function.

69. 70.

71. 72.

73. 74.

75.

76.

In Exercises 77 and 78, give reasons for your answers.

77. Let 

a. Does exist?

b. Show that the only local extreme value of ƒ occurs at 

c. Does the result in part (b) contradict the Extreme Value Theorem?

d. Repeat parts (a) and (b) for replacing 2 by a.

78. Let 

a. Does exist? b. Does exist?

c. Does exist? d. Determine all extrema of ƒ.ƒ¿s -3d
ƒ¿s3dƒ¿s0d

ƒsxd = ƒ x3
- 9x ƒ .

ƒsxd = sx - ad2>3 ,

x = 2.

ƒ¿s2d
ƒsxd = sx - 2d2>3 .

y = • -

1
4

 x2
-

1
2

 x +

15
4

,  x … 1

x3
- 6x2

+ 8x,      x 7 1

y = e -x2
- 2x + 4,  x … 1

-x2
+ 6x - 4,  x 7 1

y = e3 - x,        x 6 0

3 + 2x - x2,  x Ú 0
y = e 4 - 2x,  x … 1

x + 1,   x 7 1

y = x223 - xy = x24 - x2

y = x2>3sx2
- 4dy = x2>3sx + 2d

y = sin-1 (ex)y = cos-1 (x2)

y = x2 ln xy = x ln x

y = ex
- e-xy = ex

+ e-x

y =

x + 1
x2

+ 2x + 2
y =

x

x2
+ 1

y = 23 + 2x - x2y =

1

23 1 - x2

y = x - 42xy = 2x2
- 1

y = x3(x - 5)2y = x3
+ x2

- 8x + 5

y = x3
- 2x + 4y = 2x2

- 8x + 9

g(x) = 22x - x2y = x2
- 322x

ƒ(x) =

x2

x - 2
y = x2

+

2
x

g(x) = (x - 1)2(x - 3)2ƒ(x) = x(4 - x)3

ƒ(x) = 6x2
- x3y = x2

- 6x + 7

hsud = 3u2>3, -27 … u … 8

g(ud = u3>5, -32 … u … 1

ƒsxd = x5>3, -1 … x … 8

ƒsxd = x4>3, -1 … x … 8

Theory and Examples
79. A minimum with no derivative The function has

an absolute minimum value at even though ƒ is not differ-
entiable at Is this consistent with Theorem 2? Give rea-
sons for your answer.

80. Even functions If an even function ƒ(x) has a local maximum
value at can anything be said about the value of ƒ at

Give reasons for your answer.

81. Odd functions If an odd function g(x) has a local minimum
value at can anything be said about the value of g at

Give reasons for your answer.

82. We know how to find the extreme values of a continuous function
ƒ(x) by investigating its values at critical points and endpoints. But
what if there are no critical points or endpoints? What happens
then? Do such functions really exist? Give reasons for your answers.

83. The function

models the volume of a box.

a. Find the extreme values of V.

b. Interpret any values found in part (a) in terms of the volume
of the box.

84. Cubic functions Consider the cubic function

a. Show that ƒ can have 0, 1, or 2 critical points. Give examples
and graphs to support your argument.

b. How many local extreme values can ƒ have?

85. Maximum height of a vertically moving body The height of a
body moving vertically is given by

with s in meters and t in seconds. Find the body’s maximum height.

86. Peak alternating current Suppose that at any given time t (in
seconds) the current i (in amperes) in an alternating current cir-
cuit is What is the peak current for this cir-
cuit (largest magnitude)?

Graph the functions in Exercises 87–90. Then find the extreme values
of the function on the interval and say where they occur.

87.

88.

89.

90.

COMPUTER EXPLORATIONS
In Exercises 91–98, you will use a CAS to help find the absolute ex-
trema of the given function over the specified closed interval. Perform
the following steps.

a. Plot the function over the interval to see its general behavior there.

b. Find the interior points where (In some exercises, you
may have to use the numerical equation solver to approximate a
solution.) You may want to plot as well.

c. Find the interior points where does not exist.ƒ¿

ƒ¿

ƒ¿ = 0.

ksxd = ƒ x + 1 ƒ + ƒ x - 3 ƒ , - q 6 x 6 q

hsxd = ƒ x + 2 ƒ - ƒ x - 3 ƒ , - q 6 x 6 q

gsxd = ƒ x - 1 ƒ - ƒ x - 5 ƒ , -2 … x … 7

ƒsxd = ƒ x - 2 ƒ + ƒ x + 3 ƒ , -5 … x … 5

i = 2 cos t + 2 sin t .

s = -

1
2

 gt2
+ y0 t + s0, g 7 0,

ƒsxd = ax3
+ bx2

+ cx + d .

V sxd = xs10 - 2xds16 - 2xd, 0 6 x 6 5,

x = -c?
x = c ,

x = -c?
x = c ,

x = 0.
x = 0

ƒsxd = ƒ x ƒ

T
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d. Evaluate the function at all points found in parts (b) and (c) and
at the endpoints of the interval.

e. Find the function’s absolute extreme values on the interval and
identify where they occur.

91.

92.

93. ƒsxd = x2>3s3 - xd, [-2, 2]

ƒsxd = -x4
+ 4x3

- 4x + 1, [-3>4, 3]

ƒsxd = x4
- 8x2

+ 4x + 2, [-20>25, 64>25]

230 Chapter 4: Applications of Derivatives

Proof Being continuous, ƒ assumes absolute maximum and minimum values on [a, b]
by Theorem 1. These can occur only

1. at interior points where is zero,

2. at interior points where does not exist,

3. at the endpoints of the function’s domain, in this case a and b.

By hypothesis, ƒ has a derivative at every interior point. That rules out possibility (2), leav-
ing us with interior points where and with the two endpoints a and b.

If either the maximum or the minimum occurs at a point c between a and b, then
by Theorem 2 in Section 4.1, and we have found a point for Rolle’s Theorem.

If both the absolute maximum and the absolute minimum occur at the endpoints,
then because it must be the case that ƒ is a constant function with

for every Therefore and the point c can be taken
anywhere in the interior (a, b).

The hypotheses of Theorem 3 are essential. If they fail at even one point, the graph
may not have a horizontal tangent (Figure 4.11).

Rolle’s Theorem may be combined with the Intermediate Value Theorem to show when
there is only one real solution of an equation , as we illustrate in the next example.

EXAMPLE 1 Show that the equation

has exactly one real solution.

x3
+ 3x + 1 = 0

ƒsxd = 0

ƒ¿sxd = 0x H [a, b] .ƒsxd = ƒsad = ƒsbd
ƒsad = ƒsbd

ƒ¿scd = 0

ƒ¿ = 0

ƒ¿

ƒ¿

THEOREM 3—Rolle’s Theorem Suppose that is continuous at every
point of the closed interval [a, b] and differentiable at every point of its interior
(a, b). If then there is at least one number c in (a, b) at which
ƒ¿scd = 0.

ƒsad = ƒsbd,

y = ƒsxd

f '(c3) � 0

f '(c2) � 0
f '(c1) � 0

f '(c) � 0

y � f (x)

y � f (x)

0 a c b

0 bc3c2c1a

(a)

(b)

x

x

y

y

FIGURE 4.10 Rolle’s Theorem says that
a differentiable curve has at least one
horizontal tangent between any two points
where it crosses a horizontal line. It may
have just one (a), or it may have more (b).

HISTORICAL BIOGRAPHY

Michel Rolle
(1652–1719)

94.

95.

96.

97.

98. ƒ(x) = ln (2x + x sin x),   [1, 15]

ƒ(x) = px2e - 3x>2,   [0, 5]

ƒsxd = x3>4
- sin x +

1
2

, [0, 2p]

ƒsxd = 2x + cos x, [0, 2p]

ƒsxd = 2 + 2x - 3x2>3, [-1, 10>3]

4.2 The Mean Value Theorem

We know that constant functions have zero derivatives, but could there be a more compli-
cated function whose derivative is always zero? If two functions have identical derivatives
over an interval, how are the functions related? We answer these and other questions in this
chapter by applying the Mean Value Theorem. First we introduce a special case, known as
Rolle’s Theorem, which is used to prove the Mean Value Theorem.

Rolle’s Theorem

As suggested by its graph, if a differentiable function crosses a horizontal line at two dif-
ferent points, there is at least one point between them where the tangent to the graph is
horizontal and the derivative is zero (Figure 4.10). We now state and prove this result.
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4.2 The Mean Value Theorem 231

a bx0a bx0a

(a) Discontinuous at an 
endpoint of [a, b]

(b) Discontinuous at an 
interior point of [a, b]

(c) Continuous on [a, b] but not
differentiable at an interior
point

b
x x x

y y y

y � f (x) y � f (x) y � f (x)

FIGURE 4.11 There may be no horizontal tangent if the hypotheses of Rolle’s Theorem do not hold.

Proof We picture the graph of ƒ and draw a line through the points A(a, ƒ(a)) and
B(b, ƒ(b)). (See Figure 4.14.) The line is the graph of the function

(2)

(point-slope equation). The vertical difference between the graphs of ƒ and g at x is

(3)

Figure 4.15 shows the graphs of ƒ, g, and h together.

 = ƒsxd - ƒsad -

ƒsbd - ƒsad
b - a

 sx - ad .

 hsxd = ƒsxd - g sxd

g sxd = ƒsad +

ƒsbd - ƒsad
b - a

 sx - ad

x

y

0 1

(1, 5)

1

(–1, –3)

–1

y � x3 � 3x � 1

FIGURE 4.12 The only real zero of the
polynomial is the one
shown here where the curve crosses the 
x-axis between and 0 (Example 1).-1

y = x3
+ 3x + 1

x

y

0 a

Tangent parallel to chord

c b

Slope

B

A

y � f (x)

Slope f '(c)

f (b) � f (a)
b � a

FIGURE 4.13 Geometrically, the Mean
Value Theorem says that somewhere
between a and b the curve has at least one
tangent parallel to chord AB.

THEOREM 4—The Mean Value Theorem Suppose is continuous on a
closed interval [a, b] and differentiable on the interval’s interior (a, b). Then there
is at least one point c in (a, b) at which

(1)
ƒsbd - ƒsad

b - a
= ƒ¿scd.

y = ƒsxd

HISTORICAL BIOGRAPHY

Joseph-Louis Lagrange
(1736–1813)

Solution We define the continuous function

Since and , the Intermediate Value Theorem tells us that the graph
of ƒ crosses the x-axis somewhere in the open interval . (See Figure 4.12.) The
derivative

is never zero (because it is always positive). Now, if there were even two points and
where ƒ(x) was zero, Rolle’s Theorem would guarantee the existence of a point
in between them where was zero. Therefore, ƒ has no more than one zero. 

Our main use of Rolle’s Theorem is in proving the Mean Value Theorem.

The Mean Value Theorem

The Mean Value Theorem, which was first stated by Joseph-Louis Lagrange, is a slanted
version of Rolle’s Theorem (Figure 4.13). The Mean Value Theorem guarantees that there
is a point where the tangent line is parallel to the chord AB.

ƒ¿x = c
x = b

x = a

ƒ¿sxd = 3x2
+ 3

(-1, 0)
ƒ(0) = 1ƒ(-1) = -3

ƒsxd = x3
+ 3x + 1.
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The function h satisfies the hypotheses of Rolle’s Theorem on [a, b]. It is continuous
on [a, b] and differentiable on (a, b) because both ƒ and g are. Also, 
because the graphs of ƒ and g both pass through A and B. Therefore at some
point This is the point we want for Equation (1).

To verify Equation (1), we differentiate both sides of Equation (3) with respect to x
and then set 

Derivative of Eq. (3) . . .

. . . with 

Rearranged

which is what we set out to prove.

The hypotheses of the Mean Value Theorem do not require ƒ to be differentiable at
either a or b. Continuity at a and b is enough (Figure 4.16).

EXAMPLE 2 The function (Figure 4.17) is continuous for and
differentiable for Since and the Mean Value Theorem
says that at some point c in the interval, the derivative must have the value

In this case we can identify c by solving the equation to
get However, it is not always easy to find c algebraically, even though we know it
always exists.

A Physical Interpretation

We can think of the number as the average change in ƒ over [a, b]
and as an instantaneous change. Then the Mean Value Theorem says that at some inte-
rior point the instantaneous change must equal the average change over the entire interval.

EXAMPLE 3 If a car accelerating from zero takes 8 sec to go 352 ft, its average veloc-
ity for the 8-sec interval is The Mean Value Theorem says that at some
point during the acceleration the speedometer must read exactly 30 mph 
(Figure 4.18).

(44 ft>sec)
352>8 = 44 ft>sec.

ƒ¿scd
sƒsbd - ƒsadd>sb - ad

c = 1.
2c = 2s4 - 0d>s2 - 0d = 2.

ƒ¿sxd = 2x
ƒs2d = 4,ƒs0d = 00 6 x 6 2.

0 … x … 2ƒsxd = x2

 ƒ¿scd =

ƒsbd - ƒsad
b - a

, 

h¿scd = 0 0 = ƒ¿scd -

ƒsbd - ƒsad
b - a

x = c h¿scd = ƒ¿scd -

ƒsbd - ƒsad
b - a

 h¿sxd = ƒ¿sxd -

ƒsbd - ƒsad
b - a

x = c :

c H sa, bd .
h¿scd = 0

hsad = hsbd = 0

232 Chapter 4: Applications of Derivatives

A(a, f (a))

B(b, f (b))
y � f (x)

x
ba

FIGURE 4.14 The graph of ƒ and the
chord AB over the interval [a, b].

x
ba x

B

A

h(x) � f (x) � g(x)

y � f (x)

y � g(x)

h(x)

FIGURE 4.15 The chord AB is the graph
of the function g(x). The function 

gives the vertical distance
between the graphs of ƒ and g at x.
ƒsxd - g sxd

hsxd =

x

y

0 1–1

1
y � �1 � x2, –1 � x � 1

FIGURE 4.16 The function 
satisfies the hypotheses (and

conclusion) of the Mean Value Theorem on
[�1, 1] even though ƒ is not differentiable
at and 1. -1

21 - x2
ƒsxd =

x

y

1

(1, 1)

2

B(2, 4)

y � x2

A(0, 0)

1

2

3

4

FIGURE 4.17 As we find in Example 2,
is where the tangent is parallel to

the chord. 
c = 1

t

s

0
5

80

160 At this point,
the car’s speed
was 30 mph.

Time (sec)

(8, 352)

240

320

400

D
is

ta
nc

e 
(f

t)

s � f (t)

FIGURE 4.18 Distance versus elapsed
time for the car in Example 3. 
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4.2 The Mean Value Theorem 233

Mathematical Consequences

At the beginning of the section, we asked what kind of function has a zero derivative over
an interval. The first corollary of the Mean Value Theorem provides the answer that only
constant functions have zero derivatives.

Proof We want to show that ƒ has a constant value on the interval (a, b). We do so by
showing that if and are any two points in (a, b) with , then 
Now ƒ satisfies the hypotheses of the Mean Value Theorem on It is differentiable
at every point of and hence continuous at every point as well. Therefore,

at some point c between and Since throughout (a, b), this equation implies
successively that

At the beginning of this section, we also asked about the relationship between two
functions that have identical derivatives over an interval. The next corollary tells us that
their values on the interval have a constant difference.

ƒsx2d - ƒsx1d
x2 - x1

= 0, ƒsx2d - ƒsx1d = 0, and ƒsx1d = ƒsx2d.

ƒ¿ = 0x2.x1

ƒsx2d - ƒsx1d
x2 - x1

= ƒ¿scd

[x1, x2]
[x1 , x2] :

ƒsx1d = ƒsx2d .x1 6 x2x2x1

Proof At each point the derivative of the difference function is

Thus, on (a, b) by Corollary 1. That is, on (a, b), so 

Corollaries 1 and 2 are also true if the open interval (a, b) fails to be finite. That is,
they remain true if the interval is 

Corollary 2 plays an important role when we discuss antiderivatives in Section 4.8. It
tells us, for instance, that since the derivative of any other
function with derivative 2x on must have the formula for some value of
C (Figure 4.19).

EXAMPLE 4 Find the function ƒ(x) whose derivative is sin x and whose graph passes
through the point (0, 2).

Solution Since the derivative of is , we see that ƒ and
g have the same derivative. Corollary 2 then says that for someƒsxd = -cos x + C

g¿(x) = sin xg sxd = -cos x

x2
+ Cs - q , q d

ƒsxd = x2 on s - q , q d is 2x ,

sa, q d, s - q , bd, or s - q , q d .

gsxd + C .
ƒsxd =ƒsxd - gsxd = Chsxd = C

h¿sxd = ƒ¿sxd - g¿sxd = 0.

h = ƒ - gx H sa, bd

COROLLARY 1 If at each point x of an open interval (a, b), then
for all where C is a constant.x H sa, bd,ƒsxd = C

ƒ¿sxd = 0

COROLLARY 2 If at each point x in an open interval (a, b), then
there exists a constant C such that for all That is,

is a constant function on (a, b).ƒ - g
x H sa, bd .ƒsxd = gsxd + C

ƒ¿sxd = g¿sxd

x

y

0

–1

–2

1

2

y 5 x2 1 C C 5 2

C 5 1

C 5 0

C 5 –1

C 5 –2

FIGURE 4.19 From a geometric point 
of view, Corollary 2 of the Mean Value
Theorem says that the graphs of functions
with identical derivatives on an interval
can differ only by a vertical shift there. 
The graphs of the functions with derivative
2x are the parabolas shown
here for selected values of C. 

y = x2
+ C ,
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constant C. Since the graph of ƒ passes through the point (0, 2), the value of C is deter-
mined from the condition that :

The function is 

Finding Velocity and Position from Acceleration

We can use Corollary 2 to find the velocity and position functions of an object moving
along a vertical line. Assume the object or body is falling freely from rest with acceleration

We assume the position s(t) of the body is measured positive downward from
the rest position (so the vertical coordinate line points downward, in the direction of the
motion, with the rest position at 0).

We know that the velocity is some function whose derivative is 9.8. We also know
that the derivative of is 9.8. By Corollary 2,

for some constant C. Since the body falls from rest, Thus

The velocity function must be What about the position function s(t)?
We know that s(t) is some function whose derivative is 9.8t. We also know that the de-

rivative of is 9.8t. By Corollary 2,

for some constant C. Since 

The position function is until the body hits the ground. 
The ability to find functions from their rates of change is one of the very powerful

tools of calculus. As we will see, it lies at the heart of the mathematical developments in
Chapter 5.

Proofs of the Laws of Logarithms

The algebraic properties of logarithms were stated in Section 1.6. We can prove those
properties by applying Corollary 2 of the Mean Value Theorem to each of them. The steps
in the proofs are similar to those used in solving problems involving logarithms.

Proof that The argument starts by observing that ln bx and ln x
have the same derivative:

According to Corollary 2 of the Mean Value Theorem, then, the functions must differ by a
constant, which means that

for some C.
Since this last equation holds for all positive values of x, it must hold for 

Hence,

 C = ln b.

ln 1 = 0 ln b = 0 + C

 ln (b # 1) = ln 1 + C

x = 1.

ln bx = ln x + C

 
d
dx

 ln (bx) =
b
bx

 =
1
x  =

d
dx

 ln x.

ln bx � ln b � ln x

sstd = 4.9t2

4.9s0d2
+ C = 0, and C = 0.

ss0d = 0,

sstd = 4.9t2
+ C

ƒstd = 4.9t2

ystd = 9.8t .

9.8s0d + C = 0, and C = 0.

ys0d = 0.

ystd = 9.8t + C

g std = 9.8t
y(t)

9.8 m>sec2.

ƒsxd = -cos x + 3.

ƒs0d = -cos s0d + C = 2, so C = 3.

ƒs0d = 2

234 Chapter 4: Applications of Derivatives
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4.2 The Mean Value Theorem 235

By substituting we conclude,

Proof that We use the same-derivative argument again. For all positive
values of x,

Chain Rule

Derivative Power Rule

Since and r ln x have the same derivative,

for some constant C. Taking x to be 1 identifies C as zero, and we’re done.

You are asked to prove the Quotient Rule for logarithms,

in Exercise 75. The Reciprocal Rule, is a special case of the Quotient
Rule, obtained by taking and noting that 

Laws of Exponents

The laws of exponents for the natural exponential are consequences of the algebraic
properties of . They follow from the inverse relationship between these functions.ln x

ex

ln 1 = 0.b = 1
ln (1>x) = - ln x,

ln abx b = ln b - ln x,

ln xr
= r ln x + C

ln xr

 = r # 1
x =

d
dx

 (r ln x).

 =
1
xr rxr - 1

 
d
dx

 ln xr
=

1
xr 

d
dx

 (xr)

ln xr � r ln x

ln bx = ln b + ln x.

Laws of Exponents for 

For all numbers x, and the natural exponential obeys the following laws:

1. 2.

3. 4. (ex1)x2
= ex1x2

= (ex2)x1ex1

ex2
= ex1 - x2

e-x
=

1
exex1 # ex2

= ex1 + x2

exx2,x1,

ex

Proof of Law 1 Let

(4)

Then

Exponentiate.

The proof of Law 4 is similar. Laws 2 and 3 follow from Law 1 (Exercises 77 and 78).

 = ex1ex2.

e ln u
= u = y1 y2

 ex1 + x2
= e ln y1 y2

Product Rule for logarithms = ln y1 y2

 x1 + x2 = ln y1 + ln y2

 x1 = ln y1 and x2 = ln y2

y1 = ex1 and y2 = ex2.

Take logs of both
sides of Eqs. (4).
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236 Chapter 4: Applications of Derivatives

Exercises 4.2

Checking the Mean Value Theorem
Find the value or values of c that satisfy the equation

in the conclusion of the Mean Value Theorem for the functions and in-
tervals in Exercises 1–8.

1.

2.

3.

4.

5.

6.

7.

8.

Which of the functions in Exercises 9–14 satisfy the hypotheses of the
Mean Value Theorem on the given interval, and which do not? Give
reasons for your answers.

9.

10.

11.

12.

13.

14.

15. The function

is zero at and and differentiable on (0, 1), but its de-
rivative on (0, 1) is never zero. How can this be? Doesn’t Rolle’s
Theorem say the derivative has to be zero somewhere in (0, 1)?
Give reasons for your answer.

16. For what values of a, m, and b does the function

satisfy the hypotheses of the Mean Value Theorem on the interval
[0, 2]?

ƒsxd = •
3, x = 0

-x2
+ 3x + a, 0 6 x 6 1

mx + b, 1 … x … 2

x = 1x = 0

ƒsxd = e x, 0 … x 6 1

0, x = 1

ƒ(x) = e2x - 3,           0 … x … 2

6x - x2
- 7, 2 6 x … 3

ƒ(x) = e x2
- x,             -2 … x … -1

2x2
- 3x - 3, -1 6 x … 0

ƒsxd = L
sin x

x  ,  -p … x 6 0

0, x = 0

ƒsxd = 2xs1 - xd, [0, 1]

ƒsxd = x4>5, [0, 1]

ƒsxd = x2>3, [-1, 8]

g(x) = e x3, -2 … x … 0

x2,    0 6 x … 2

ƒsxd = x3
- x2, [-1, 2]

ƒsxd = ln (x - 1), [2, 4]

ƒsxd = sin-1 x, [-1, 1]

ƒsxd = 2x - 1,  [1, 3]

ƒsxd = x +

1
x ,  c1

2
, 2 d

ƒsxd = x2>3, [0, 1]

ƒsxd = x2
+ 2x - 1, [0, 1]

ƒsbd - ƒsad
b - a

= ƒ¿scd

Roots (Zeros)
17. a. Plot the zeros of each polynomial on a line together with the

zeros of its first derivative.

i)

ii)

iii)

iv)

b. Use Rolle’s Theorem to prove that between every two zeros of
there lies a zero of

18. Suppose that is continuous on [a, b] and that ƒ has three zeros
in the interval. Show that has at least one zero in (a, b). Gener-
alize this result.

19. Show that if throughout an interval [a, b], then has at
most one zero in [a, b]. What if throughout [a, b] instead?

20. Show that a cubic polynomial can have at most three real zeros.

Show that the functions in Exercises 21–28 have exactly one zero in
the given interval.

21.

22.

23.

24.

25.

26.

27.

28.

Finding Functions from Derivatives
29. Suppose that and that for all x. Must

for all x? Give reasons for your answer.

30. Suppose that and that for all x. Must 
for all x? Give reasons for your answer.

31. Suppose that for all x. Find ƒ(2) if

a. b. c.

32. What can be said about functions whose derivatives are constant?
Give reasons for your answer.

In Exercises 33–38, find all possible functions with the given derivative.

33. a. b. c.

34. a. b. c.

35. a. b. c. y¿ = 5 +

1
x2y¿ = 1 -

1
x2y¿ = -

1
x2

y¿ = 3x2
+ 2x - 1y¿ = 2x - 1y¿ = 2x

y¿ = x3y¿ = x2y¿ = x

ƒs -2d = 3.ƒs1d = 0ƒs0d = 0

ƒ¿sxd = 2x

2x + 5
ƒsxd =ƒ¿sxd = 2ƒs0d = 5

ƒsxd = 3
ƒ¿sxd = 0ƒs -1d = 3

r sud = tan u - cot u - u, s0, p>2d

r sud = sec u -

1
u3 + 5, s0, p>2d

r sud = 2u - cos2 u + 22, s - q , q d

r sud = u + sin2 au
3
b - 8, s - q , q d

g std =

1
1 - t

+ 21 + t - 3.1, s -1, 1d

g std = 2t + 21 + t - 4, s0, q d

ƒsxd = x3
+

4
x2 + 7, s - q , 0d

ƒsxd = x4
+ 3x + 1, [-2, -1]

ƒ– 6 0
ƒ¿ƒ– 7 0

ƒ–

ƒ–

nxn - 1
+ sn - 1dan - 1x

n - 2
+

Á
+ a1.

xn
+ an - 1x

n - 1
+

Á
+ a1 x + a0

y = x3
- 33x2

+ 216x = xsx - 9dsx - 24d

y = x3
- 3x2

+ 4 = sx + 1dsx - 2d2

y = x2
+ 8x + 15

y = x2
- 4
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4.2 The Mean Value Theorem 237

36. a. b. c.

37. a. b. c.

38. a. b. c.

In Exercises 39–42, find the function with the given derivative whose
graph passes through the point P.

39.

40.

41.

42.

Finding Position from Velocity or Acceleration
Exercises 43–46 give the velocity and initial position of a
body moving along a coordinate line. Find the body’s position at
time t.

43.

44.

45.

46.

Exercises 47–50 give the acceleration initial velocity,
and initial position of a body moving on a coordinate line. Find the
body’s position at time t.

47.

48.

49.

50.

Applications
51. Temperature change It took 14 sec for a mercury thermometer

to rise from to 100�C when it was taken from a freezer and
placed in boiling water. Show that somewhere along the way the
mercury was rising at the rate of 8.5� .

52. A trucker handed in a ticket at a toll booth showing that in 2 hours
she had covered 159 mi on a toll road with speed limit 65 mph.
The trucker was cited for speeding. Why?

53. Classical accounts tell us that a 170-oar trireme (ancient Greek or
Roman warship) once covered 184 sea miles in 24 hours. Explain
why at some point during this feat the trireme’s speed exceeded
7.5 knots (sea miles per hour).

54. A marathoner ran the 26.2-mi New York City Marathon in 
2.2 hours. Show that at least twice the marathoner was running at
exactly 11 mph, assuming the initial and final speeds are zero.

55. Show that at some instant during a 2-hour automobile trip the car’s
speedometer reading will equal the average speed for the trip.

56. Free fall on the moon On our moon, the acceleration of gravity
is If a rock is dropped into a crevasse, how fast will it
be going just before it hits bottom 30 sec later?

1.6 m>sec2 .

C>sec

-19°C

a =

9

p2 cos 
3t
p , ys0d = 0, ss0d = -1

a = -4 sin 2t, ys0d = 2, ss0d = -3

a = 9.8, ys0d = -3, ss0d = 0

a = et, y(0) = 20, s(0) = 5

a = d2s>dt2 ,

y =

2
p cos 

2t
p , s(p2) = 1

y = sin pt, ss0d = 0

y = 32t - 2, ss0.5d = 4

y = 9.8t + 5, ss0d = 10

y = ds>dt

r¿std = sec t tan t - 1, Ps0, 0d

ƒ¿(x) = e2x,  P a0, 
3
2
b

g¿(x) =

1
x2 + 2x, P(-1, 1)

ƒ¿sxd = 2x - 1, Ps0, 0d

y¿ = 2u - sec2 uy¿ = 2uy¿ = sec2 u

y¿ = sin 2t + cos 
t
2

y¿ = cos 
t
2

y¿ = sin 2t

y¿ = 4x -

1

2x
y¿ =

1

2x
y¿ =

1

22x

Theory and Examples
57. The geometric mean of a and b The geometric mean of two

positive numbers a and b is the number Show that the value
of c in the conclusion of the Mean Value Theorem for 
on an interval of positive numbers 

58. The arithmetic mean of a and b The arithmetic mean of two
numbers a and b is the number Show that the value of
c in the conclusion of the Mean Value Theorem for on
any interval 

59. Graph the function

What does the graph do? Why does the function behave this way?
Give reasons for your answers.

60. Rolle’s Theorem

a. Construct a polynomial ƒ(x) that has zeros at 

b. Graph ƒ and its derivative together. How is what you see
related to Rolle’s Theorem?

c. Do and its derivative illustrate the same
phenomenon as ƒ and 

61. Unique solution Assume that ƒ is continuous on [a, b] and dif-
ferentiable on (a, b). Also assume that ƒ(a) and ƒ(b) have opposite
signs and that between a and b. Show that ex-
actly once between a and b.

62. Parallel tangents Assume that ƒ and g are differentiable on
[a, b] and that and Show that there is
at least one point between a and b where the tangents to the
graphs of ƒ and g are parallel or the same line. Illustrate with a
sketch.

63. Suppose that for . Show that 
.

64. Suppose that for all x-values. Show that
.

65. Show that for all x-values. (Hint: Consider
on [0, x].)

66. Show that for any numbers a and b, the sine inequality 
is true.

67. If the graphs of two differentiable functions ƒ(x) and g(x) start at
the same point in the plane and the functions have the same rate
of change at every point, do the graphs have to be identical? Give
reasons for your answer.

68. If for all values w and x and ƒ is a dif-
ferentiable function, show that for all x-values.

69. Assume that ƒ is differentiable on and that 
Show that is negative at some point between a and b.

70. Let ƒ be a function defined on an interval [a, b]. What conditions
could you place on ƒ to guarantee that

where and refer to the minimum and maximum
values of on [a, b]? Give reasons for your answers.ƒ¿

max ƒ¿min ƒ¿

min ƒ¿ …

ƒsbd - ƒsad
b - a

… max ƒ¿,

ƒ¿

ƒsbd 6 ƒsad.a … x … b

-1 … ƒ¿(x) … 1
ƒ ƒ(w) - ƒ(x) ƒ … ƒ w - x ƒ

sin a ƒ … ƒ b - a ƒƒ sin b -

ƒ(t) = cos t
ƒ cos x - 1 ƒ … ƒ x ƒ

ƒ(-1) 6 ƒ(1) 6 2 + ƒ(-1)
0 6 ƒ¿(x) 6 1>2

ƒ(1) … 3
ƒ(4) -1 … x … 4ƒ¿(x) … 1

ƒsbd = g sbd .ƒsad = g sad

ƒsxd = 0ƒ¿ Z 0

ƒ¿?
g¿gsxd = sin x

ƒ¿

1, and 2 .
x = -2, -1, 0,

ƒsxd = sin x sin sx + 2d - sin2 sx + 1d.

[a, b] is c = sa + bd>2.
ƒsxd = x2

sa + bd>2.

[a, b] is c = 2ab .
ƒsxd = 1>x

2ab .

T
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71. Use the inequalities in Exercise 70 to estimate 
for and 

72. Use the inequalities in Exercise 70 to estimate 
for and 

73. Let ƒ be differentiable at every value of x and suppose that
that and that 

a. Show that for all x.

b. Must Explain.

74. Let be a quadratic function defined on a
closed interval [a, b]. Show that there is exactly one point c in
(a, b) at which ƒ satisfies the conclusion of the Mean Value
Theorem.

ƒsxd = px2
+ qx + r

ƒ¿s1d = 0?

ƒsxd Ú 1

ƒ¿ 7 0 on s1, q d.ƒ¿ 6 0 on s - q , 1d ,ƒs1d = 1,

ƒs0d = 2.0 … x … 0.11>s1 - x4d
ƒs0.1d if ƒ¿sxd =

ƒs0d = 1.0 … x … 0.11>s1 + x4 cos xd
ƒs0.1d if ƒ¿sxd =

238 Chapter 4: Applications of Derivatives

4.3 Monotonic Functions and the First Derivative Test

In sketching the graph of a differentiable function it is useful to know where it increases
(rises from left to right) and where it decreases (falls from left to right) over an interval.
This section gives a test to determine where it increases and where it decreases. We also
show how to test the critical points of a function to identify whether local extreme values
are present.

Increasing Functions and Decreasing Functions

As another corollary to the Mean Value Theorem, we show that functions with positive de-
rivatives are increasing functions and functions with negative derivatives are decreasing
functions. A function that is increasing or decreasing on an interval is said to be monotonic
on the interval.

75. Use the same-derivative argument, as was done to prove the Prod-
uct and Power Rules for logarithms, to prove the Quotient Rule
property.

76. Use the same-derivative argument to prove the identities

a. b.

77. Starting with the equation derived in the text,
show that for any real number x. Then show that

for any numbers and 

78. Show that for any numbers and x2.x1(ex1)x2
= ex1 x2

= (ex2)x1

x2.x1ex1>ex2
= ex1 - x2

e-x
= 1>ex

ex1ex2
= ex1 + x2,

sec-1 x + csc-1 x =

p

2
tan-1 x + cot-1 x =

p

2

T

T

COROLLARY 3 Suppose that ƒ is continuous on [a, b] and differentiable on
(a, b).

If ƒ¿sxd 6 0 at each point x H sa, bd, then ƒ is decreasing on [a, b] .

If ƒ¿sxd 7 0 at each point x H sa, bd, then ƒ is increasing on [a, b] .

Proof Let and be any two points in [a, b] with The Mean Value Theorem
applied to ƒ on says that

for some c between and The sign of the right-hand side of this equation is the same
as the sign of because is positive. Therefore, if is positive
on (a, b) and if is negative on (a, b).

Corollary 3 is valid for infinite as well as finite intervals. To find the intervals where
a function ƒ is increasing or decreasing, we first find all of the critical points of ƒ. If

are two critical points for ƒ, and if the derivative is continuous but never zero on
the interval (a, b), then by the Intermediate Value Theorem applied to , the derivative
must be everywhere positive on (a, b), or everywhere negative there. One way we can de-
termine the sign of on (a, b) is simply by evaluating the derivative at a single point c in
(a, b). If then for all x in (a, b) so ƒ is increasing on [a, b] by Corol-
lary 3; if then ƒ is decreasing on [a, b]. The next example illustrates how we
use this procedure. 

ƒ¿(c) 6 0,
ƒ¿(x) 7 0ƒ¿(c) 7 0,

ƒ¿

ƒ¿

ƒ¿a 6 b

ƒ¿ƒsx2d 6 ƒsx1d
ƒ¿ƒsx2d 7 ƒsx1dx2 - x1ƒ¿scd

x2 .x1

ƒsx2d - ƒsx1d = ƒ¿scdsx2 - x1d

[x1, x2]
x1 6 x2 .x2x1
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4.3 Monotonic Functions and the First Derivative Test 239

EXAMPLE 1 Find the critical points of and identify the inter-
vals on which ƒ is increasing and on which ƒ is decreasing.

Solution The function ƒ is everywhere continuous and differentiable. The first derivative

is zero at and These critical points subdivide the domain of ƒ to create
nonoverlapping open intervals and on which is either pos-
itive or negative. We determine the sign of by evaluating at a convenient point in each
subinterval. The behavior of ƒ is determined by then applying Corollary 3 to each subin-
terval. The results are summarized in the following table, and the graph of ƒ is given in
Figure 4.20.

Interval

evaluated

Sign of 

Behavior of ƒ increasing decreasing increasing

We used “strict” less-than inequalities to specify the intervals in the summary table
for Example 1. Corollary 3 says that we could use inequalities as well. That is, the
function ƒ in the example is increasing on decreasing on 
and increasing on We do not talk about whether a function is increasing or
decreasing at a single point.

First Derivative Test for Local Extrema

In Figure 4.21, at the points where ƒ has a minimum value, immediately to the left
and immediately to the right. (If the point is an endpoint, there is only one side to
consider.) Thus, the function is decreasing on the left of the minimum value and it is in-
creasing on its right. Similarly, at the points where ƒ has a maximum value, imme-
diately to the left and immediately to the right. Thus, the function is increasing on
the left of the maximum value and decreasing on its right. In summary, at a local extreme
point, the sign of changes.ƒ¿sxd

ƒ¿ 6 0
ƒ¿ 7 0

ƒ¿ 7 0
ƒ¿ 6 0

2 … x 6 q .
-2 … x … 2,- q 6 x … -2,

…

+-+ƒœ

ƒ¿s3d = 15ƒ¿s0d = -12ƒ¿s -3d = 15ƒœ

2 6 x 6 q-2 6 x 6 2- q 6 x 6 -2

ƒ¿ƒ¿

ƒ¿s2, q ds - q , -2d, s -2, 2d ,
x = 2.x = -2

 = 3sx + 2dsx - 2d

 ƒ¿sxd = 3x2
- 12 = 3sx2

- 4d

ƒsxd = x3
- 12x - 5

These observations lead to a test for the presence and nature of local extreme values
of differentiable functions.

x

(–2, 11)

(2, –21)

y

1 2 3 4–2–3–4 –1 0

–10

–20

10

20

y � x3 – 12x  –  5

FIGURE 4.20 The function 
is monotonic on three

separate intervals (Example 1).
x3

- 12x - 5
ƒsxd =

x

y � f(x)

a bc1 c2 c5c4c3

Absolute min

Absolute max
 f '  undefined

Local min

Local max
 f ' � 0 No extremum

 f ' � 0

No extremum
 f ' � 0

Local min
 f ' � 0

 f ' � 0
 f ' � 0

 f ' � 0

 f ' � 0
 f ' � 0

 f ' � 0

FIGURE 4.21 The critical points of a function locate where it is increasing and where it is decreasing. The
first derivative changes sign at a critical point where a local extremum occurs.

HISTORICAL BIOGRAPHY

Edmund Halley
(1656–1742)
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The test for local extrema at endpoints is similar, but there is only one side to consider.

Proof of the First Derivative Test Part (1). Since the sign of changes from negative
to positive at c, there are numbers a and b such that on (a, c), and  

on (c, b). If then because implies that ƒ is decreas-
ing on [a, c]. If then because implies that ƒ is increasing
on [c, b]. Therefore, for every By definition, ƒ has a local mini-
mum at c.

Parts (2) and (3) are proved similarly.

EXAMPLE 2 Find the critical points of

Identify the intervals on which ƒ is increasing and decreasing. Find the function’s local and
absolute extreme values.

Solution The function ƒ is continuous at all x since it is the product of two continuous
functions, and The first derivative

is zero at and undefined at There are no endpoints in the domain, so the crit-
ical points and are the only places where ƒ might have an extreme value.

The critical points partition the x-axis into intervals on which is either positive or
negative. The sign pattern of reveals the behavior of ƒ between and at the critical points,
as summarized in the following table. 

Interval

Sign of

Behavior of ƒ decreasing decreasing increasing

Corollary 3 to the Mean Value Theorem tells us that ƒ decreases on de-
creases on [0, 1], and increases on The First Derivative Test for Local Extrema
tells us that ƒ does not have an extreme value at ( does not change sign) and that ƒ
has a local minimum at ( changes from negative to positive).

The value of the local minimum is This is also an ab-
solute minimum since ƒ is decreasing on and increasing on Figure 4.22
shows this value in relation to the function’s graph.

Note that so the graph of ƒ has a vertical tangent at the origin.lim
 x:0 ƒ¿sxd = - q ,

[1, q d .s - q , 1]
ƒs1d = 11>3s1 - 4d = -3.

ƒ¿x = 1
ƒ¿x = 0

[1, q d .
s - q , 0] ,

+--ƒœ

x 7 10 6 x 6 1x 6 0

ƒ¿

ƒ¿

x = 1x = 0
x = 0.x = 1

 =
4
3

 x-2>3Qx - 1R =

4sx - 1d
3x2>3

 ƒ¿sxd =
d
dx

 Qx4>3
- 4x1>3R =

4
3

 x1>3
-

4
3

 x-2>3

sx - 4d .x1>3

ƒsxd = x1>3sx - 4d = x4>3
- 4x1>3.

x H sa, bd .ƒsxd Ú ƒscd
ƒ¿ 7 0ƒscd 6 ƒsxdx H sc, bd ,

ƒ¿ 6 0ƒscd 6 ƒsxdx H sa, cd ,ƒ¿ 7 0
ƒ¿ 6 0a 6 c 6 b,

ƒ¿

240 Chapter 4: Applications of Derivatives

First Derivative Test for Local Extrema

Suppose that c is a critical point of a continuous function ƒ, and that ƒ is differen-
tiable at every point in some interval containing c except possibly at c itself.
Moving across this interval from left to right,

1. if changes from negative to positive at c, then ƒ has a local minimum at c;

2. if changes from positive to negative at c, then ƒ has a local maximum at c;

3. if does not change sign at c (that is, is positive on both sides of c or
negative on both sides), then ƒ has no local extremum at c.

ƒ¿ƒ¿

ƒ¿

ƒ¿

x

y

0 1 2 3 4

1

–1

–2

2

4

–3

–1

y � x1/3(x � 4)

(1, �3)

FIGURE 4.22 The function 
decreases when and

increases when (Example 2).x 7 1
x 6 1x1>3 sx - 4d
ƒsxd =
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4.3 Monotonic Functions and the First Derivative Test 241

EXAMPLE 3 Find the critical points of

Identify the intervals on which ƒ is increasing and decreasing. Find the function’s local and
absolute extreme values.

Solution The function ƒ is continuous and differentiable for all real numbers, so the crit-
ical points occur only at the zeros of 

Using the Derivative Product Rule, we find the derivative

Since is never zero, the first derivative is zero if and only if

The zeros and partition the x-axis into intervals as follows.

Interval

Sign of

Behavior of ƒ increasing decreasing increasing

We can see from the table that there is a local maximum (about 0.299) at and a
local minimum (about ) at . The local minimum value is also an absolute
minimum because for . There is no absolute maximum. The func-
tion increases on and and decreases on . Figure 4.23 shows
the graph.

(-3, 1)(1, q )(- q , -3)
ƒ x ƒ 7 23ƒ(x) 7 0

x = 1-5.437
x = -3

+-+ƒœ

1 6 x-3 6 x 6 1x 6 -3

x = 1x = -3

 (x + 3)(x - 1) = 0.

 x2
+ 2x - 3 = 0

ex

 = (x2
+ 2x - 3)ex.

 = (x2
- 3) # ex

+ (2x) # ex

 ƒ¿(x) = (x2
- 3) # d

dx
 ex

+
d
dx

 (x2
- 3) # ex

ƒ¿.

ƒ(x) = (x2
- 3)ex.

Exercises 4.3

Analyzing Functions from Derivatives
Answer the following questions about the functions whose derivatives
are given in Exercises 1–14:

a. What are the critical points of ƒ?

b. On what intervals is ƒ increasing or decreasing?

c. At what points, if any, does ƒ assume local maximum and
minimum values?

1. 2.

3. 4.

5.

6.

7.

8.

9. 10. ƒ¿(x) = 3 -

6

2x
 , x Z 0ƒ¿(x) = 1 -

4
x2 , x Z 0

ƒ¿(x) =

(x - 2)(x + 4)

(x + 1)(x - 3)
 , x Z -1, 3

ƒ¿(x) =

x2(x - 1)

x + 2
, x Z -2

ƒ¿sxd = sx - 7dsx + 1dsx + 5d
ƒ¿(x) = (x - 1)e-x

ƒ¿sxd = sx - 1d2sx + 2d2ƒ¿sxd = sx - 1d2sx + 2d
ƒ¿sxd = sx - 1dsx + 2dƒ¿sxd = xsx - 1d

11. 12.

13.

14.

Identifying Extrema
In Exercises 15–44:

a. Find the open intervals on which the function is increasing
and decreasing.

b. Identify the function’s local and absolute extreme values, if
any, saying where they occur.

15. 16.

ƒ¿(x) = (sin x + cos x)(sin x - cos x), 0 … x … 2p

ƒ¿(x) = (sin x - 1)(2 cos x + 1), 0 … x … 2p

ƒ¿sxd = x-1>2sx - 3dƒ¿sxd = x-1>3sx + 2d

–5 –4 –3 –2 –1 1 2 3

–6

–5

–4

–3

–2

–1

1

2

3

4

x

y y � (x2 � 3)ex

FIGURE 4.23 The graph of
(Example 3).ƒ(x) = (x2

- 3)ex

y 5 f (x)

y

x

–2

–1

1

2

2 31–1–2–3

y 5 f (x)

y

x

–2

–1

1

2

2 31–1–2–3
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17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

In Exercises 45–56:

a. Identify the function’s local extreme values in the given do-
main, and say where they occur.

b. Which of the extreme values, if any, are absolute?

c. Support your findings with a graphing calculator or computer
grapher.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

In Exercises 57–64:

a. Find the local extrema of each function on the given interval,
and say where they occur.

b. Graph the function and its derivative together. Comment on
the behavior of ƒ in relation to the signs and values of ƒ¿.

g sxd =

x2

4 - x2 , -2 6 x … 1

g sxd =

x - 2
x2

- 1
, 0 … x 6 1

ƒsxd = 2x2
- 2x - 3, 3 … x 6 q

ƒsxd = 225 - x2, -5 … x … 5

k sxd = x3
+ 3x2

+ 3x + 1, - q 6 x … 0

hsxd =

x3

3
- 2x2

+ 4x, 0 … x 6 q

ƒstd = t3
- 3t2, - q 6 t … 3

ƒstd = 12t - t3, -3 … t 6 q

g sxd = -x2
- 6x - 9, -4 … x 6 q

g sxd = x2
- 4x + 4, 1 … x 6 q

ƒsxd = sx + 1d2, - q 6 x … 0

ƒsxd = 2x - x2, - q 6 x … 2

ƒ(x) = x2 ln xƒ(x) = x ln x

ƒ(x) = e2xƒ(x) = e2x
+ e-x

k sxd = x2>3sx2
- 4dhsxd = x1>3sx2

- 4d
g sxd = x2>3sx + 5dƒsxd = x1>3sx + 8d

ƒsxd =

x3

3x2
+ 1

ƒsxd =

x2
- 3

x - 2
, x Z 2

g sxd = x225 - xg sxd = x28 - x2

g sxd = 42x - x2
+ 3ƒsxd = x - 62x - 1

Kstd = 15t3
- t5Hstd =

3
2

 t4
- t6

g sxd = x4
- 4x3

+ 4x2ƒsxd = x4
- 8x2

+ 16

hsrd = sr + 7d3ƒsrd = 3r3
+ 16r

ƒsud = 6u - u3ƒsud = 3u2
- 4u3

hsxd = 2x3
- 18xhsxd = -x3

+ 2x2

g std = -3t2
+ 9t + 5g std = - t2

- 3t + 3
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57.

58.

59.

60.

61.

62.

63.

64.

Theory and Examples
Show that the functions in Exercises 65 and 66 have local extreme val-
ues at the given values of and say which kind of local extreme the
function has.

65.

66.

67. Sketch the graph of a differentiable function through
the point (1, 1) if and

a.

b.

c.

d.

68. Sketch the graph of a differentiable function that has

a. a local minimum at (1, 1) and a local maximum at (3, 3);

b. a local maximum at (1, 1) and a local minimum at (3, 3);

c. local maxima at (1, 1) and (3, 3);

d. local minima at (1, 1) and (3, 3).

69. Sketch the graph of a continuous function such that

a. as 
as 

b. as 
and 

70. Sketch the graph of a continuous function such that

a.
and 

b.
and 

71. Discuss the extreme-value behavior of the function 
. How many critical points does this function

have? Where are they located on the x-axis? Does ƒ have an 
absolute minimum? An absolute maximum? (See Exercise 49 in
Section 2.3.)

72. Find the intervals on which the function 
is increasing and decreasing. Describe the reasoning be-

hind your answer.

73. Determine the values of constants a and b so that 
has an absolute maximum at the point (1, 2).

74. Determine the values of constants a, b, c, and d so that
has a local maximum at the point

(0, 0) and a local minimum at the point .(1, -1)
ƒ(x) = ax3

+ bx2
+ cx + d

ax2
+ bx

ƒ(x) =

a Z 0,
ƒsxd = ax2

+ bx + c,

x Z 0x sin (1>x),
ƒ(x) =

h¿sxd : - q  as x : 0+ .
hs0d = 0, -2 … hsxd … 0 for all x, h¿sxd : q  as x : 0-,

h¿sxd : q  as x : 0+ ;
hs0d = 0, -2 … hsxd … 2 for all x, h¿sxd : q  as x : 0-,

y = hsxd
g¿sxd : q  as x : 2+ .g¿ 7 0 for x 7 2,

x : 2-,g s2d = 2, g¿ 6 0 for x 6 2, g¿sxd : - q

x : 2+ ;-1 6 g¿ 6 0 for x 7 2, and g¿sxd : -1+

x : 2-,g s2d = 2, 0 6 g¿ 6 1 for x 6 2, g¿sxd : 1-

y = g sxd

y = ƒsxd
ƒ¿sxd 6 0 for x Z 1.

ƒ¿sxd 7 0 for x Z 1;

ƒ¿sxd 6 0 for x 6 1 and ƒ¿sxd 7 0 for x 7 1;

ƒ¿sxd 7 0 for x 6 1 and ƒ¿sxd 6 0 for x 7 1;

ƒ¿s1d = 0
y = ƒsxd

hsud = 5 sin 
u

2
 , 0 … u … p, at u = 0 and u = p

hsud = 3 cos 
u

2
 , 0 … u … 2p, at u = 0 and u = 2p

u ,

ƒsxd = sec2 x - 2 tan x, -p

2
6 x 6

p

2

ƒsxd = csc2 x - 2 cot x, 0 6 x 6 p

ƒsxd = -2 cos x - cos2 x, -p … x … p

ƒsxd =

x
2

- 2 sin 
x
2

 , 0 … x … 2p

ƒsxd = -2x + tan x, -p

2
6 x 6

p

2

ƒsxd = 23 cos x + sin x, 0 … x … 2p

ƒsxd = sin x - cos x, 0 … x … 2p

ƒsxd = sin 2x, 0 … x … p

y 5 f (x)

–2

–1

1

2

2 31–1–2–3
x

y y

x

–2

–1

1

2

2 31–1–2–3

y 5 f (x)

T

T
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4.4 Concavity and Curve Sketching 243

75. Locate and identify the absolute extreme values of

a. ln (cos x) on 

b. cos (ln x) on 

76. a. Prove that is increasing for 

b. Using part (a), show that if 

77. Find the absolute maximum and minimum values of 
on [0, 1].

78. Where does the periodic function take on its ex-
treme values and what are these values?

x

y

0

y � 2esin (x/2)

ƒsxd = 2esin sx>2d

ex
- 2x

ƒsxd =
x 7 1.ln x 6 x

x 7 1.ƒ(x) = x - ln x

[1>2, 2].

[-p>4, p>3],

79. Find the absolute maximum value of and say
where it is assumed.

80. a. Prove that if  

b. Use the result in part (a) to show that

81. Show that increasing functions and decreasing functions are one-
to-one. That is, show that for any and in I, implies

Use the results of Exercise 81 to show that the functions in Exercises
82–86 have inverses over their domains. Find a formula for 
using Theorem 3, Section 3.8.

82. 83.

84. 85.

86. ƒsxd = x5>3
ƒsxd = s1 - xd3ƒsxd = 1 - 8x3

ƒsxd = 27x3ƒsxd = s1>3dx + s5>6d

dƒ -1>dx

ƒsx2d Z ƒsx1d.
x2 Z x1x2x1

ex
Ú 1 + x +

1
2

 x2.

x Ú 0.ex
Ú 1 + x

ƒsxd = x2 ln s1>xd

4.4 Concavity and Curve Sketching

We have seen how the first derivative tells us where a function is increasing, where it is de-
creasing, and whether a local maximum or local minimum occurs at a critical point. In this
section we see that the second derivative gives us information about how the graph of a
differentiable function bends or turns. With this knowledge about the first and second de-
rivatives, coupled with our previous understanding of asymptotic behavior and symmetry
studied in Sections 2.6 and 1.1, we can now draw an accurate graph of a function. By or-
ganizing all of these ideas into a coherent procedure, we give a method for sketching
graphs and revealing visually the key features of functions. Identifying and knowing the
locations of these features is of major importance in mathematics and its applications to
science and engineering, especially in the graphical analysis and interpretation of data.

Concavity

As you can see in Figure 4.24, the curve rises as x increases, but the portions de-
fined on the intervals and turn in different ways. As we approach the ori-
gin from the left along the curve, the curve turns to our right and falls below its tangents.
The slopes of the tangents are decreasing on the interval As we move away from
the origin along the curve to the right, the curve turns to our left and rises above its tan-
gents. The slopes of the tangents are increasing on the interval This turning or
bending behavior defines the concavity of the curve.

s0, q d .

s - q , 0d .

s0, q ds - q , 0d
y = x3

DEFINITION The graph of a differentiable function is

(a) concave up on an open interval I if is increasing on I;

(b) concave down on an open interval I if is decreasing on I.ƒ¿

ƒ¿

y = ƒsxd

If has a second derivative, we can apply Corollary 3 of the Mean Value Theorem
to the first derivative function. We conclude that increases if on I, and decreases
if ƒ– 6 0.

ƒ– 7 0ƒ¿

y = ƒsxd

x

y

0

CONCA
V

E
U

P

C
O

N
CA

V
E

DOW
Nf ' decreases

f ' increases

y � x3

FIGURE 4.24 The graph of is
concave down on and concave up
on (Example 1a).s0, q d

s - q , 0d
ƒsxd = x3
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If is twice-differentiable, we will use the notations and interchangeably
when denoting the second derivative.

EXAMPLE 1

(a) The curve (Figure 4.24) is concave down on where 
and concave up on where 

(b) The curve (Figure 4.25) is concave up on because its second deriv-
ative is always positive.

EXAMPLE 2 Determine the concavity of 

Solution The first derivative of is and the second derivative is
The graph of is concave down on where 

is negative. It is concave up on  where  is positive (Figure 4.26).

Points of Inflection

The curve in Example 2 changes concavity at the point Since the
first derivative exists for all x, we see that the curve has a tangent line of slope

at the point . This point is called a point of inflection of the curve. Notice from
Figure 4.26 that the graph crosses its tangent line at this point and that the second derivative

has value 0 when In general, we have the following definition.x = p.y– = -sin x

sp, 3d-1
y¿ = cos x

sp, 3d .y = 3 + sin x

y– = -sin xsp, 2pd ,
y– = -sin xs0, pd ,y = 3 + sin xy– = -sin x.

y¿ = cos x,y = 3 + sin x

y = 3 + sin x on [0, 2p] .

y– = 2
s - q , q dy = x2

y– = 6x 7 0.s0, q d
y– = 6x 6 0s - q , 0dy = x3

y–ƒ–y = ƒsxd
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We observed that the second derivative of is equal to zero at the
inflection point . Generally, if the second derivative exists at a point of inflection
(c, ƒ(c)), then This follows immediately from the Intermediate Value Theorem
whenever is continuous over an interval containing because the second derivative
changes sign moving across this interval. Even if the continuity assumption is dropped, it
is still true that provided the second derivative exists (although a more ad-
vanced agrument is required in this noncontinuous case). Since a tangent line must exist at
the point of inflection, either the first derivative exists (is finite) or a vertical tangent
exists at the point. At a vertical tangent neither the first nor second derivative exists. In
summary, we conclude the following result.

ƒ¿(c)

ƒ–(c) = 0,

x = cƒ–

ƒ–(c) = 0.
sp, 3d

ƒ(x) = 3 + sin x

The Second Derivative Test for Concavity

Let be twice-differentiable on an interval I.

1. If on I, the graph of ƒ over I is concave up.

2. If on I, the graph of ƒ over I is concave down.ƒ– 6 0

ƒ– 7 0

y = ƒsxd
C

O
N

C
A

V
E

U
P

C
O

N
C

A
V

E
U

P

–2 –1 0 1 2
x

1

2

3

4

y

y � x2

y'' � 0 y'' � 0

FIGURE 4.25 The graph of 
is concave up on every interval 
(Example 1b).

ƒsxd = x2

x

y
y 5 3 1 sinx 

p 2p0
–1

1

2

3

4

y'' 5 – sinx

(p, 3)

FIGURE 4.26 Using the sign of to
determine the concavity of y (Example 2).

y–

DEFINITION A point where the graph of a function has a tangent line and
where the concavity changes is a point of inflection.

At a point of inflection (c, ƒ(c)), either or fails to exist. ƒ–(c)ƒ–(c) = 0

The next example illustrates a function having a point of inflection where the first 
derivative exists, but the second derivative fails to exist.
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4.4 Concavity and Curve Sketching 245

EXAMPLE 3 The graph of has a horizontal tangent at the origin because
when However, the second derivative

fails to exist at Nevertheless, for and for so the
second derivative changes sign at and there is a point of inflection at the origin. The
graph is shown in Figure 4.27.

Here is an example showing that an inflection point need not occur even though both
derivatives exist and 

EXAMPLE 4 The curve has no inflection point at (Figure 4.28). Even
though the second derivative is zero there, it does not change sign.

As our final illustration, we show a situation in which a point of inflection occurs at a
vertical tangent to the curve where neither the first nor the second derivative exists.

EXAMPLE 5 The graph of has a point of inflection at the origin because the
second derivative is positive for and negative for 

However, both and fail to exist at and there is a vertical tangent
there. See Figure 4.29.

To study the motion of an object moving along a line as a function of time, we often
are interested in knowing when the object’s acceleration, given by the second derivative, is
positive or negative. The points of inflection on the graph of the object’s position function
reveal where the acceleration changes sign.

EXAMPLE 6 A particle is moving along a horizontal coordinate line (positive to the
right) with position function

Find the velocity and acceleration, and describe the motion of the particle.

Solution The velocity is

and the acceleration is

When the function s(t) is increasing, the particle is moving to the right; when s(t) is de-
creasing, the particle is moving to the left.

Notice that the first derivative is zero at the critical points and 

Interval

Sign of 

Behavior of s increasing decreasing increasing

Particle motion right left right

+-+Y � sœ

11>3 6 t1 6 t 6 11>30 6 t 6 1

t = 11>3.t = 1sy = s¿ d

astd = y¿std = s–std = 12t - 28 = 4s3t - 7d.

ystd = s¿std = 6t2
- 28t + 22 = 2st - 1ds3t - 11d ,

sstd = 2t3
- 14t2

+ 22t - 5, t Ú 0.

x = 0,y–y¿ = x-2>3>3
y– =

d2

dx2 ax1>3b =
d
dx

 a1
3

 x-2>3b = -
2
9

 x-5>3 .

x 7 0:x 6 0
y = x1>3

y– = 12x2
x = 0y = x4

ƒ– = 0.

x = 0
x 7 0,ƒ–(x) 7 0x 6 0ƒ–(x) 6 0x = 0.

ƒ–(x) =
d
dx
a5

3
 x2>3b =

10
9

 x-1>3

x = 0.ƒ¿(x) = (5>3)x2>3
= 0

ƒ(x) = x5>3

x

y

0

1

1

2

–1

y � x4

y'' � 0

FIGURE 4.28 The graph of has
no inflection point at the origin, even
though there (Example 4).y– = 0

y = x4

x

y

0

y 5 x1/3Point of
inflection

FIGURE 4.29 A point of
inflection where and fail
to exist (Example 5).

y–y¿

–2

–1

21–2

2

1

0

y 5 x5/3

x

y

Point of
inflection

–1

FIGURE 4.27 The graph of 
has a horizontal tangent at the origin where
the concavity changes, although does
not exist at (Example 3).x = 0

ƒ–

ƒ(x) = x5>3
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The particle is moving to the right in the time intervals [0, 1) and and moving
to the left in (1, ). It is momentarily stationary (at rest) at and 

The acceleration is zero when 

Interval

Sign of 

Graph of s concave down concave up

The particle starts out moving to the right while slowing down, and then reverses and
begins moving to the left at under the influence of the leftward acceleration over
the time interval The acceleration then changes direction at but the
particle continues moving leftward, while slowing down under the rightward accelera-
tion. At the particle reverses direction again: moving to the right in the same
direction as the acceleration.

Second Derivative Test for Local Extrema

Instead of looking for sign changes in at critical points, we can sometimes use the fol-
lowing test to determine the presence and nature of local extrema.

ƒ¿

t = 11>3
t = 7>3[0, 7>3).

t = 1

+-a � sfl

7>3 6 t0 6 t 6 7>3
t = 7>3.astd = s–std = 4s3t - 7d

t = 11>3.t = 111>3 s11>3, q d ,

246 Chapter 4: Applications of Derivatives

Proof Part (1). If then on some open interval I containing the
point c, since is continuous. Therefore, is decreasing on I. Since the sign
of changes from positive to negative at c so ƒ has a local maximum at c by the First
Derivative Test.

The proof of Part (2) is similar.
For Part (3), consider the three functions and For each

function, the first and second derivatives are zero at Yet the function has a
local minimum there, has a local maximum, and is increasing in any
open interval containing (having neither a maximum nor a minimum there). Thus
the test fails.

This test requires us to know only at c itself and not in an interval about c. This
makes the test easy to apply. That’s the good news. The bad news is that the test is incon-
clusive if or if does not exist at . When this happens, use the First Deriva-
tive Test for local extreme values.

Together and tell us the shape of the function’s graph—that is, where the critical
points are located and what happens at a critical point, where the function is increasing and
where it is decreasing, and how the curve is turning or bending as defined by its concavity.
We use this information to sketch a graph of the function that captures its key features.

EXAMPLE 7 Sketch a graph of the function

using the following steps.

(a) Identify where the extrema of ƒ occur.

(b) Find the intervals on which ƒ is increasing and the intervals on which ƒ is decreasing.

ƒsxd = x4
- 4x3

+ 10

ƒ–ƒ¿

x = cƒ–ƒ– = 0

ƒ–

x = 0
y = x3y = -x4

y = x4x = 0.
y = x3 .y = x4, y = -x4 ,

ƒ¿

ƒ¿scd = 0,ƒ¿ƒ–

ƒ–sxd 6 0ƒ–scd 6 0,

THEOREM 5—Second Derivative Test for Local Extrema Suppose is continuous
on an open interval that contains 

1. If and then ƒ has a local maximum at 

2. If and then ƒ has a local minimum at 

3. If and then the test fails. The function ƒ may have a 
local maximum, a local minimum, or neither.

ƒ–scd = 0,ƒ¿scd = 0

x = c.ƒ–scd 7 0,ƒ¿scd = 0

x = c.ƒ–scd 6 0,ƒ¿scd = 0

x = c.
ƒ–

f ' 5 0, f '' , 0
⇒ local max

f ' 5 0, f '' . 0
⇒ local min
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4.4 Concavity and Curve Sketching 247

(c) Find where the graph of ƒ is concave up and where it is concave down.

(d) Sketch the general shape of the graph for ƒ.

(e) Plot some specific points, such as local maximum and minimum points, points of in-
flection, and intercepts. Then sketch the curve.

Solution The function ƒ is continuous since exists. The domain of
ƒ is and the domain of is also Thus, the critical points of ƒ occur
only at the zeros of Since

,

the first derivative is zero at and We use these critical points to define inter-
vals where ƒ is increasing or decreasing.

Interval

Sign of 

Behavior of ƒ decreasing decreasing increasing

(a) Using the First Derivative Test for local extrema and the table above, we see that there
is no extremum at and a local minimum at 

(b) Using the table above, we see that ƒ is decreasing on and [0, 3], and increas-
ing on 

(c) is zero at and We use these points
to define intervals where ƒ is concave up or concave down.

Interval

Sign of 

Behavior of ƒ concave up concave down concave up

We see that ƒ is concave up on the intervals and and concave down on
(0, 2).

(d) Summarizing the information in the last two tables, we obtain the following.

decreasing decreasing decreasing increasing

concave up concave down concave up concave up

The general shape of the curve is shown in the accompanying figure.

(e) Plot the curve’s intercepts (if possible) and the points where and are zero. Indicate
any local extreme values and inflection points. Use the general shape as a guide to sketch
the curve. (Plot additional points as needed.) Figure 4.30 shows the graph of ƒ.

y–y¿

conc
down

conc
up

conc
up

conc
up

decr decr incrdecr

infl
point

infl
point

local
min

0 2 3

General shape

3<x2<x<30<x<2x<0

s2, q d ,s - q , 0d

+-+ƒfl

2 6 x0 6 x 6 2x 6 0

x = 2.x = 0ƒ–sxd = 12x2
- 24x = 12xsx - 2d

[3, q d .
s - q , 0]

x = 3.x = 0

+--ƒœ

3 6 x0 6 x 6 3x 6 0

x = 3.x = 0

ƒ¿sxd = 4x3
- 12x2

= 4x2sx - 3d

ƒ¿ .
s - q , q d .ƒ¿s - q , q d,

ƒ¿sxd = 4x3
- 12x2

x

y

0 1

5

–5
–1

–10

(0, 10)

2 3 4

–15

–20

10

15

20

Inflection
point

Local
minimum

Inflection
point

y � x4 � 4x3 � 10

(2, –6)

(3, –17)

FIGURE 4.30 The graph of 
(Example 7).x4

- 4x3
+ 10

ƒsxd =
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EXAMPLE 8 Sketch the graph of 

Solution

1. The domain of ƒ is and there are no symmetries about either axis or the
origin (Section 1.1).

2. Find and

3. Behavior at critical points. The critical points occur only at where 
(Step 2) since exists everywhere over the domain of ƒ. At 

yielding a relative minimum by the Second Derivative Test.
At yielding a relative maximum by the Second Derivative
test.

4. Increasing and decreasing. We see that on the interval the derivative
and the curve is decreasing. On the interval and the

curve is increasing; it is decreasing on where again.ƒ¿sxd 6 0s1, q d
s -1, 1d, ƒ¿sxd 7 0ƒ¿sxd 6 0,

s - q , -1d

x = 1,  f –(1) = -1 6 0
ƒ–(-1) = 1 7 0

x = -1,ƒ¿

ƒ¿sxd = 0x = ;1

 =

4xsx2
- 3d

s1 + x2d3

 ƒ–sxd =

s1 + x2d2 # 2s -2xd - 2s1 - x2d[2s1 + x2d # 2x]

s1 + x2d4

 =

2s1 - x2d
s1 + x2d2

 ƒ¿sxd =

s1 + x2d # 2sx + 1d - sx + 1d2 # 2x

s1 + x2d2

 ƒsxd =

sx + 1d2

1 + x2

ƒ– .ƒ¿

s - q , q d

ƒsxd =

sx + 1d2

1 + x2 .

248 Chapter 4: Applications of Derivatives

Procedure for Graphing 
1. Identify the domain of ƒ and any symmetries the curve may have.

2. Find the derivatives and 

3. Find the critical points of ƒ, if any, and identify the function’s behavior at each
one.

4. Find where the curve is increasing and where it is decreasing.

5. Find the points of inflection, if any occur, and determine the concavity of the
curve.

6. Identify any asymptotes that may exist (see Section 2.6).

7. Plot key points, such as the intercepts and the points found in Steps 3–5, and
sketch the curve together with any asymptotes that exist.

y– .y¿

y � ƒ(x)

The steps in Example 7 give a procedure for graphing the key features of a function.

at
x = 0
y-intercept sy = 1d

x = -1,x-intercept at

Critical points:
x = -1, x = 1

After some algebra
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4.4 Concavity and Curve Sketching 249

5. Inflection points. Notice that the denominator of the second derivative (Step 2) is 

always positive. The second derivative is zero when and The

second derivative changes sign at each of these points: negative on 

positive on negative on and positive again on Thus
each point is a point of inflection. The curve is concave down on the interval 

concave up on concave down on and concave

up again on 

6. Asymptotes. Expanding the numerator of ƒ(x) and then dividing both numerator and
denominator by gives

Expanding numerator

Dividing by 

We see that as and that as Thus, the line
is a horizontal asymptote.

Since ƒ decreases on and then increases on we know that
is a local minimum. Although ƒ decreases on it never crosses

the horizontal asymptote on that interval (it approaches the asymptote
from above). So the graph never becomes negative, and is an absolute
minimum as well. Likewise, is an absolute maximum because the graph
never crosses the asymptote on the interval approaching it
from below. Therefore, there are no vertical asymptotes (the range of ƒ is

).

7. The graph of ƒ is sketched in Figure 4.31. Notice how the graph is concave down as it
approaches the horizontal asymptote as and concave up in its ap-
proach to as 

EXAMPLE 9 Sketch the graph of 

Solution

1. The domain of ƒ is all nonzero real numbers. There are no intercepts because neither x
nor ƒ(x) can be zero. Since we note that ƒ is an odd function, so the
graph of ƒ is symmetric about the origin.

2. We calculate the derivatives of the function, but first rewrite it in order to simplify our
computations:

Function simplified for differentiation

Combine fractions to solve easily . 

Exists throughout the entire domain of ƒ

3. The critical points occur at where Since and
we see from the Second Derivative Test that a relative maximum occurs

at with and a relative minimum occurs at with
ƒ(2) = 2.

x = 2ƒ(-2) = -2,x = -2
ƒ–(2) 7 0,

ƒ–(-2) 6 0ƒ¿(x) = 0.x = ;2

ƒ–(x) =
4
x3

ƒ¿(x) = 0ƒ¿(x) =
1
2

-
2
x2 =

x2
- 4

2x2

ƒ(x) =
x2

+ 4
2x

=
x
2

+
2
x

ƒ(-x) = -ƒ(x),

ƒ(x) =
x2

+ 4
2x

.

x : q .y = 1
x : - q ,y = 1

0 … y … 2

s - q , -1d ,y = 1
ƒs1d = 2

ƒs -1d = 0
y = 1

s1, q d ,ƒs -1d = 0
s -1, 1d ,s - q , -1d

y = 1
x : - q .ƒsxd : 1-x : qƒsxd : 1+

x2 =

1 + s2>xd + s1>x2d

s1>x2d + 1
.

 ƒsxd =

sx + 1d2

1 + x2 =
x2

+ 2x + 1
1 + x2

x2

A23, q B . A0, 23 B ,A -23, 0 B ,A - q , -23 B ,
A23, q B .A0, 23 B ,A -23, 0 B , A - q , -23 B ,

23.x = -23, 0 ,ƒ–

–1 1

1

2

x

y

(1, 2)

Point of inflection
where x � �3

Point of inflection
where x � ��3

Horizontal
asymptote

y � 1

FIGURE 4.31 The graph of 

(Example 8).

y =

sx + 1d2

1 + x2
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4. On the interval the derivative is positive because so the
graph is increasing; on the interval the derivative is negative and the graph is
decreasing. Similarly, the graph is decreasing on the interval (0, 2) and increasing on

5. There are no points of inflection because whenever 
whenever and exists everywhere and is never zero throughout the domain
of ƒ. The graph is concave down on the interval and concave up on the inter-
val 

6. From the rewritten formula for ƒ(x), we see that

so the y-axis is a vertical asymptote. Also, as or as the graph of
ƒ(x) approaches the line Thus is an oblique asymptote.

7. The graph of ƒ is sketched in Figure 4.32.

EXAMPLE 10 Sketch the graph of 

Solution The domain of ƒ is and there are no symmetries about
either axis or the origin. The derivatives of ƒ are

and

Both derivatives exist everywhere over the domain of ƒ. Moreover, since and 
are both positive for all we see that everywhere over the domain and 
the graph is everywhere decreasing. Examining the second derivative, we see that

at . Since and , we have for 
and for . Therefore, the point is a point of inflection.
The curve is concave down on the interval and concave up over

From Example 7, Section 2.6, we see that . As we see that
so and the y-axis is a vertical asymptote. Also, as

and so Therefore, is a horizontal
asymptote. There are no absolute extrema since ƒ never takes on the value 0. The graph of
ƒ is sketched in Figure 4.33.

Graphical Behavior of Functions from Derivatives

As we saw in Examples 7–10, we can learn much about a twice-differentiable func-
tion by examining its first derivative. We can find where the function’s
graph rises and falls and where any local extrema are located. We can differentiate 
to learn how the graph bends as it passes over the intervals of rise and fall. We can
determine the shape of the function’s graph. Information we cannot get from the de-
rivative is how to place the graph in the xy-plane. But, as we discovered in Section 4.2,
the only additional information we need to position the graph is the value of ƒ at one
point. Information about the asymptotes is found using limits (Section 2.6). The following

y¿

y = ƒsxd

y = 1limx:-q ƒ(x) = e0
= 1.x : - q , 2>x : 0-

limx:0+ ƒ(x) = q2>x : q ,
x : 0+,limx:0- ƒ(x) = 0

(-1, 0)h (0, q ).
(- q , -1)

(-1, e-2)x 7 -1, x Z 0ƒ– 7 0
x 6 -1ƒ– 6 0x4

7 0e2>x
7 0x = -1ƒ–(x) = 0

ƒ¿ 6 0x Z 0,
x2e2>x

ƒ–(x) =

x2(2e2>x)(-2>x2) - 2e2>x(2x)

x4 =

4e2>x(1 + x)

x4 .

ƒ¿(x) = e2>x a-
2
x2 b = -

2e2>x
x2

(- q , 0)h (0, q )

ƒ(x) = e2>x.

y = x>2y = x>2.
x : - q ,x : q

lim
x:0 +

 ax
2

+
2
x b = + q   and  lim

x:0 -

 ax
2

+
2
x b = - q ,

(0, q ).
(- q , 0)

ƒ–x 7 0,
ƒ–(x) 7 0x 6 0,ƒ–(x) 6 0

(2, q ).

(-2, 0)
x2

- 4 7 0ƒ¿(- q , -2)
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–2

42–4 –2

4

2

0
x

y

–4

y 5
2
xx

x2 1 4y 5
2x

(2, 2)

(–2, –2)

FIGURE 4.32 The graph of 

(Example 9).

y =

x2
+ 4

2x

–2 –1 1 2 3

1

2

3

4

5

Inflection
point

y � e2�x

0 1 2 3
x

y

y � 1

FIGURE 4.33 The graph of has
a point of inflection at The line

is a horizontal asymptote and 
is a vertical asymptote (Example 10).

x = 0y = 1
(-1, e-2).

y = e2>x
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4.4 Concavity and Curve Sketching 251

oror

or

y � f (x) y � f (x) y � f (x)

Differentiable ⇒
smooth, connected; graph
may rise and fall

y' � 0 ⇒ rises from
left to right;
may be wavy

y' � 0 ⇒ falls from
left to right;
may be wavy

y'' � 0 ⇒ concave up
throughout; no waves; graph
may rise or fall

y'' � 0 ⇒ concave down
throughout; no waves;
graph may rise or fall

y'' changes sign at an
inflection point

y' changes sign ⇒ graph
has local maximum or local
minimum

y' � 0  and  y'' � 0
at a point; graph has
local maximum

y' � 0  and  y'' � 0
at a point; graph has
local minimum

Exercises 4.4

Analyzing Functions from Graphs
Identify the inflection points and local maxima and minima of the
functions graphed in Exercises 1–8. Identify the intervals on which
the functions are concave up and concave down.

1. 2.

3. 4.

0
x

y

y �     x1/3(x2 � 7)9
14

0
x

y

y �    (x2 � 1)2/33
4

0
x

y

y �      � 2x2 � 4x4

4

0
x

y

y �      �     � 2x �x3

3
1
3

x2

2

5. 6.

7. 8.

Graphing Equations
Use the steps of the graphing procedure on page 248 to graph the
equations in Exercises 9–58. Include the coordinates of any local and
absolute extreme points and inflection points.

9. 10.

11. 12. y = xs6 - 2xd2y = x3
- 3x + 3

y = 6 - 2x - x2y = x2
- 4x + 3

x

y

0–� 3�
2

y � 2 cos x � �2 x,  –� � x �
3�
2

x

y

y � sin �x�, –2� � x � 2�

0

NOT TO SCALE

x

y

y � tan x � 4x, –     � x ��
2

�
2

00
x

y

–

y � x � sin 2x, –       � x �2�
3

2�
3

2�
3

2�
3

figure summarizes how the derivative and second derivative affect the shape of a
graph.
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13. 14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47.

48.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

Sketching the General Shape, Knowing 
Each of Exercises 59–80 gives the first derivative of a continuous
function Find and then use steps 2–4 of the graphing
procedure on page 248 to sketch the general shape of the graph of ƒ.

59. 60.

61. 62.

63. 64. y¿ = sx - 1d2s2x + 3dy¿ = xsx2
- 12d

y¿ = x2s2 - xdy¿ = xsx - 3d2

y¿ = x2
- x - 6y¿ = 2 + x - x2

y–y = ƒsxd .

yœ

y =

ex

1 + exy =

1
1 + e-x

y =

ln x

2x
y = ln (cos x)

y = xe-xy = ex
- 2e-x

- 3x

y = x (ln x)2y = ln (3 - x2)

y =

ex

xy = xe1>x
y = 2ƒ x - 4 ƒ

y = 2 ƒ x ƒ = e2-x,  x 6 0

2x,    x Ú 0

y = ƒ x2 - 2 x ƒy = ƒ x2
- 1 ƒ

y =

5
x4

+ 5
y =

8x

x2
+ 4

y = 23 x3
+ 1y =

x2
- 3

x - 2

y = x2
+

2
xy = 216 - x2

y = (2 - x2)3>2y = x28 - x2

y = x2>3(x - 5)y = x2>3 a5
2

- xb
y = 5x2>5

- 2xy = 2x - 3x2>3
y =

21 - x2

2x + 1
y =

x

2x2
+ 1

y = x2>5y = x1>5
y = cos x + 23 sin x, 0 … x … 2p

y = sin x cos x, 0 … x … p

y =

4
3

 x - tan x, -p

2
6 x 6

p

2

y = 23x - 2 cos x, 0 … x … 2p

y = x - sin x, 0 … x … 2p

y = x + sin x, 0 … x … 2p

y = x ax
2

- 5b4

y = x5
- 5x4

= x4sx - 5d
y = x4

+ 2x3
= x3sx + 2d

y = 4x3
- x4

= x3s4 - xd
y = -x4

+ 6x2
- 4 = x2s6 - x2d - 4

y = x4
- 2x2

= x2sx2
- 2d

y = 1 - sx + 1d3

y = sx - 2d3
+ 1

y = 1 - 9x - 6x2
- x3y = -2x3

+ 6x2
- 3
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65. 66.

67.

68.

69. 70.

71.

72.

73.

74.

75. 76.

77. 78.

79.

80.

Sketching y from Graphs of and 
Each of Exercises 81–84 shows the graphs of the first and second de-
rivatives of a function Copy the picture and add to it a
sketch of the approximate graph of ƒ, given that the graph passes
through the point P.

81. 82.

83.

84.

Graphing Rational Functions
Graph the rational functions in Exercises 85–102.

85. 86.

87. 88.

89. 90. y =

x2

x2
- 1

y =

1
x2

- 1

y =

x2
- 4

2x
y =

x4
+ 1

x2

y =

x2
- 49

x2
+ 5x - 14

y =

2x2
+ x - 1

x2
- 1

y � f '(x)

y � f ''(x)

P

0
x

y

y � f '(x)

y � f ''(x)

P

0
x

y

y � f '(x)

y � f ''(x)
P

x

y

y � f '(x)

y � f ''(x)

P

x

y

y = ƒsxd .

yflyœ

y¿ = e -x2,  x … 0

x2,    x 7 0

y¿ = 2 ƒ x ƒ = e -2x,  x … 0

2x,    x 7 0

y¿ = x-4>5sx + 1dy¿ = x-2>3sx - 1d
y¿ = sx - 2d-1>3y¿ = sx + 1d-2>3

y¿ = sin t, 0 … t … 2p

y¿ = cos t, 0 … t … 2p

y¿ = 1 - cot2 u, 0 6 u 6 p

y¿ = tan2 u - 1, -

p

2
6 u 6

p

2

y¿ = csc2  
u

2
 , 0 6 u 6 2py¿ = cot  

u

2
 , 0 6 u 6 2p

y¿ = tan x, -

p

2
6 x 6

p

2

y¿ = sec2 x, -

p

2
6 x 6

p

2

y¿ = sx2
- 2xdsx - 5d2y¿ = s8x - 5x2d(4 - x)2
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91. 92.

93. 94.

95. 96.

97. 98.

99. 100.

101.

102.

Theory and Examples
103. The accompanying figure shows a portion of the graph of a twice-

differentiable function At each of the five labeled
points, classify and as positive, negative, or zero.

104. Sketch a smooth connected curve with

105. Sketch the graph of a twice-differentiable function with
the following properties. Label coordinates where possible.

x y Derivatives

2 1

4 4

6 7

106. Sketch the graph of a twice-differentiable function that
passes through the points , , , , and (2, 2)
and whose first two derivatives have the following sign patterns.

y–: -     +     -

-1       1   

y¿: +     -     +     -

-2       0          2

s1, 1ds0, 0ds -1, 1ds -2, 2d
y = ƒsxd

y¿ 6 0, y– 6 0x 7 6
y¿ = 0, y– 6 0
y¿ 7 0, y– 6 04 6 x 6 6
y¿ 7 0, y– = 0
y¿ 7 0, y– 7 02 6 x 6 4
y¿ = 0, y– 7 0
y¿ 6 0, y– 7 0x 6 2

y = ƒsxd

ƒ–sxd 7 0 for x 7 0. ƒ¿sxd 7 0 for ƒ x ƒ 7 2,

ƒ–sxd 6 0 for x 6 0,  ƒs2d = 0,

ƒ¿sxd 6 0 for ƒ x ƒ 6 2,  ƒs0d = 4,

ƒ¿s2d = ƒ¿s -2d = 0,  ƒs -2d = 8,

y = ƒsxd

y � f (x)
S

TR

Q
P

x

y

0

y–y¿

y = ƒsxd .

y =

4x

x2
+ 4

  (Newton's serpentine)

y =

8
x2

+ 4
  (Agnesi's witch)

y =

x - 1
x2(x - 2)

y =

x

x2
- 1

y =

x3
+ x - 2

x - x2y =

x3
- 3x2

+ 3x - 1
x2

+ x - 2

y = -  
x2

- x + 1
x - 1

y =

x2
- x + 1
x - 1

y = -  
x2

- 4
x + 1

y =

x2

x + 1

y =

x2
- 4

x2
- 2

y = -  
x2

- 2
x2

- 1

Motion Along a Line The graphs in Exercises 107 and 108 show
the position of an object moving up and down on a coordi-
nate line. (a) When is the object moving away from the origin?
toward the origin? At approximately what times is the (b) velocity
equal to zero? (c) acceleration equal to zero? (d) When is the accel-
eration positive? negative?

107.

108.

109. Marginal cost The accompanying graph shows the hypotheti-
cal cost of manufacturing x items. At approximately
what production level does the marginal cost change from de-
creasing to increasing?

110. The accompanying graph shows the monthly revenue of the Wid-
get Corporation for the last 12 years. During approximately what
time intervals was the marginal revenue increasing? Decreasing?

111. Suppose the derivative of the function is

At what points, if any, does the graph of ƒ have a local mini-
mum, local maximum, or point of inflection? (Hint: Draw the
sign pattern for )y¿ .

y¿ = sx - 1d2sx - 2d .

y = ƒsxd

t

y

y � r(t)

50 10

C
os

t

c � f (x)

Thousands of units produced
20 40 60 80 100120

x

c

c = ƒsxd

D
is

pl
ac

em
en

t

s � f (t)

D
is

pl
ac

em
en

t
Time (sec)

5 10 150
t

s

D
is

pl
ac

em
en

t

s � f (t)

Time (sec)

5 10 150
t

s

s = ƒstd
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112. Suppose the derivative of the function is

At what points, if any, does the graph of ƒ have a local mini-
mum, local maximum, or point of inflection?

113. For sketch a curve that has and
Can anything be said about the concavity of such a

curve? Give reasons for your answer.

114. Can anything be said about the graph of a function that
has a continuous second derivative that is never zero? Give rea-
sons for your answer.

115. If b, c, and d are constants, for what value of b will the curve
have a point of inflection at 

Give reasons for your answer.

116. Parabolas

a. Find the coordinates of the vertex of the parabola

b. When is the parabola concave up? Concave down? Give rea-
sons for your answers.

117. Quadratic curves What can you say about the inflection
points of a quadratic curve Give
reasons for your answer.

118. Cubic curves What can you say about the inflection points of
a cubic curve Give reasons
for your answer.

119. Suppose that the second derivative of the function is 

For what x-values does the graph of ƒ have an inflection point?

y– = (x + 1)(x - 2).

y = ƒsxd

y = ax3
+ bx2

+ cx + d, a Z 0?

y = ax2
+ bx + c, a Z 0?

y = ax2
+ bx + c, a Z 0.

x = 1?y = x3
+ bx2

+ cx + d

y = ƒsxd

ƒ¿sxd = 1>x .
ƒs1d = 0y = ƒsxdx 7 0,

y¿ = sx - 1d2sx - 2dsx - 4d .

y = ƒsxd

254 Chapter 4: Applications of Derivatives

120. Suppose that the second derivative of the function is 

For what x-values does the graph of ƒ have an inflection point?

121. Find the values of constants a, b, and c so that the graph of
has a local maximum at local min-

imum at and inflection point at .

122. Find the values of constants a, b, and c so that the graph of
has a local minimum at and a lo-

cal maximum at .

COMPUTER EXPLORATIONS
In Exercises 123–126, find the inflection points (if any) on the graph of
the function and the coordinates of the points on the graph where the
function has a local maximum or local minimum value. Then graph the
function in a region large enough to show all these points simultane-
ously. Add to your picture the graphs of the function’s first and second
derivatives. How are the values at which these graphs intersect the 
x-axis related to the graph of the function? In what other ways are the
graphs of the derivatives related to the graph of the function?

123. 124.

125.

126.

127. Graph and its first two derivatives to-
gether. Comment on the behavior of ƒ in relation to the signs and
values of and 

128. Graph and its second derivative together for
Comment on the behavior of the graph of ƒ in re-

lation to the signs and values of ƒ– .
0 … x … 2p .

ƒsxd = x cos x

ƒ– .ƒ¿

ƒsxd = 2x4
- 4x2

+ 1

y =

x4

4
-

x3

3
- 4x2

+ 12x + 20

y =

4
5

 x5
+ 16x2

- 25

y = x3
- 12x2y = x5

- 5x4
- 240

(-1, -2)
x = 3y = (x2

+ a)>(bx + c)

(1, 11)x = -1,
x = 3,y = ax3

+ bx2
+ cx

y– = x2(x - 2)3(x + 3).

y = ƒsxd

4.5 Indeterminate Forms and L’Hôpital’s Rule

John (Johann) Bernoulli discovered a rule using derivatives to calculate limits of frac-
tions whose numerators and denominators both approach zero or The rule is known
today as l’Hôpital’s Rule, after Guillaume de l’Hôpital. He was a French nobleman who
wrote the first introductory differential calculus text, where the rule first appeared in
print. Limits involving transcendental functions often require some use of the rule for
their calculation.

Indeterminate Form 

If we want to know how the function

behaves near (where it is undefined), we can examine the limit of as 
We cannot apply the Quotient Rule for limits (Theorem 1 of Chapter 2) because the limit
of the denominator is 0. Moreover, in this case, both the numerator and denominator ap-
proach 0, and is undefined. Such limits may or may not exist in general, but the limit
does exist for the function under discussion by applying l’Hôpital’s Rule, as we will
see in Example 1d.

Fsxd
0>0

x : 0.Fsxdx = 0

Fsxd =
x - sin x

x3

0/0

+ q .
HISTORICAL BIOGRAPHY

Guillaume François Antoine de l’Hôpital
(1661–1704)
Johann Bernoulli
(1667–1748)
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4.5 Indeterminate Forms and L’Hôpital’s Rule 255

If the continuous functions ƒ(x) and are both zero at then

cannot be found by substituting The substitution produces , a meaningless ex-
pression, which we cannot evaluate. We use as a notation for an expression known as
an indeterminate form. Other meaningless expressions often occur, such as 

and which cannot be evaluated in a consistent way; these are
called indeterminate forms as well. Sometimes, but not always, limits that lead to indeter-
minate forms may be found by cancellation, rearrangement of terms, or other algebraic
manipulations. This was our experience in Chapter 2. It took considerable analysis in Sec-
tion 2.4 to find But we have had success with the limit

from which we calculate derivatives and which produces the indeterminant form when
we substitute . L’Hôpital’s Rule enables us to draw on our success with derivatives to
evaluate limits that otherwise lead to indeterminate forms.

x = a
0>0

ƒ¿sad = lim
x:a

 
ƒsxd - ƒsad

x - a  ,

limx:0 ssin xd>x .

1q,00,q - q ,q # 0,
q>q ,

0>0 0>0x = a .

lim
x:a

  
ƒ sxd
g sxd

x = a ,g (x)

THEOREM 6— L’Hôpital’s Rule Suppose that that ƒ and g are
differentiable on an open interval I containing a, and that 
Then

assuming that the limit on the right side of this equation exists.

lim
x:a

  
ƒsxd
g sxd

= lim
x:a

  
ƒ¿sxd
g¿sxd

 ,

g¿sxd Z 0 on I if x Z a .
ƒsad = g sad = 0,

Caution
To apply l’Hôpital’s Rule to , divide 
the derivative of ƒ by the derivative of g.
Do not fall into the trap of taking the
derivative of . The quotient to use is

not sƒ>gd¿ .ƒ¿>g¿,
ƒ>g

ƒ>g

We give a proof of Theorem 6 at the end of this section.

EXAMPLE 1 The following limits involve indeterminate forms, so we apply
l’Hôpital’s Rule. In some cases, it must be applied repeatedly.

(a)

(b)

(c)

Still differentiate again.

Not limit is found.
0
0

;= lim
x:0

 
- s1>4ds1 + xd-3>2

2
= -

1
8

0
0

;= lim
x:0

 
s1>2ds1 + xd-1>2

- 1>2
2x

0
0

lim
x:0

 
21 + x - 1 - x>2

x2

lim
x:0

 
21 + x - 1

x = lim
x:0

 

1

221 + x
1

=
1
2

lim
x:0

 
3x - sin x

x = lim
x:0

 
3 - cos x

1
=

3 - cos x
1

`
x=0

= 2

0>0
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(d)

limit is found.

Here is a summary of the procedure we followed in Example 1.

Not 
0
0

;= lim
x:0

 
cos x

6
=

1
6

Still 
0
0

= lim
x:0

 
sin x
6x

Still 
0
0

= lim
x:0

 
1 - cos x

3x2

0
0

lim
x:0

 
x - sin x

x3

256 Chapter 4: Applications of Derivatives

Using L’Hôpital’s Rule

To find

by l’Hôpital’s Rule, continue to differentiate ƒ and g, so long as we still get the
form at But as soon as one or the other of these derivatives is differ-
ent from zero at we stop differentiating. L’Hôpital’s Rule does not apply
when either the numerator or denominator has a finite nonzero limit.

x = a
x = a .0>0

lim
x:a

  
ƒsxd
g sxd

EXAMPLE 2 Be careful to apply l’Hôpital’s Rule correctly:

Not limit is found.

Up to now the calculation is correct, but if we continue to differentiate in an attempt to ap-
ply l’Hôpital’s Rule once more, we get

which is not the correct limit. L’Hôpital’s Rule can only be applied to limits that give inde-
terminate forms, and is not an indeterminate form.

L’Hôpital’s Rule applies to one-sided limits as well.

EXAMPLE 3 In this example the one-sided limits are different.

(a)

Positive for 

(b)

Negative for  

Indeterminate Forms 

Sometimes when we try to evaluate a limit as by substituting we get an inde-
terminant form like or instead of . We first consider the form
q>q .

0>0q - q ,q>q , q # 0,
x = ax : a

ˆ / ˆ , ˆ # 0, ˆ � ˆ

x 6 0= lim
x:0-

 
cos x

2x
= - q

0
0

lim
x:0-

 
sin x
x2

x 7 0= lim
x:0+

 
cos x

2x
= q

0
0

lim
x:0+

 
sin x
x2

0>1

lim
x:0

 
cos x

2
=

1
2

,

0
0

;= lim
x:0

 
sin x

1 + 2x
=

0
1

= 0.

0
0

lim
x:0

 
1 - cos x

x + x2

Recall that and mean the same
thing.

+ qq
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4.5 Indeterminate Forms and L’Hôpital’s Rule 257

In more advanced treatments of calculus it is proved that l’Hôpital’s Rule applies to the
indeterminate form as well as to . If and as then

provided the limit on the right exists. In the notation may be either finite or infi-
nite. Moreover, may be replaced by the one-sided limits or 

EXAMPLE 4 Find the limits of these forms:

(a) (b) (c)

Solution

(a) The numerator and denominator are discontinuous at so we investigate the
one-sided limits there. To apply l’Hôpital’s Rule, we can choose I to be any open in-
terval with as an endpoint.

from the left

The right-hand limit is 1 also, with as the indeterminate form. There-
fore, the two-sided limit is equal to 1.

(b)

(c)

Next we turn our attention to the indeterminate forms and Some-
times these forms can be handled by using algebra to convert them to a or 
form. Here again we do not mean to suggest that or is a number. They are
only notations for functional behaviors when considering limits. Here are examples of how
we might work with these indeterminate forms.

EXAMPLE 5 Find the limits of these forms:

(a) (b)

Solution

(a) ; Let

(b) converted to 

l’Hôpital’s Rule

 = lim
x:0+

A -22x B = 0

 = lim
x:0+

 
1>x

-1>2x3>2

q>qq # 0 lim
x:0+

 2x ln x = lim
x:0+

 
ln x

1>2x

h = 1>x.q # 0 lim
x: q

ax sin 
1
x b = lim

h:0+

a1
h

 sin hb =  lim
h:0+

 
sin h

h
= 1

lim
x:0+

 2x ln xlim
x: q

ax sin 
1
x b

q # 0

q - qq # 0
q>q0>0

q - q .q # 0

lim
x: q

  
ex

x2 = lim
x: q

  
ex

2x
= lim

x: q

  
ex

2
= q

1>x
1>2x

=

2x
x =

1

2x
lim

x: q

  
ln x

22x
= lim

x: q

  
1>x

1>2x
= lim

x: q

  
1

2x
= 0

s - q d>s - q d

= lim
x: sp>2d-

 
sec x tan x

sec2 x
= lim

x: sp>2d-

 sin x = 1

q

q
lim

x: sp>2d-

 
sec x

1 + tan x

x = p>2
x = p>2,

lim
x: q

  
ex

x2.lim
x: q

  
ln x

22x
lim

x:p>2  
sec x

1 + tan x

q>q
x : a-.x : a+x : a

x : a, a

lim
x:a

  
ƒsxd
g sxd

= lim
x:a

  
ƒ¿sxd
g¿sxd

x : a ,g sxd : ; qƒsxd : ; q0>0q>q
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258 Chapter 4: Applications of Derivatives

EXAMPLE 6 Find the limit of this form:

Solution If then and

Similarly, if then and

Neither form reveals what happens in the limit. To find out, we first combine the fractions:

Common denominator is x sin x.

Then we apply l’Hôpital’s Rule to the result:

Still 

Indeterminate Powers

Limits that lead to the indeterminate forms and can sometimes be handled by
first taking the logarithm of the function. We use l’Hôpital’s Rule to find the limit of the
logarithm expression and then exponentiate the result to find the original function limit.
This procedure is justified by the continuity of the exponential function and Theorem 10 in
Section 2.5, and it is formulated as follows. (The formula is also valid for one-sided limits.)

q
01q, 00,

 = lim
x:0

  
sin x

2 cos x - x sin x
=

0
2

= 0.

0
0

 = lim
x:0

  
1 - cos x

sin x + x cos x

0
0

 lim
x:0
a 1

sin x
-

1
x b = lim

x:0
  
x - sin x

x sin x

1
sin x

-
1
x =

x - sin x
x sin x

1
sin x

-
1
x : - q - s - q d = - q + q .

sin x : 0-x : 0- ,

1
sin x

-
1
x : q - q .

sin x : 0+x : 0+ ,

lim
x:0
a 1

sin x
-

1
x b .

q - q

If , then

Here a may be either finite or infinite.

lim
x:a

 ƒ(x) = lim
x:a

 e ln ƒ(x)
= eL.

limx:a ln ƒ(x) = L

EXAMPLE 7 Apply l’Hôpital’s Rule to show that .

Solution The limit leads to the indeterminate form . We let and
find . Since

ln ƒ(x) = ln (1 + x)1>x
=

1
x  ln (1 + x),

limx:0+ ln ƒ(x)
ƒ(x) = (1 + x)1>x1q

limx:0+ (1 + x)1>x
= e
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4.5 Indeterminate Forms and L’Hôpital’s Rule 259

l’Hôpital’s Rule now applies to give

Therefore, 

EXAMPLE 8 Find 

Solution The limit leads to the indeterminate form . We let and find
. Since

l’Hôpital’s Rule gives

Therefore 

Proof of L’Hôpital’s Rule

The proof of l’Hôpital’s Rule is based on Cauchy’s Mean Value Theorem, an extension of
the Mean Value Theorem that involves two functions instead of one. We prove Cauchy’s
Theorem first and then show how it leads to l’Hôpital’s Rule.

lim
x: q

 x1>x
= lim

x: q

 ƒ(x) = lim
x: q

 e ln ƒ(x)
= e0

= 1.

 =
0
1

= 0.

 = lim
x: q

 
1>x
1

q

q
 lim
x: q

 ln ƒ(x) = lim
x: q

 
ln x

x

 ln ƒ(x) = ln x1>x
=

ln x
x ,

limx:q ln ƒ(x)
ƒ(x) = x1>x

q
0

limx:q  x
1>x.

lim
x:0+

 (1 + x)1>x
= lim

x:0+

 ƒ(x) = lim
x:0+

 e ln ƒ(x)
= e1

= e.

 =
1
1

= 1.

 = lim
x:0+

 

1
1 + x

1

0
0

 lim
x:0+

 ln ƒ(x) = lim
x:0+

 
ln (1 + x)

x

THEOREM 7—Cauchy’s Mean Value Theorem Suppose functions ƒ and g are
continuous on [a, b] and differentiable throughout (a, b) and also suppose

throughout (a, b). Then there exists a number c in (a, b) at which

ƒ¿scd
g¿scd

=

ƒsbd - ƒsad
g sbd - g sad

.

g¿sxd Z 0

HISTORICAL BIOGRAPHY

Augustin-Louis Cauchy
(1789–1857)

Proof We apply the Mean Value Theorem of Section 4.2 twice. First we use it to show
that For if  did equal , then the Mean Value Theorem would give

for some c between a and b, which cannot happen because in (a, b).g¿sxd Z 0

g¿scd =

g sbd - g sad
b - a

= 0

g sadg sbdg sad Z g sbd .
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We next apply the Mean Value Theorem to the function

This function is continuous and differentiable where ƒ and g are, and 
Therefore, there is a number c between a and b for which When expressed in
terms of ƒ and g, this equation becomes

so that

Notice that the Mean Value Theorem in Section 4.2 is Theorem 7 with 
Cauchy’s Mean Value Theorem has a geometric interpretation for a general winding

curve C in the plane joining the two points and In
Chapter 11 you will learn how the curve C can be formulated so that there is at least one
point P on the curve for which the tangent to the curve at P is parallel to the secant line
joining the points A and B. The slope of that tangent line turns out to be the quotient 
evaluated at the number c in the interval which is the left-hand side of the equation
in Theorem 7. Because the slope of the secant line joining A and B is

the equation in Cauchy’s Mean Value Theorem says that the slope of the tangent line
equals the slope of the secant line. This geometric interpretation is shown in Figure 4.34.
Notice from the figure that it is possible for more than one point on the curve C to
have a tangent line that is parallel to the secant line joining A and B.

Proof of l’Hôpital’s Rule We first establish the limit equation for the case The
method needs almost no change to apply to and the combination of these two
cases establishes the result.

Suppose that x lies to the right of a. Then and we can apply Cauchy’s
Mean Value Theorem to the closed interval from a to x. This step produces a number c be-
tween a and x such that

But so

As x approaches a, c approaches a because it always lies between a and x. Therefore,

which establishes l’Hôpital’s Rule for the case where x approaches a from above. The case
where x approaches a from below is proved by applying Cauchy’s Mean Value Theorem to
the closed interval [x, a],  x 6 a .

lim
x:a+

 
ƒ sxd
g sxd

= lim
c:a+

 
ƒ¿scd
g¿scd

= lim
x:a+

 
ƒ¿sxd
g¿sxd

,

ƒ¿scd
g¿scd

=

ƒsxd
g sxd

.

ƒsad = g sad = 0,

ƒ¿scd
g¿scd

=

ƒsxd - ƒsad
g sxd - g sad

.

g¿sxd Z 0,

x : a-,
x : a+ .

ƒsbd - ƒsad
g sbd - g sad

,

sa, bd,
ƒ¿>g¿

B = sgsbd, ƒsbdd.A = sgsad, ƒsadd

g sxd = x.

ƒ¿scd
g¿scd

=

ƒsbd - ƒsad
g sbd - g sad

.

F¿scd = ƒ¿scd -

ƒsbd - ƒsad
g sbd - g sad

 [ g¿scd] = 0

F¿scd = 0.
Fsbd = Fsad = 0.

Fsxd = ƒsxd - ƒsad -

ƒsbd - ƒsad
g sbd - g sad

 [ g sxd - g sad] .
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0

y

(g(a), f (a))

(g(b), f (b))
P

B

A

slope 5
f (b) 2 f (a)
g(b) 2 g(a)

x

slope 5
f '(c)
g'(c)

FIGURE 4.34 There is at least one point
P on the curve C for which the slope of the
tangent to the curve at P is the same as the
slope of the secant line joining the points
A(g(a), ƒ(a)) and B(g(b), ƒ(b)).
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4.5 Indeterminate Forms and L’Hôpital’s Rule 261

Exercises 4.5

Finding Limits in Two Ways
In Exercises 1–6, use l’Hôpital’s Rule to evaluate the limit. Then eval-
uate the limit using a method studied in Chapter 2.

1. 2.

3. 4.

5. 6.

Applying l’Hôpital’s Rule
Use l’Hôpital’s rule to find the limits in Exercises 7–50.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42. lim
x:0+

 (csc x - cot x + cos x)lim
x:1+

 a 1
x - 1

-

1
ln x
b

lim
x:0+

 a3x + 1
x -

1
sin x

blim
x:0+

 
sln x)2

ln ssin x)

lim
x:0+

 (ln x - ln sin x)lim
x: q

 (ln 2x - ln (x + 1))

lim
y:0

 
2ay + a2

- a
y , a 7 0lim

y:0
 
25y + 25 - 5

y

lim
x:0+

 
ln (ex

- 1)

ln x
lim

x:0+

 
ln (x2

+ 2x)

ln x

lim
x: q

 
log2 x

log3 (x + 3)
lim

x: q

 
ln (x + 1)

log2 x

lim
x:0

 
3x

- 1
2x

- 1
lim
x:0

 
x2x

2x
- 1

lim
u:0

 
(1>2)u - 1

u
lim
u:0

 
3sin u

- 1
u

lim
x: (p>2)-

 ap
2

- xb  tan xlim
x: (p>2)-

ax -

p

2
b  sec x

lim
t:0

 
t sin t

1 - cos t
lim
t:0

 
t (1 - cos t)

t - sin t

lim
x:p>2 

ln (csc x)

(x - (p>2))2lim
x:0

 
x2

ln (sec x)

lim
x:1

 
x - 1

ln x - sin px
lim
u:p>2 

1 - sin u

1 + cos 2u

lim
u: -p>3 

3u + p

sin (u + (p>3))
lim
u:p>2 

2u - p

cos (2p - u)

lim
x:0

 
sin x - x

x3lim
x:0

 
8x2

cos x - 1

lim
t:0

 
sin 5t

2t
lim
t:0

 
sin t2

t

lim
x: q

 
x - 8x2

12x2
+ 5x

lim
x: q

 
5x3

- 2x

7x3
+ 3

lim
t:1

 
3t3 - 3

4t3 - t - 3
lim

t: -3
 
t3

- 4t + 15
t2

- t - 12

lim
x: - 5

 
x2

- 25
x + 5

lim
x:2

 
x - 2
x2

- 4

lim
x: q

 
2x2

+ 3x

x3
+ x + 1

lim
x:0

 
1 - cos x

x2

lim
x:1

 
x3

- 1
4x3

- x - 3
lim

x: q

 
5x2

- 3x

7x2
+ 1

lim
x:0

 
sin 5x

xlim
x: -2

 
x + 2
x2

- 4

43. 44.

45. 46.

47. 48.

49. 50.

Indeterminate Powers and Products
Find the limits in Exercise 51–66.

51. 52.

53. 54.

55. 56.

57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

Theory and Applications
L’Hôpital’s Rule does not help with the limits in Exercises 67–74. Try
it—you just keep on cycling. Find the limits some other way.

67. 68.

69. 70.

71. 72.

73. 74.

75. Which one is correct, and which one is wrong? Give reasons for
your answers.

a. b.

76. Which one is correct, and which one is wrong? Give reasons for
your answers.

a.

b.  lim
x:0

 
x2

- 2x

x2
- sin x

= lim
x:0

 
2x - 2

2x - cos x
=

-2
0 - 1

= 2

 = lim
x:0

 
2

2 + sin x
=

2
2 + 0

= 1

 lim
x:0

 
x2

- 2x

x2
- sin x

= lim
x:0

 
2x - 2

2x - cos x

lim
x:3

  
x - 3
x2

- 3
=

0
6

= 0lim
x:3

  
x - 3
x2

- 3
= lim

x:3
  

1
2x

=

1
6

 lim
x:0+

 
x

e-1>x lim
x: q

 
ex2

xex

 lim
x: -q

 
2x

+ 4x

5x
- 2x lim

x: q

 
2x

- 3x

3x
+ 4x

lim
x:0+

  
cot x
csc xlim

x: sp>2d-

  
sec x
tan x

lim
x:0+

 
2x

2sin x
lim

x: q

 
29x + 1

2x + 1

 lim
x:0+

 sin x # ln x lim
x:0+

 x tan ap
2

- xb
 lim
x:0+

 x sln xd2 lim
x:0+

 x2 ln x

 lim
x: q

 ax2
+ 1

x + 2
b1>x

lim
x: q

 ax + 2
x - 1

b x

lim
x:0+

 a1 +

1
x b

x

lim
x:0+  

xx

lim
x:0

 (ex
+ x)1>xlim

x: q

 (1 + 2x)1>(2 ln x)

lim
x: q

 x1>ln xlim
x:0+

 x-1>ln x

lim
x:e+

 (ln x)1>(x - e)lim
x: q

 (ln x)1>x
lim

x:1+

 x1>(x - 1)lim
x:1+

 x1>(1 - x)

 lim
x:0

 
sin 3x - 3x + x2

sin x sin 2x
 lim
u:0

 
u - sin u cos u

tan u - u

 lim
x:0

 
sex

- 1d2

x sin x
 lim
x:0

 
x - sin x

x tan x

lim
x: q

 x2e-xlim
t: q

 
et

+ t2

et
- t

lim
h:0

 
eh

- (1 + h)

h2lim
u:0

 
cos u - 1

eu - u - 1
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77. Only one of these calculations is correct. Which one? Why are the
others wrong? Give reasons for your answers.

a.

b.

c.

d.

78. Find all values of c that satisfy the conclusion of Cauchy’s Mean
Value Theorem for the given functions and interval.

a.

b.

c.

79. Continuous extension Find a value of c that makes the function

continuous at Explain why your value of c works.

80. For what values of a and b is 

81. Form

a. Estimate the value of

by graphing over a suitably large inter-
val of x-values.

b. Now confirm your estimate by finding the limit with 

l’Hôpital’s Rule. As the first step, multiply ƒ(x) by the frac-

tion and simplify 

the new numerator.

82. Find 

83. Form Estimate the value of

by graphing. Then confirm your estimate with l’Hôpital’s Rule.

84. This exercise explores the difference between the limit

and the limit

lim
x: q

 a1 +

1
x b

x

= e.

lim
x: q

 a1 +

1
x2 b

x

lim
x:1

 
2x2

- s3x + 1d2x + 2
x - 1

0/0

 lim
x: q

 A2x2
+ 1 - 2x B .

sx + 2x2
+ xd>sx + 2x2

+ xd

ƒsxd = x - 2x2
+ x

lim
x: q

 Ax - 2x2
+ x B

ˆ  � ˆ

 lim
x:0

 atan 2x

x3 +

a

x2 +

sin bx
x b = 0?

x = 0.

ƒsxd = •
9x - 3 sin 3x

5x3 , x Z 0

c, x = 0

ƒsxd = x3>3 - 4x, g sxd = x2, sa, bd = s0, 3d
ƒsxd = x, g sxd = x2, sa, bd arbitrary

ƒsxd = x, g sxd = x2, sa, bd = s -2, 0d

 = lim
x:0+

 
(1>x)

(-1>x2)
= lim

x:0+

 (-x) = 0

 lim
x:0+

 x ln x = lim
x:0+

 
ln x

(1>x)

lim
x:0+

 x ln x = lim
x:0+

 
ln x

(1>x)
=

- q

q
= -1

lim
x:0+

 x ln x = 0 # (- q ) = - q

lim
x:0+

 x ln x = 0 # (- q ) = 0
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a. Use l’Hôpital’s Rule to show that

b. Graph

together for How does the behavior of ƒ compare with
that of g? Estimate the value of .

c. Confirm your estimate of by calculating it with
l’Hôpital’s Rule.

85. Show that

86. Given that find the maximum value, if any, of

a.

b.

c. (n a positive integer)

d. Show that for every positive integer n.

87. Use limits to find horizontal asymptotes for each function.

a. b.

88. Find for 

89. The continuous extension of to

a. Graph on the interval . What value
would you assign to ƒ to make it continuous at ?

b. Verify your conclusion in part (a) by finding 
with l’Hôpital’s Rule.

c. Returning to the graph, estimate the maximum value of ƒ on
. About where is max ƒ taken on?

d. Sharpen your estimate in part (c) by graphing in the same
window to see where its graph crosses the x-axis. To simplify
your work, you might want to delete the exponential factor
from the expression for and graph just the factor that has a
zero.

90. The function (Continuation of Exercise 89.)

a. Graph on the interval . How
do you account for the gaps in the graph? How wide are the
gaps?

b. Now graph ƒ on the interval . The function is not
defined at , but the graph has no break at this point.
What is going on? What value does the graph appear to give
for ƒ at (Hint: Use l’Hôpital’s Rule to find lim ƒ as

and 

c. Continuing with the graphs in part (b), find max ƒ and min ƒ
as accurately as you can and estimate the values of x at which
they are taken on.

x : (p>2)+.)x : (p>2)-

x = p>2?

x = p>2 0 … x … p

-7 … x … 7ƒ(x) = (sin x)tan x

(sin x)tan x

ƒ¿

ƒ¿

[0, p]

limx:0+ ƒ(x)

x = 0
0 … x … pƒ(x) = (sin x)x

[0, p](sin x)x

ƒsxd = e e-1/x2

, x Z 0

0, x = 0.
ƒ¿s0d

y =

3x + e2x

2x + e3x
y = x tan a1x b

limx:q x1>x n

= 1

x1>xn

x1>x2

x1>x
x 7 0,

lim
k: q

 a1 +

r
k
b k

= er.

limx:q ƒ(x)

limx:q ƒ(x)
x Ú 0.

ƒ(x) = a1 +

1
x2 b

x

 and g(x) = a1 +

1
x b

x

lim
x: q

 a1 +

1
x b

x

= e.

T

T

T

T

T
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4.6 Applied Optimization 263

4.6 Applied Optimization

What are the dimensions of a rectangle with fixed perimeter having maximum area?
What are the dimensions for the least expensive cylindrical can of a given volume? How
many items should be produced for the most profitable production run? Each of these
questions asks for the best, or optimal, value of a given function. In this section we use
derivatives to solve a variety of optimization problems in business, mathematics, physics,
and economics.

EXAMPLE 1 An open-top box is to be made by cutting small congruent squares from
the corners of a 12-in.-by-12-in. sheet of tin and bending up the sides. How large should
the squares cut from the corners be to make the box hold as much as possible?

Solution We start with a picture (Figure 4.35). In the figure, the corner squares are x in.
on a side. The volume of the box is a function of this variable:

Since the sides of the sheet of tin are only 12 in. long, and the domain of V is the in-
terval 

A graph of V (Figure 4.36) suggests a minimum value of 0 at and and
a maximum near To learn more, we examine the first derivative of V with respect
to x:

Of the two zeros, and only lies in the interior of the function’s domain
and makes the critical-point list. The values of V at this one critical point and two end-
points are

The maximum volume is The cutout squares should be 2 in. on a side.128 in3 .

Endpoint values:  Vs0d = 0, Vs6d = 0.

 Critical-point value: Vs2d = 128

x = 2x = 6,x = 2

dV
dx

= 144 - 96x + 12x2
= 12s12 - 8x + x2d = 12s2 - xds6 - xd.

x = 2.
x = 6x = 0

0 … x … 6.
x … 6

V = hlwVsxd = xs12 - 2xd2
= 144x - 48x2

+ 4x3.

Solving Applied Optimization Problems
1. Read the problem. Read the problem until you understand it. What is given?

What is the unknown quantity to be optimized?

2. Draw a picture. Label any part that may be important to the problem.

3. Introduce variables. List every relation in the picture and in the problem as an
equation or algebraic expression, and identify the unknown variable.

4. Write an equation for the unknown quantity. If you can, express the unknown
as a function of a single variable or in two equations in two unknowns. This
may require considerable manipulation.

5. Test the critical points and endpoints in the domain of the unknown. Use what
you know about the shape of the function’s graph. Use the first and second de-
rivatives to identify and classify the function’s critical points.

12

12

12

x

x
x

x

x

xx

(a)

(b)

12 � 2x

12 � 2x

FIGURE 4.35 An open box made by
cutting the corners from a square sheet of
tin. What size corners maximize the box’s
volume (Example 1)?

x

y

0

min

2 6

min

V
ol

um
e

 

Maximum

y � x(12 – 2x)2,
0 � x � 6

NOT TO SCALE

FIGURE 4.36 The volume of the box in
Figure 4.35 graphed as a function of x.
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EXAMPLE 2 You have been asked to design a one-liter can shaped like a right circular
cylinder (Figure 4.37). What dimensions will use the least material?

Solution Volume of can: If r and h are measured in centimeters, then the volume of the
can in cubic centimeters is

Surface area of can:

How can we interpret the phrase “least material”? For a first approximation we can ignore
the thickness of the material and the waste in manufacturing. Then we ask for dimensions r
and h that make the total surface area as small as possible while satisfying the constraint

To express the surface area as a function of one variable, we solve for one of the vari-
ables in and substitute that expression into the surface area formula. Solving
for h is easier:

Thus,

Our goal is to find a value of that minimizes the value of A. Figure 4.38 suggests
that such a value exists.

r 7 0

 = 2pr2
+

2000
r .

 = 2pr2
+ 2pr a1000

pr2 b
 A = 2pr2

+ 2prh

h =
1000
pr2 .

pr2h = 1000

pr2h = 1000.

A = 2pr2
+ 2prh

1 liter = 1000 cm3pr2h = 1000.

264 Chapter 4: Applications of Derivatives

h

2r

FIGURE 4.37 This one-liter
can uses the least material
when (Example 2). h = 2r

r

A

0

min

Tall and 
thin can

Short and
wide can

2000——r

3

A 5 2pr2 1           ,  r . 0

500
p

Tall and thin

Short and wide

FIGURE 4.38 The graph of is concave up.A = 2pr2
+ 2000>r

Notice from the graph that for small r (a tall, thin cylindrical container), the term
dominates (see Section 2.6) and A is large. For large r (a short, wide cylindrical

container), the term dominates and A again is large.2pr2
2000>r

()*

circular
ends

()*

cylindrical
wall
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4.6 Applied Optimization 265

Since A is differentiable on an interval with no endpoints, it can have a mini-
mum value only where its first derivative is zero.

Set 

Multiply by 

Solve for r.

What happens at 
The second derivative

is positive throughout the domain of A. The graph is therefore everywhere concave up and
the value of A at is an absolute minimum.

The corresponding value of h (after a little algebra) is

The one-liter can that uses the least material has height equal to twice the radius, here with
and 

Examples from Mathematics and Physics

EXAMPLE 3 A rectangle is to be inscribed in a semicircle of radius 2. What is the
largest area the rectangle can have, and what are its dimensions?

Solution Let be the coordinates of the corner of the rectangle obtained by
placing the circle and rectangle in the coordinate plane (Figure 4.39). The length, height,
and area of the rectangle can then be expressed in terms of the position x of the lower
right-hand corner:

Notice that the values of x are to be found in the interval where the selected
corner of the rectangle lies.

Our goal is to find the absolute maximum value of the function

on the domain [0, 2].
The derivative

is not defined when and is equal to zero when

 x2
= 2 or x = ;22.

 8 - 4x2
= 0

 -2x2
+ 2s4 - x2d = 0

 
-2x2

24 - x2
+ 224 - x2

= 0

x = 2

dA
dx

=
-2x2

24 - x2
+ 224 - x2

Asxd = 2x24 - x2

0 … x … 2,

Length: 2x,  Height: 24 - x2, Area: 2x24 - x2 .

sx, 24 - x2d

h L 10.84 cm.r L 5.42 cm

h =
1000
pr2 = 2 A3

500
p = 2r .

r = 23 500>p

d2A
dr2 = 4p +

4000
r3

r = 23 500>p?

 r =
3 A

500
p L 5.42

r2. 4pr3
= 2000

dA>dr = 0 . 0 = 4pr -
2000

r2

 
dA
dr

= 4pr -
2000

r2

r 7 0,

x

y

0 2x–2 –x

2

x2 1 y2 5 4

⎛⎝⎛⎝x, �4 2 x2

FIGURE 4.39 The rectangle inscribed in
the semicircle in Example 3.
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Of the two zeros, and only lies in the interior of A’s
domain and makes the critical-point list. The values of A at the endpoints and at this one
critical point are

The area has a maximum value of 4 when the rectangle is high and
long.

EXAMPLE 4 The speed of light depends on the medium through which it travels, and
is generally slower in denser media.

Fermat’s principle in optics states that light travels from one point to another along a
path for which the time of travel is a minimum. Describe the path that a ray of light will
follow in going from a point A in a medium where the speed of light is to a point B in a
second medium where its speed is 

Solution Since light traveling from A to B follows the quickest route, we look for a path
that will minimize the travel time. We assume that A and B lie in the xy-plane and that the
line separating the two media is the x-axis (Figure 4.40).

In a uniform medium, where the speed of light remains constant, “shortest time”
means “shortest path,” and the ray of light will follow a straight line. Thus the path from A
to B will consist of a line segment from A to a boundary point P, followed by another line
segment from P to B. Distance traveled equals rate times time, so

From Figure 4.40, the time required for light to travel from A to P is

From P to B, the time is

The time from A to B is the sum of these:

This equation expresses t as a differentiable function of x whose domain is [0, d ]. We want
to find the absolute minimum value of t on this closed interval. We find the derivative

and observe that it is continuous. In terms of the and in Figure 4.40,

The function t has a negative derivative at and a positive derivative at Since
is continuous over the interval [0, d ], by the Intermediate Value Theorem for contin-

uous functions (Section 2.5), there is a point where (Figure 4.41).dt>dx = 0x0 H [0, d ]
dt>dx

x = d .x = 0

dt
dx

=

sin u1
c1

-

sin u2
c2

.

u2angles  u1

dt
dx

=
x

c12a2
+ x2

-
d - x

c22b2
+ sd - xd2

t = t1 + t2 =

2a2
+ x2

c1
+

2b2
+ sd - xd2

c2
.

t2 =
PB
c2

=

2b2
+ sd - xd2

c2
.

t1 =
AP
c1

=

2a2
+ x2

c1
.

Time =
distance

rate .

c2 .
c1

2x = 222 units
24 - x2

= 22 units

Endpoint values:  As0d = 0, As2d = 0.

 Critical-point value: A A22 B = 22224 - 2 = 4

x = 22x = -22,x = 22
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HISTORICAL BIOGRAPHY

Willebrord Snell van Royen
(1580–1626)

Angle of
incidence

Medium 1

Angle of
refractionMedium 2

x

y

0 x d
P

B

b

a

A

u1

u1

u2

d 2 x

FIGURE 4.40 A light ray refracted
(deflected from its path) as it passes from
one medium to a denser medium
(Example 4).

x

0

� � � � � � � � � � � � � �

d

x

0

� � � � � � � � � � � � � �

d
x0

dt/dx
positive

dt/dx
zero

dt/dx
negative

FIGURE 4.41 The sign pattern of 
in Example 4.

dt>dx
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4.6 Applied Optimization 267

There is only one such point because is an increasing function of x (Exercise 62). At
this unique point we then have

This equation is Snell’s Law or the Law of Refraction, and is an important principle in
the theory of optics. It describes the path the ray of light follows.

Examples from Economics

Suppose that

Although x is usually an integer in many applications, we can learn about the behavior of
these functions by defining them for all nonzero real numbers and by assuming they are
differentiable functions. Economists use the terms marginal revenue, marginal cost, and
marginal profit to name the derivatives and of the revenue, cost, and
profit functions. Let’s consider the relationship of the profit p to these derivatives. 

If r(x) and c(x) are differentiable for x in some interval of production possibilities,
and if has a maximum value there, it occurs at a critical point of p (x)
or at an endpoint of the interval. If it occurs at a critical point, then 

and we see that In economic terms, this last equation means that r¿(x) = c¿(x).c¿sxd = 0
p¿sxd = r¿sxd -

p sxd = r sxd - c sxd

p¿(x)r¿(x), c¿(x),

 p sxd = r sxd - c sxd = the profit from producing and selling x items.

 c sxd = the cost of producing the x items

 r sxd = the revenue from selling x items

sin u1
c1

=

sin u2
c2

.

dt>dx

At a production level yielding maximum profit, marginal revenue equals marginal
cost (Figure 4.42).

x

y

0

D
ol

la
rs

Items produced

Break-even point

B

Cost c(x)

Local maximum for loss (minimum profit), c'(x) � r'(x)

Revenue r(x)

Maximum profit, c'(x) � r'(x)

FIGURE 4.42 The graph of a typical cost function starts concave down and later turns concave up.
It crosses the revenue curve at the break-even point B. To the left of B, the company operates at a
loss. To the right, the company operates at a profit, with the maximum profit occurring where

Farther to the right, cost exceeds revenue (perhaps because of a combination of rising
labor and material costs and market saturation) and production levels become unprofitable again.
c¿sxd = r¿sxd .
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268 Chapter 4: Applications of Derivatives

EXAMPLE 5 Suppose that and where x represents
millions of MP3 players produced. Is there a production level that maximizes profit? If so,
what is it?

Solution Notice that and 

Set

The two solutions of the quadratic equation are

The possible production levels for maximum profit are million MP3 players or
million. The second derivative of is 

since is everywhere zero. Thus, which is negative at 
and positive at By the Second Derivative Test, a maximum profit occurs at
about (where revenue exceeds costs) and maximum loss occurs at about

The graphs of r(x) and c(x) are shown in Figure 4.43.x = 0.586.
x = 3.414

x = 2 - 22.
x = 2 + 22p–(x) = 6(2 - x),r–sxd

p–sxd = -c–sxdp sxd = r sxd - c sxdx L 3.414
x L 0.586

x2 =

12 + 272
6

= 2 + 22 L 3.414.

 x1 =

12 - 272
6

= 2 - 22 L 0.586 and

 3x2
- 12x + 6 = 0

c¿sxd = r¿sxd . 3x2
- 12x + 15 = 9

c¿sxd = 3x2
- 12x + 15.r¿sxd = 9

c sxd = x3
- 6x2

+ 15x ,r sxd = 9x

Exercises 4.6

Mathematical Applications
Whenever you are maximizing or minimizing a function of a single vari-
able, we urge you to graph it over the domain that is appropriate to the
problem you are solving. The graph will provide insight before you cal-
culate and will furnish a visual context for understanding your answer.

1. Minimizing perimeter What is the smallest perimeter possible
for a rectangle whose area is and what are its dimensions?

2. Show that among all rectangles with an 8-m perimeter, the one
with largest area is a square.

3. The figure shows a rectangle inscribed in an isosceles right trian-
gle whose hypotenuse is 2 units long.

a. Express the y-coordinate of P in terms of x. (Hint: Write an
equation for the line AB.)

b. Express the area of the rectangle in terms of x.

c. What is the largest area the rectangle can have, and what are
its dimensions?

x

y

0 1

B

A
x–1

P(x, ?)

16 in2 ,

4. A rectangle has its base on the x-axis and its upper two vertices on
the parabola What is the largest area the rectangle
can have, and what are its dimensions?

5. You are planning to make an open rectangular box from an 8-in.-
by-15-in. piece of cardboard by cutting congruent squares from
the corners and folding up the sides. What are the dimensions of
the box of largest volume you can make this way, and what is its
volume?

6. You are planning to close off a corner of the first quadrant with a
line segment 20 units long running from (a, 0) to (0, b). Show that
the area of the triangle enclosed by the segment is largest when

7. The best fencing plan A rectangular plot of farmland will be
bounded on one side by a river and on the other three sides by a
single-strand electric fence. With 800 m of wire at your dis-
posal, what is the largest area you can enclose, and what are its
dimensions?

8. The shortest fence A rectangular pea patch is to be en-
closed by a fence and divided into two equal parts by another
fence parallel to one of the sides. What dimensions for the outer
rectangle will require the smallest total length of fence? How
much fence will be needed?

9. Designing a tank Your iron works has contracted to design and
build a square-based, open-top, rectangular steel holding
tank for a paper company. The tank is to be made by welding thin
stainless steel plates together along their edges. As the production
engineer, your job is to find dimensions for the base and height
that will make the tank weigh as little as possible.

500 ft3 ,

216 m2

a = b .

y = 12 - x2 .

x

y

0 2

Maximum
for profit

Local maximum for loss

c(x) � x3 � 6x2 � 15x

NOT TO SCALE

r(x) � 9x

2 � �2 2 � �2

FIGURE 4.43 The cost and revenue
curves for Example 5.
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a. What dimensions do you tell the shop to use?

b. Briefly describe how you took weight into account.

10. Catching rainwater A open-top rectangular tank
with a square base x ft on a side and y ft deep is to be built with
its top flush with the ground to catch runoff water. The costs 
associated with the tank involve not only the material from
which the tank is made but also an excavation charge propor-
tional to the product xy.

a. If the total cost is

what values of x and y will minimize it?

b. Give a possible scenario for the cost function in part (a).

11. Designing a poster You are designing a rectangular poster to
contain of printing with a 4-in. margin at the top and bot-
tom and a 2-in. margin at each side. What overall dimensions will
minimize the amount of paper used?

12. Find the volume of the largest right circular cone that can be in-
scribed in a sphere of radius 3.

13. Two sides of a triangle have lengths a and b, and the angle be-
tween them is What value of will maximize the triangle’s
area? (Hint: )

14. Designing a can What are the dimensions of the lightest
open-top right circular cylindrical can that will hold a volume
of Compare the result here with the result in
Example 2.

15. Designing a can You are designing a right circular
cylindrical can whose manufacture will take waste into account.
There is no waste in cutting the aluminum for the side, but the top
and bottom of radius r will be cut from squares that measure 2r
units on a side. The total amount of aluminum used up by the can
will therefore be

rather than the in Example 2. In Example 2,
the ratio of h to r for the most economical can was 2 to 1. What is
the ratio now?

16. Designing a box with a lid A piece of cardboard measures 10
in. by 15 in. Two equal squares are removed from the corners of a
10-in. side as shown in the figure. Two equal rectangles are re-
moved from the other corners so that the tabs can be folded to
form a rectangular box with lid.

A = 2pr2
+ 2prh

A = 8r2
+ 2prh

1000 cm3

1000 cm3 ?

A = s1>2dab sin u .
uu .

y

x

3

3

50 in2

c = 5sx2
+ 4xyd + 10xy,

1125 ft3

a. Write a formula V(x) for the volume of the box.

b. Find the domain of V for the problem situation and graph V
over this domain.

c. Use a graphical method to find the maximum volume and the
value of x that gives it.

d. Confirm your result in part (c) analytically.

17. Designing a suitcase A 24-in.-by-36-in. sheet of cardboard is
folded in half to form a 24-in.-by-18-in. rectangle as shown in the
accompanying figure. Then four congruent squares of side length
x are cut from the corners of the folded rectangle. The sheet is
unfolded, and the six tabs are folded up to form a box with sides
and a lid.

a. Write a formula V(x) for the volume of the box.

b. Find the domain of V for the problem situation and graph V
over this domain.

c. Use a graphical method to find the maximum volume and the
value of x that gives it.

d. Confirm your result in part (c) analytically.

e. Find a value of x that yields a volume of 

f. Write a paragraph describing the issues that arise in part (b).

18. A rectangle is to be inscribed under the arch of the curve
from to What are the dimen-

sions of the rectangle with largest area, and what is the largest
area?

x = p .x = -py = 4 cos s0.5xd

24"

36"

x

24"

x

x x

x x

x x

18"

24"

36"

Base

The sheet is then unfolded.

1120 in3 .

10"

xx

x

x x

x

15"

Base Lid

x x

N
O

T
  T

O
  S

C
A

L
E

T

T
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19. Find the dimensions of a right circular cylinder of maximum vol-
ume that can be inscribed in a sphere of radius 10 cm. What is the
maximum volume?

20. a. The U.S. Postal Service will accept a box for domestic ship-
ment only if the sum of its length and girth (distance around)
does not exceed 108 in. What dimensions will give a box with
a square end the largest possible volume?

b. Graph the volume of a 108-in. box (length plus girth equals
108 in.) as a function of its length and compare what you see
with your answer in part (a).

21. (Continuation of Exercise 20.)

a. Suppose that instead of having a box with square ends you
have a box with square sides so that its dimensions are h by h
by w and the girth is What dimensions will give the
box its largest volume now?

b. Graph the volume as a function of h and compare what you
see with your answer in part (a).

22. A window is in the form of a rectangle surmounted by a semicircle.
The rectangle is of clear glass, whereas the semicircle is of tinted
glass that transmits only half as much light per unit area as clear glass
does. The total perimeter is fixed. Find the proportions of the window
that will admit the most light. Neglect the thickness of the frame.

23. A silo (base not included) is to be constructed in the form of a cylin-
der surmounted by a hemisphere. The cost of construction per square
unit of surface area is twice as great for the hemisphere as it is for the

w

Girth

h

h

2h + 2w .

Square end

Girth � distance
around here

Length

270 Chapter 4: Applications of Derivatives

cylindrical sidewall. Determine the dimensions to be used if the vol-
ume is fixed and the cost of construction is to be kept to a minimum.
Neglect the thickness of the silo and waste in construction.

24. The trough in the figure is to be made to the dimensions shown.
Only the angle can be varied. What value of will maximize the
trough’s volume?

25. Paper folding A rectangular sheet of 8.5-in.-by-11-in. paper is
placed on a flat surface. One of the corners is placed on the oppo-
site longer edge, as shown in the figure, and held there as the pa-
per is smoothed flat. The problem is to make the length of the
crease as small as possible. Call the length L. Try it with paper.

a. Show that 

b. What value of x minimizes 

c. What is the minimum value of L?

26. Constructing cylinders Compare the answers to the following
two construction problems.

a. A rectangular sheet of perimeter 36 cm and dimensions
x cm by y cm is to be rolled into a cylinder as shown in
part (a) of the figure. What values of x and y give the
largest volume?

b. The same sheet is to be revolved about one of the sides of
length y to sweep out the cylinder as shown in part (b) of
the figure. What values of x and y give the largest volume?

x

y

y

(a)

Circumference 5 x
y

x

(b)

Crease

D C

BPA
x

x

L

R

Q (originally at A)
�L2 � x2

L2 ?

L2
= 2x3>s2x - 8.5d .

��

20'

1'

1'

1'

uu

T

T
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27. Constructing cones A right triangle whose hypotenuse is
long is revolved about one of its legs to generate a right

circular cone. Find the radius, height, and volume of the cone of
greatest volume that can be made this way.

28. Find the point on the line that is closest to the origin. 

29. Find a positive number for which the sum of it and its reciprocal
is the smallest (least) possible. 

30. Find a postitive number for which the sum of its reciprocal and
four times its square is the smallest possible. 

31. A wire b m long is cut into two pieces. One piece is bent into an
equilateral triangle and the other is bent into a circle. If the sum of
the areas enclosed by each part is a minimum, what is the length
of each part? 

32. Answer Exercise 31 if one piece is bent into a square and the
other into a circle. 

33. Determine the dimensions of the rectangle of
largest area that can be inscribed in the right
triangle shown in the accompanying figure. 

34. Determine the dimensions of the 
rectangle of largest area that can be
inscribed in a semicircle of radius 3.
(See accompanying figure.) 

35. What value of a makes have

a. a local minimum at 

b. a point of inflection at 

36. What values of a and b make have

a. a local maximum at and a local minimum at 

b. a local minimum at and a point of inflection at 

Physical Applications
37. Vertical motion The height above ground of an object moving

vertically is given by

with s in feet and t in seconds. Find

a. the object’s velocity when ;

b. its maximum height and when it occurs;

c. its velocity when 

38. Quickest route Jane is 2 mi offshore in a boat and wishes to
reach a coastal village 6 mi down a straight shoreline from the
point nearest the boat. She can row 2 mph and can walk 5 mph.
Where should she land her boat to reach the village in the least
amount of time?

s = 0.

t = 0

s = -16t2
+ 96t + 112,

x = 1?x = 4

x = 3?x = -1

ƒsxd = x3
+ ax2

+ bx

x = 1?

x = 2?

ƒsxd = x2
+ sa>xd

x
a +

y

b
= 1

h

r

�3

23 m
39. Shortest beam The 8-ft wall shown here stands 27 ft from the

building. Find the length of the shortest straight beam that will
reach to the side of the building from the ground outside the wall.

40. Motion on a line The positions of two particles on the s-axis
are with and in meters
and t in seconds.

a. At what time(s) in the interval do the particles
meet?

b. What is the farthest apart that the particles ever get?

c. When in the interval is the distance between the
particles changing the fastest?

41. The intensity of illumination at any point from a light source is
proportional to the square of the reciprocal of the distance be-
tween the point and the light source. Two lights, one having an in-
tensity eight times that of the other, are 6 m apart. How far from
the stronger light is the total illumination least?

42. Projectile motion The range R of a projectile fired from the
origin over horizontal ground is the distance from the origin to the
point of impact. If the projectile is fired with an initial velocity 
at an angle with the horizontal, then in Chapter 13 we find that

where g is the downward acceleration due to gravity. Find the an-
gle for which the range R is the largest possible.

43. Strength of a beam The strength S of a rectangular wooden
beam is proportional to its width times the square of its depth.
(See the accompanying figure.)

a. Find the dimensions of the strongest beam that can be cut
from a 12-in.-diameter cylindrical log.

b. Graph S as a function of the beam’s width w, assuming the
proportionality constant to be Reconcile what you see
with your answer in part (a).

c. On the same screen, graph S as a function of the beam’s depth
d, again taking Compare the graphs with one another
and with your answer in part (a). What would be the effect of
changing to some other value of k? Try it.

12"
d

w

k = 1.

k = 1.

a

R =

y0
2

g  sin 2a,

a

y0

0 … t … 2p

0 … t … 2p

s2s1s1 = sin t and s2 = sin st + p>3d ,

Building

27'

Beam

8' wall

T

4

3

5
w

h

r 5 3

w

h
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44. Stiffness of a beam The stiffness S of a rectangular beam is
proportional to its width times the cube of its depth.

a. Find the dimensions of the stiffest beam that can be cut from
a 12-in.-diameter cylindrical log.

b. Graph S as a function of the beam’s width w, assuming the
proportionality constant to be Reconcile what you see
with your answer in part (a).

c. On the same screen, graph S as a function of the beam’s depth
d, again taking Compare the graphs with one another
and with your answer in part (a). What would be the effect of
changing to some other value of k? Try it.

45. Frictionless cart A small frictionless cart, attached to the wall
by a spring, is pulled 10 cm from its rest position and released at
time to roll back and forth for 4 sec. Its position at time t is

a. What is the cart’s maximum speed? When is the cart moving
that fast? Where is it then? What is the magnitude of the 
acceleration then?

b. Where is the cart when the magnitude of the acceleration is
greatest? What is the cart’s speed then?

46. Two masses hanging side by side from springs have positions
respectively.

a. At what times in the interval do the masses pass each
other? (Hint: )

b. When in the interval is the vertical distance be-
tween the masses the greatest? What is this distance? (Hint:

)

47. Distance between two ships At noon, ship A was 12 nautical
miles due north of ship B. Ship A was sailing south at 12 knots
(nautical miles per hour; a nautical mile is 2000 yd) and contin-
ued to do so all day. Ship B was sailing east at 8 knots and contin-
ued to do so all day.

a. Start counting time with at noon and express the
distance s between the ships as a function of t.

b. How rapidly was the distance between the ships changing at
noon? One hour later?

t = 0

s

0

m2

s1

s2

m1

cos 2t = 2 cos2 t - 1.

0 … t … 2p

sin 2t = 2 sin t cos t .
0 6 t

s1 = 2 sin t and s2 = sin 2t ,

0 10
s

s = 10 cos pt .
t = 0

k = 1.

k = 1.
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c. The visibility that day was 5 nautical miles. Did the ships ever
sight each other?

d. Graph s and together as functions of 
using different colors if possible. Compare the graphs and
reconcile what you see with your answers in parts (b) and (c).

e. The graph of looks as if it might have a horizontal
asymptote in the first quadrant. This in turn suggests that

approaches a limiting value as What is this
value? What is its relation to the ships’ individual speeds?

48. Fermat’s principle in optics Light from a source A is reflected
by a plane mirror to a receiver at point B, as shown in the accom-
panying figure. Show that for the light to obey Fermat’s principle,
the angle of incidence must equal the angle of reflection, both
measured from the line normal to the reflecting surface. (This re-
sult can also be derived without calculus. There is a purely geo-
metric argument, which you may prefer.)

49. Tin pest When metallic tin is kept below 13.2°C, it slowly be-
comes brittle and crumbles to a gray powder. Tin objects eventu-
ally crumble to this gray powder spontaneously if kept in a cold
climate for years. The Europeans who saw tin organ pipes in their
churches crumble away years ago called the change tin pest be-
cause it seemed to be contagious, and indeed it was, for the gray
powder is a catalyst for its own formation.

A catalyst for a chemical reaction is a substance that controls
the rate of reaction without undergoing any permanent change in
itself. An autocatalytic reaction is one whose product is a catalyst
for its own formation. Such a reaction may proceed slowly at first
if the amount of catalyst present is small and slowly again at the
end, when most of the original substance is used up. But in be-
tween, when both the substance and its catalyst product are abun-
dant, the reaction proceeds at a faster pace.

In some cases, it is reasonable to assume that the rate
of the reaction is proportional both to the amount of

the original substance present and to the amount of product. That
is, may be considered to be a function of x alone, and

where

At what value of x does the rate have a maximum? What is the
maximum value of ?

50. Airplane landing path An airplane is flying at altitude H when it
begins its descent to an airport runway that is at horizontal ground
distance L from the airplane, as shown in the figure. Assume that the

y

y

 k = a positive constant .

 a = the amount of substance at the beginning

 x = the amount of product

y = kxsa - xd = kax - kx2,

y

y = dx>dt

B

Plane mirror

Light
source

Angle of
incidence

Light
receiver

Normal

Angle of
reflection

A
�1

�2

t : q .ds>dt

ds>dt

t for -1 … t … 3,ds>dt

T

T
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4.6 Applied Optimization 273

landing path of the airplane is the graph of a cubic polyno-
mial function and

a. What is 

b. What is 

c. Use the values for and together with
to show that

Business and Economics
51. It costs you c dollars each to manufacture and distribute backpacks.

If the backpacks sell at x dollars each, the number sold is given by

where a and b are positive constants. What selling price will bring
a maximum profit?

52. You operate a tour service that offers the following rates:

$200 per person if 50 people (the minimum number to book the
tour) go on the tour.

For each additional person, up to a maximum of 80 people 
total, the rate per person is reduced by $2.

It costs $6000 (a fixed cost) plus $32 per person to conduct the
tour. How many people does it take to maximize your profit?

53. Wilson lot size formula One of the formulas for inventory
management says that the average weekly cost of ordering, paying
for, and holding merchandise is

where q is the quantity you order when things run low (shoes, 
radios, brooms, or whatever the item might be), k is the cost of
placing an order (the same, no matter how often you order), c is
the cost of one item (a constant), m is the number of items sold
each week (a constant), and h is the weekly holding cost per item
(a constant that takes into account things such as space, utilities,
insurance, and security).

a. Your job, as the inventory manager for your store, is to find
the quantity that will minimize A(q). What is it? (The formula
you get for the answer is called the Wilson lot size formula.)

b. Shipping costs sometimes depend on order size. When they
do, it is more realistic to replace the sum of k
and a constant multiple of q. What is the most economical
quantity to order now?

k by k + bq ,

Asqd =

km
q + cm +

hq

2
,

n =

a
x - c + bs100 - xd ,

Landing path y

x

H = Cruising altitude
Airport

L

y sxd = H c2 ax
L
b3

+ 3 ax
L
b2 d .

y s0d = 0 and y s -Ld = H
x = -Ldy>dx at x = 0

dy>dx at x = -L?

dy>dx at x = 0?

y s0d = 0.
y = ax3

+ bx2
+ cx + d,  where y s -Ld = H

54. Production level Prove that the production level (if any) at
which average cost is smallest is a level at which the average cost
equals marginal cost.

55. Show that if are your rev-
enue and cost functions, then the best you can do is break even
(have revenue equal cost).

56. Production level Suppose that is
the cost of manufacturing x items. Find a production level that
will minimize the average cost of making x items.

57. You are to construct an open rectangular box with a square base
and a volume of 48 If material for the bottom costs and
material for the sides costs what dimensions will result in
the least expensive box? What is the minimum cost?

58. The 800-room Mega Motel chain is filled to capacity when the
room charge is $50 per night. For each $10 increase in room
charge, 40 fewer rooms are filled each night. What charge per
room will result in the maximum revenue per night?

Biology
59. Sensitivity to medicine (Continuation of Exercise 72, Section

3.3.) Find the amount of medicine to which the body is most sen-
sitive by finding the value of M that maximizes the derivative

, where

and C is a constant.

60. How we cough

a. When we cough, the trachea (windpipe) contracts to
increase the velocity of the air going out. This raises the
questions of how much it should contract to maximize the
velocity and whether it really contracts that much when
we cough.

Under reasonable assumptions about the elasticity of the
tracheal wall and about how the air near the wall is slowed by
friction, the average flow velocity can be modeled by the
equation

where is the rest radius of the trachea in centimeters and
c is a positive constant whose value depends in part on the
length of the trachea.

Show that is greatest when that is, when
the trachea is about 33% contracted. The remarkable fact is
that X-ray photographs confirm that the trachea contracts
about this much during a cough.

b. Take to be 0.5 and c to be 1 and graph over the interval
Compare what you see with the claim that is

at a maximum when 

Theory and Examples
61. An inequality for positive integers Show that if a, b, c, and d

are positive integers, then

sa2
+ 1dsb2

+ 1dsc2
+ 1dsd2

+ 1d
abcd

Ú 16.

r = s2>3dr0 .
y0 … r … 0.5 .

yr0

r = s2>3dr0;y

r0

y = csr0 - rdr2 cm>sec, r0

2
… r … r0 ,

y

R = M2 aC
2

-

M
3
b

dR>dM

$4>ft2, $6>ft2ft3.

csxd = x3
- 20x2

+ 20,000x

rsxd = 6x and csxd = x3
- 6x2

+ 15x

T
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274 Chapter 4: Applications of Derivatives

62. The derivative in Example 4

a. Show that

is an increasing function of x.

b. Show that

is a decreasing function of x.

c. Show that

is an increasing function of x.

63. Let ƒ(x) and g(x) be the differentiable functions graphed here.
Point c is the point where the vertical distance between the curves
is the greatest. Is there anything special about the tangents to the
two curves at c? Give reasons for your answer.

64. You have been asked to determine whether the function 
is ever negative.3 + 4 cos x + cos 2x

ƒsxd =

x
a c b

y � f (x)

y � g(x)

dt
dx

=

x

c12a2
+ x2

-

d - x

c22b2
+ sd - xd2

g sxd =

d - x

2b2
+ sd - xd2

ƒsxd =

x

2a2
+ x2

dt>dx a. Explain why you need to consider values of x only in the in-
terval 

b. Is ƒ ever negative? Explain.

65. a. The function has an absolute maxi-
mum value on the interval Find it.

b. Graph the function and compare what you see with your an-
swer in part (a).

66. a. The function has an absolute minimum
value on the interval Find it.

b. Graph the function and compare what you see with your
answer in part (a).

67. a. How close does the curve come to the point ( , 0)?
(Hint: If you minimize the square of the distance, you can
avoid square roots.)

b. Graph the distance function and together and
reconcile what you see with your answer in part (a).

68. a. How close does the semicircle come to the
point 

b. Graph the distance function and together and
reconcile what you see with your answer in part (a).

y = 216 - x2

A1, 23 B ? y = 216 - x2

(x, �x)

0 3
2, 0

y

x

y � �x

⎛
⎝

⎛
⎝

y = 2xD(x)

3>2y = 2x

0 6 x 6 p>2.
y = tan x + 3 cot x

0 6 x 6 p .
y = cot x - 22 csc x

[0, 2p] .

4.7 Newton’s Method

In this section we study a numerical method, called Newton’s method or the
Newton–Raphson method, which is a technique to approximate the solution to an equation

Essentially it uses tangent lines in place of the graph of near the
points where ƒ is zero. (A value of x where ƒ is zero is a root of the function ƒ and a
solution of the equation )

Procedure for Newton’s Method

The goal of Newton’s method for estimating a solution of an equation is to pro-
duce a sequence of approximations that approach the solution. We pick the first number 
of the sequence. Then, under favorable circumstances, the method does the rest by moving
step by step toward a point where the graph of ƒ crosses the x-axis (Figure 4.44). At each
step the method approximates a zero of ƒ with a zero of one of its linearizations. Here is
how it works.

The initial estimate, may be found by graphing or just plain guessing. The method
then uses the tangent to the curve at to approximate the curve, callingsx0, ƒsx0ddy = ƒsxd

x0 ,

x0

ƒsxd = 0

ƒsxd = 0.

y = ƒsxdƒsxd = 0.

T

T

T

T
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4.7 Newton’s Method 275

the point where the tangent meets the x-axis (Figure 4.44). The number is usually a
better approximation to the solution than is The point where the tangent to the curve
at crosses the x-axis is the next approximation in the sequence. We continue on,
using each approximation to generate the next, until we are close enough to the root to stop.

We can derive a formula for generating the successive approximations in the follow-
ing way. Given the approximation the point-slope equation for the tangent to the curve
at is

We can find where it crosses the x-axis by setting (Figure 4.45):

If

This value of x is the next approximation Here is a summary of Newton’s method.xn + 1 .

ƒ¿sxnd Z 0 x = xn -

ƒsxnd
ƒ¿sxnd

 -
ƒsxnd
ƒ¿sxnd

= x - xn

 0 = ƒsxnd + ƒ¿sxndsx - xnd

y = 0

y = ƒsxnd + ƒ¿sxndsx - xnd.

sxn, ƒsxndd
xn ,

sx1, ƒsx1dd
x2x0 .

x1x1

Newton’s Method
1. Guess a first approximation to a solution of the equation A graph of

may help.

2. Use the first approximation to get a second, the second to get a third, and so
on, using the formula

. (1)xn + 1 = xn -

ƒsxnd
ƒ¿sxnd

 , if ƒ¿sxnd Z 0

y = ƒsxd
ƒsxd = 0.

x

y

0

Root
sought

x0x1x2x3

Fourth FirstSecondThird
APPROXIMATIONS

(x1, f (x1))

(x2, f (x2))

(x0, f (x0))

y � f (x)

FIGURE 4.44 Newton’s method starts
with an initial guess and (under
favorable circumstances) improves the
guess one step at a time.

x0

x

y

0

Root sought

Tangent line
(graph of
linearization
of f at xn)

y � f (x)

(xn, f (xn))

xn

Point: (xn, f (xn))
Slope: f '(xn)
Tangent line equation:
 y � f (xn) � f '(xn)(x � xn)

xn�1 � xn �
f (xn)
f '(xn)

FIGURE 4.45 The geometry of the
successive steps of Newton’s method.
From we go up to the curve and follow
the tangent line down to find xn + 1 .

xn

Applying Newton’s Method

Applications of Newton’s method generally involve many numerical computations, mak-
ing them well suited for computers or calculators. Nevertheless, even when the calcula-
tions are done by hand (which may be very tedious), they give a powerful way to find
solutions of equations.

In our first example, we find decimal approximations to by estimating the posi-
tive root of the equation 

EXAMPLE 1 Find the positive root of the equation

Solution With and Equation (1) becomes

 =

xn

2
+

1
xn

.

 = xn -

xn

2
+

1
xn

 xn + 1 = xn -

xn 
2

- 2
2xn

ƒ¿sxd = 2x ,ƒsxd = x2
- 2

ƒsxd = x2
- 2 = 0.

ƒsxd = x2
- 2 = 0.

22
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The equation

enables us to go from each approximation to the next with just a few keystrokes. With the
starting value we get the results in the first column of the following table. (To five
decimal places, )

Number of
Error correct digits

1

0.08579 1

0.00246 3

0.00001 5

Newton’s method is the method used by most calculators to calculate roots because it
converges so fast (more about this later). If the arithmetic in the table in Example 1 had
been carried to 13 decimal places instead of 5, then going one step further would have
given correctly to more than 10 decimal places.

EXAMPLE 2 Find the x-coordinate of the point where the curve crosses
the horizontal line 

Solution The curve crosses the line when or When does
equal zero? Since and we know by the Inter-

mediate Value Theorem there is a root in the interval (1, 2) (Figure 4.46).
We apply Newton’s method to ƒ with the starting value The results are dis-

played in Table 4.1 and Figure 4.47.
At we come to the result When Equa-

tion (1) shows that We have found a solution of  to nine decimals.ƒsxd = 0ƒsxnd = 0.
xn + 1 = xn ,x6 = x5 = 1.3247 17957.n = 5,

x0 = 1.

ƒs2d = 5,ƒs1d = -1ƒsxd = x3
- x - 1

x3
- x - 1 = 0.x3

- x = 1

y = 1.
y = x3

- x

22

x3 = 1.41422

x2 = 1.41667

x1 = 1.5

-0.41421x0 = 1

22 = 1.41421.
x0 = 1,

xn + 1 =

xn

2
+

1
xn

276 Chapter 4: Applications of Derivatives

In Figure 4.48 we have indicated that the process in Example 2 might have started at
the point on the curve, with Point is quite far from the x-axis, but the
tangent at crosses the x-axis at about (2.12, 0), so is still an improvement over If
we use Equation (1) repeatedly as before, with and 
we obtain the nine-place solution in seven steps.x7 = x6 = 1.3247 17957

ƒ¿sxd = 3x2
- 1,ƒsxd = x3

- x - 1
x0 .x1B0

B0x0 = 3.B0s3, 23d

x

y

0

5

1

10

–1 2 3

15

20
y � x3 � x � 1

FIGURE 4.46 The graph of 
crosses the x-axis once; this is

the root we want to find (Example 2).
x3

- x - 1
ƒsxd =

TABLE 4.1 The result of applying Newton’s method to 
with

n xn ƒ(xn) ƒ�(xn)

0 1 2 1.5

1 1.5 0.875 5.75 1.3478 26087

2 1.3478 26087 0.1006 82173 4.4499 05482 1.3252 00399

3 1.3252 00399 0.0020 58362 4.2684 68292 1.3247 18174

4 1.3247 18174 0.0000 00924 4.2646 34722 1.3247 17957

5 1.3247 17957 4.2646 32999 1.3247 17957-1.8672E-13

-1

xn�1 � xn �
ƒsxnd
ƒ¿sxnd

x0 = 1
ƒsxd = x3

- x - 1

x
1 1.5

1.3478

Root sought

(1.5, 0.875)

x1x2x0

y � x3 � x � 1

(1, –1)

FIGURE 4.47 The first three x-values in
Table 4.1 (four decimal places).

x

y

0

5

1

10

–1 2.12 3

15

20

25

Root sought

1.6

y � x3 � x � 1

B0(3, 23)

B1(2.12, 6.35)

x1x2 x0
–1��3 1��3

FIGURE 4.48 Any starting value to the
right of will lead to the root.x = 1>23

x0
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4.7 Newton’s Method 277

Convergence of the Approximations

In Chapter 10 we define precisely the idea of convergence for the approximations in
Newton’s method. Intuitively, we mean that as the number n of approximations increases
without bound, the values get arbitrarily close to the desired root r. (This notion is similar to
the idea of the limit of a function g(t) as t approaches infinity, as defined in Section 2.6.)

In practice, Newton’s method usually gives convergence with impressive speed, but
this is not guaranteed. One way to test convergence is to begin by graphing the function to
estimate a good starting value for You can test that you are getting closer to a zero of
the function by evaluating , and check that the approximations are converging by
evaluating 

Newton’s method does not always converge. For instance, if

the graph will be like the one in Figure 4.49. If we begin with we get
and successive approximations go back and forth between these two values.

No amount of iteration brings us closer to the root than our first guess.
If Newton’s method does converge, it converges to a root. Be careful, however. There

are situations in which the method appears to converge but there is no root there. Fortu-
nately, such situations are rare.

When Newton’s method converges to a root, it may not be the root you have in mind.
Figure 4.50 shows two ways this can happen.

x1 = r + h ,
x0 = r - h ,

ƒsxd = e -2r - x, x 6 r

2x - r, x Ú r,

ƒ xn - xn + 1 ƒ .
ƒ ƒsxnd ƒ

x0 .

xn

xn

x

y

0
r

y � f (x)

x1x0

FIGURE 4.49 Newton’s method fails to
converge. You go from to and back to

never getting any closer to r.x0 ,
x1x0

x2

Root found

x1

Starting
point

Root
sought

x
x0

Root sought
x0

Starting
point

Root
found

x
x1

y � f (x)

y � f (x)

FIGURE 4.50 If you start too far away, Newton’s method may miss the root you want.

Exercises 4.7

Root Finding
1. Use Newton’s method to estimate the solutions of the equation

Start with for the left-hand solution
and with for the solution on the right. Then, in each case,
find 

2. Use Newton’s method to estimate the one real solution of
Start with and then find 

3. Use Newton’s method to estimate the two zeros of the function
Start with for the left-hand zero

and with for the zero on the right. Then, in each case,
find 

4. Use Newton’s method to estimate the two zeros of the function
Start with for the left-hand zero and

with for the zero on the right. Then, in each case, find 

5. Use Newton’s method to find the positive fourth root of 2 by solv-
ing the equation Start with and find x2 .x0 = 1x4

- 2 = 0.

x2 .x0 = 2
x0 = 0ƒsxd = 2x - x2

+ 1.

x2 .
x0 = 1

x0 = -1ƒsxd = x4
+ x - 3.

x2 .x0 = 0x3
+ 3x + 1 = 0.

x2 .
x0 = 1

x0 = -1x2
+ x - 1 = 0.

6. Use Newton’s method to find the negative fourth root of 2 by solv-
ing the equation Start with and find 

7. Guessing a root Suppose that your first guess is lucky, in the
sense that is a root of Assuming that is de-
fined and not 0, what happens to and later approximations?

8. Estimating pi You plan to estimate to five decimal places
by using Newton’s method to solve the equation Does
it matter what your starting value is? Give reasons for your answer.

Theory and Examples
9. Oscillation Show that if applying Newton’s method to

leads to and to Draw a
picture that shows what is going on.

x1 = h if x0 = -h .x1 = -h if x0 = h

ƒsxd = • 2x, x Ú 0

2-x, x 6 0

h 7 0,

cos x = 0.
p>2

x1

ƒ¿sx0dƒsxd = 0.x0

x2 .x0 = -1x4
- 2 = 0.
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10. Approximations that get worse and worse Apply Newton’s
method to and calculate 
Find a formula for What happens to Draw a
picture that shows what is going on.

11. Explain why the following four statements ask for the same infor-
mation:

iii) Find the roots of 

iii) Find the x-coordinates of the intersections of the curve
with the line 

iii) Find the x-coordinates of the points where the curve
crosses the horizontal line 

iv) Find the values of x where the derivative of 
equals zero.

12. Locating a planet To calculate a planet’s space coordinates, we
have to solve equations like Graphing the
function suggests that the function has
a root near Use one application of Newton’s method to
improve this estimate. That is, start with and find 
(The value of the root is 1.49870 to five decimal places.) Remem-
ber to use radians.

13. Intersecting curves The curve crosses the line
between and Use Newton’s method to

find where.

14. Real solutions of a quartic Use Newton’s method to find the
two real solutions of the equation 

15. a. How many solutions does the equation 
have?

b. Use Newton’s method to find them.

16. Intersection of curves

a. Does cos 3x ever equal x? Give reasons for your answer.

b. Use Newton’s method to find where.

17. Find the four real zeros of the function 

18. Estimating pi Estimate to as many decimal places as your
calculator will display by using Newton’s method to solve the
equation 

19. Intersection of curves At what value(s) of x does 

20. Intersection of curves At what value(s) of x does 

21. The graphs of and intersect at
one point Use Newton’s method to estimate the value of r
to four decimal places. 

22. The graphs of and intersect at one point
Use Newton’s method to estimate the value of r to four

decimal places. 
x = r.

y = 3 - x2y = 2x

1

21–1 0

3

2

x

y

y 5 x
1

y 5 x2(x 1 1)

rr, 1⎛
⎝

⎛
⎝

x = r.
(x 7 0)y = 1>xy = x2(x + 1)

cos x = -x?

cos x = 2x?

tan x = 0 with x0 = 3.

p

ƒsxd = 2x4
- 4x2

+ 1.

sin 3x = 0.99 - x2

x4
- 2x3

- x2
- 2x + 2 = 0.

x = p>2.x = 0y = 2x
y = tan x

x1 .x0 = 1.5
x = 1.5 .

ƒsxd = x - 1 - 0.5 sin x
x = 1 + 0.5 sin x .

s1>4dx4
- s3>2dx2

- x + 5
g sxd =

y = 1.y = x3
- 3x

y = 3x + 1.y = x3

ƒsxd = x3
- 3x - 1.

ƒ xn ƒ  as n : q ?ƒ xn ƒ .
x1 , x2 , x3 , and x4 .ƒsxd = x1>3 with x0 = 1

23. Intersection of curves At what value(s) of x does
?

24. Intersection of curves At what value(s) of x does

25. Use the Intermediate Value Theorem from Section 2.5 to show
that has a root between and 
Then find the root to five decimal places.

26. Factoring a quartic Find the approximate values of through 
in the factorization

27. Converging to different zeros Use Newton’s method to find
the zeros of using the given starting values.

a. and lying in 

b. and lying in 

c. and lying in 

d. and 

28. The sonobuoy problem In submarine location problems, it is
often necessary to find a submarine’s closest point of approach
(CPA) to a sonobuoy (sound detector) in the water. Suppose that
the submarine travels on the parabolic path and that the
buoy is located at the point 

a. Show that the value of x that minimizes the distance between
the submarine and the buoy is a solution of the equation

b. Solve the equation with Newton’s method.

29. Curves that are nearly flat at the root Some curves are so flat
that, in practice, Newton’s method stops too far from the root to
give a useful estimate. Try Newton’s method on 
with a starting value of to see how close your machine
comes to the root See the accompanying graph.x = 1.

x0 = 2
ƒsxd = sx - 1d40

x

y

0

2, –

1

1 2

Sonobuoy

CPA

Submarine track
in two dimensions

1
2

⎛
⎝

⎛
⎝

y � x2

x = 1>sx2
+ 1d

x = 1>sx2
+ 1d .

s2, -1>2d .
y = x2

x0 = 221>7x0 = -221>7
A22>2, q Bx0 = 2,x0 = 0.8

A -221>7, 221>7 Bx0 = 0.25 ,x0 = -0.5

A - q , -22>2 Bx0 = -0.8 ,x0 = -2

ƒsxd = 4x4
- 4x2

x

y

2

1–1 2

–4

–6

–2

–8

–10

–12

y � 8x4 � 14x3 � 9x2 � 11x � 1

8x4
- 14x3

- 9x2
+ 11x - 1 = 8sx - r1dsx - r2dsx - r3dsx - r4d.

r4r1

x = 2.x = 1ƒsxd = x3
+ 2x - 4

ln (1 - x2) = x - 1?

e-x2

= x2
- x + 1

T

T

T

T

T

T
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x

y

0

(2, 1)

1

1

2

Nearly flat

Slope � 40Slope � –40

y � (x � 1)40

30. The accompanying figure shows a circle of radius r with a chord
of length 2 and an arc s of length 3. Use Newton’s method to solve
for r and (radians) to four decimal places. Assume 

u 2

r

r

s 5 3

0 6 u 6 p.u

4.8 Antiderivatives

We have studied how to find the derivative of a function. However, many problems require
that we recover a function from its known derivative (from its known rate of change). For in-
stance, we may know the velocity function of an object falling from an initial height and
need to know its height at any time. More generally, we want to find a function F from its
derivative ƒ. If such a function F exists, it is called an antiderivative of ƒ. We will see in the
next chapter that antiderivatives are the link connecting the two major elements of calculus:
derivatives and definite integrals.

Finding Antiderivatives

DEFINITION A function F is an antiderivative of ƒ on an interval I if
for all x in I.F¿sxd = ƒsxd

The process of recovering a function F(x) from its derivative ƒ(x) is called
antidifferentiation. We use capital letters such as F to represent an antiderivative of a func-
tion ƒ, G to represent an antiderivative of g, and so forth.

EXAMPLE 1 Find an antiderivative for each of the following functions.

(a) (b) (c)

Solution We need to think backward here: What function do we know has a derivative
equal to the given function?

(a) (b) (c)

Each answer can be checked by differentiating. The derivative of is 2x. 
The derivative of is and the derivative of is 
(1>x) + 2e2x.

H(x) = ln ƒ x ƒ + e2xcos xGsxd = sin x
Fsxd = x2

H(x) = ln ƒ x ƒ + e2xGsxd = sin xFsxd = x2

h(x) =
1
x + 2e2xg sxd = cos xƒsxd = 2x
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The function is not the only function whose derivative is 2x. The function
has the same derivative. So does for any constant C. Are there others?

Corollary 2 of the Mean Value Theorem in Section 4.2 gives the answer: Any two
antiderivatives of a function differ by a constant. So the functions where C is an 
arbitrary constant, form all the antiderivatives of More generally, we have
the following result.

ƒsxd = 2x .
x2

+ C ,

x2
+ Cx2

+ 1
Fsxd = x2

280 Chapter 4: Applications of Derivatives

THEOREM 8 If F is an antiderivative of ƒ on an interval I, then the most general
antiderivative of ƒ on I is

where C is an arbitrary constant.

Fsxd + C

2

1

0

–1

–2

x

y

y � x3 � C C � 1

C � 2

C � 0

C � –1

C � –2

(1, –1)

FIGURE 4.51 The curves 
fill the coordinate plane without
overlapping. In Example 2, we identify the
curve as the one that passes
through the given point s1, -1d .

y = x3
- 2

y = x3
+ C

Thus the most general antiderivative of ƒ on I is a family of functions 
whose graphs are vertical translations of one another. We can select a particular antideriv-
ative from this family by assigning a specific value to C. Here is an example showing how
such an assignment might be made.

EXAMPLE 2 Find an antiderivative of that satisfies 

Solution Since the derivative of is , the general antiderivative

gives all the antiderivatives of ƒ(x). The condition determines a specific value
for C. Substituting into gives

Since , solving for C gives So

is the antiderivative satisfying Notice that this assignment for C selects the
particular curve from the family of curves that passes through the point

in the plane (Figure 4.51).

By working backward from assorted differentiation rules, we can derive formulas and
rules for antiderivatives. In each case there is an arbitrary constant C in the general expres-
sion representing all antiderivatives of a given function. Table 4.2 gives antiderivative for-
mulas for a number of important functions.

The rules in Table 4.2 are easily verified by differentiating the general antiderivative
formula to obtain the function to its left. For example, the derivative of is

, whatever the value of the constants C or , and this establishes Formula 4 for
the most general antiderivative of .

EXAMPLE 3 Find the general antiderivative of each of the following functions.

(a) (b) (c)

(d) (e) (f ) k(x) = 2xj(x) = e-3xisxd = cos  
x
2

hsxd = sin 2xg sxd =
1

2x
ƒsxd = x5

sec2 kx
k Z 0sec2 kx

+ C(tan kx)>k

(1, -1)
y = x3

+ C
Fs1d = -1.

Fsxd = x3
- 2

C = -2.1 + C = -1Fs1d = -1

Fs1d = (1)3
+ C = 1 + C.

Fsxd = x3
+ Cx = 1

Fs1d = -1

Fsxd = x3
+ C

3x2x3

Fs1d = -1.ƒsxd = 3 x2

Fsxd + C
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4.8 Antiderivatives 281

Solution In each case, we can use one of the formulas listed in Table 4.2. 

(a)

(b) so

(c)

(d)

(e)

(f)

Other derivative rules also lead to corresponding antiderivative rules. We can add and
subtract antiderivatives and multiply them by constants.

K(x) = a 1
ln 2
b  2x

+ C

J(x) = -
1
3

 e-3x
+ C

Isxd =

sin sx>2d
1>2 + C = 2 sin  

x
2

+ C

Hsxd =
-cos 2x

2
+ C

Gsxd =
x1>2
1>2 + C = 22x + C

g sxd = x-1>2 ,

Fsxd =
x6

6
+ C

TABLE 4.2 Antiderivative formulas, k a nonzero constant

Function General antiderivative Function General antiderivative

1.

2. sin kx

3. cos kx

4.

5.

6. sec kx tan kx

7. csc kx cot kx -
1
k

 csc kx + C

1
k

 sec kx + C

-
1
k

 cot kx + Ccsc2 kx

1
k

 tan kx + Csec2 kx

1
k

 sin kx + C

-
1
k

 cos  kx + C 

1
n + 1

 xn + 1
+ C, n Z -1xn 8.

9.

10.

11.

12.

13. a 7 0,  a Z 1a 1
k ln a

b  akx
+ C,   akx

sec-1 kx + C,   kx 7 1
1

x2k2x2
- 1

1
k

 tan-1 kx + C
1

1 + k2x2

1
k

 sin-1 kx + C
1

21 - k2x2

ln ƒ x ƒ + C, x Z 0
1
x

1
k

 ekx
+ Cekx

TABLE 4.3 Antiderivative linearity rules

Function General antiderivative

1. Constant Multiple Rule: kƒ(x)

2. Negative Rule:

3. Sum or Difference Rule: Fsxd ; Gsxd + Cƒsxd ; g sxd
-Fsxd + C-ƒsxd
kFsxd + C, k a constant

Formula 1
with n = 5

Formula 1
with n = -1>2

Formula 3
with k = 1>2

Formula 2
with k = 2

Formula 8
with k = -3

Formula 13
with a = 2, k = 1

The formulas in Table 4.3 are easily proved by differentiating the antiderivatives and
verifying that the result agrees with the original function. Formula 2 is the special case

in Formula 1.k = -1
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EXAMPLE 4 Find the general antiderivative of

Solution We have that for the functions g and h in Example 3.
Since is an antiderivative of g (x) from Example 3b, it follows from the
Constant Multiple Rule for antiderivatives that is an antideriv-
ative of Likewise, from Example 3c we know that 
is an antiderivative of From the Sum Rule for antiderivatives, we then
get that

is the general antiderivative formula for ƒ(x), where C is an arbitrary constant.

Initial Value Problems and Differential Equations

Antiderivatives play several important roles in mathematics and its applications. Methods
and techniques for finding them are a major part of calculus, and we take up that study in
Chapter 8. Finding an antiderivative for a function ƒ(x) is the same problem as finding a
function y(x) that satisfies the equation

This is called a differential equation, since it is an equation involving an unknown func-
tion y that is being differentiated. To solve it, we need a function y(x) that satisfies the
equation. This function is found by taking the antiderivative of ƒ(x). We fix the arbitrary
constant arising in the antidifferentiation process by specifying an initial condition

This condition means the function y(x) has the value when The combination of
a differential equation and an initial condition is called an initial value problem. Such
problems play important roles in all branches of science.

The most general antiderivative (such as in Example 2) of the
function ƒ(x) gives the general solution of the differential equation

The general solution gives all the solutions of the equation (there are infinitely
many, one for each value of C). We solve the differential equation by finding its general solu-
tion. We then solve the initial value problem by finding the particular solution that satisfies
the initial condition In Example 2, the function is the particular so-
lution of the differential equation satisfying the initial condition .

Antiderivatives and Motion

We have seen that the derivative of the position function of an object gives its velocity, and
the derivative of its velocity function gives its acceleration. If we know an object’s acceler-
ation, then by finding an antiderivative we can recover the velocity, and from an antideriv-
ative of the velocity we can recover its position function. This procedure was used as an
application of Corollary 2 in Section 4.2. Now that we have a terminology and conceptual
framework in terms of antiderivatives, we revisit the problem from the point of view of dif-
ferential equations.

EXAMPLE 5 A hot-air balloon ascending at the rate of 12 is at a height 80 ft
above the ground when a package is dropped. How long does it take the package to reach
the ground?

ft>sec

y(1) = -1dy>dx = 3x2
y = x3

- 2ysx0d = y0 .

dy>dx = ƒsxd .
y = Fsxd + C

x3
+ CFsxd + C

x = x0 .y0

y sx0d = y0 .

dy
dx

= ƒsxd.

 = 62x -
1
2

 cos 2x + C

 Fsxd = 3Gsxd + Hsxd + C

hsxd = sin 2x .
Hsxd = s -1>2d cos 2x3g sxd = 3>2x .

3Gsxd = 3 # 22x = 62x
Gsxd = 22x

ƒsxd = 3g sxd + hsxd

ƒsxd =
3

2x
+ sin 2x.
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Solution Let denote the velocity of the package at time t, and let s(t) denote its
height above the ground. The acceleration of gravity near the surface of the earth is

Assuming no other forces act on the dropped package, we have

This leads to the following initial value problem (Figure 4.52):

This is our mathematical model for the package’s motion. We solve the initial value prob-
lem to obtain the velocity of the package.

1. Solve the differential equation: The general formula for an antiderivative of is

Having found the general solution of the differential equation, we use the initial con-
dition to find the particular solution that solves our problem.

2. Evaluate C:

Initial condition 

The solution of the initial value problem is

Since velocity is the derivative of height, and the height of the package is 80 ft at time
when it is dropped, we now have a second initial value problem.

We solve this initial value problem to find the height as a function of t.

1. Solve the differential equation: Finding the general antiderivative of gives

2. Evaluate C:

Initial condition 

The package’s height above ground at time t is

Use the solution: To find how long it takes the package to reach the ground, we set s
equal to 0 and solve for t:

Quadratic formula

The package hits the ground about 2.64 sec after it is dropped from the balloon. (The neg-
ative root has no physical meaning.)

 t L -1.89, t L 2.64.

 t =

-3 ; 2329
-8

 -4t2
+ 3t + 20 = 0

 -16t2
+ 12t + 80 = 0

s = -16t2
+ 12t + 80.

 C = 80.

ss0d = 80 80 = -16s0d2
+ 12s0d + C

s = -16t2
+ 12t + C.

-32t + 12

 Initial condition:          ss0d = 80

 Differential equation:   
ds
dt

= -32t + 12

t = 0

y = -32t + 12.

 C = 12.

ys0d = 12 12 = -32s0d + C

y = -32t + C.

-32

Initial condition:   ys0d = 12.

Differential equation:     dy
dt

= -32

dy
dt

= -32.

32 ft>sec2.

y(t)

Negative because gravity acts in the
direction of decreasing s

s

0 ground

s(t)

v(0) 5 12

dv
dt

 5 –32

FIGURE 4.52 A package dropped
from a rising hot-air balloon
(Example 5).

Balloon initially rising

Set in the
previous equation.
y = ds>dt
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Indefinite Integrals

A special symbol is used to denote the collection of all antiderivatives of a function ƒ.

284 Chapter 4: Applications of Derivatives

DEFINITION The collection of all antiderivatives of ƒ is called the indefinite
integral of ƒ with respect to x, and is denoted by

The symbol is an integral sign. The function ƒ is the integrand of the inte-
gral, and x is the variable of integration.

1

L
ƒsxd dx.

antiderivative
$++%++&

arbitrary constant

#

After the integral sign in the notation we just defined, the integrand function is always
followed by a differential to indicate the variable of integration. We will have more to say
about why this is important in Chapter 5. Using this notation, we restate the solutions of
Example 1, as follows:

This notation is related to the main application of antiderivatives, which will be explored
in Chapter 5. Antiderivatives play a key role in computing limits of certain infinite
sums, an unexpected and wonderfully useful role that is described in a central result of
Chapter 5, called the Fundamental Theorem of Calculus.

EXAMPLE 6 Evaluate

Solution If we recognize that is an antiderivative of 
we can evaluate the integral as

If we do not recognize the antiderivative right away, we can generate it term-by-term
with the Sum, Difference, and Constant Multiple Rules:

 =
x3

3
+ C1 - x2

- 2C2 + 5x + 5C3 .

 = ax3

3
+ C1b - 2 ax2

2
+ C2b + 5sx + C3d

 =

L
x2 dx - 2

L
x dx + 5

L
1 dx

 
L

sx2
- 2x + 5d dx =

L
x2 dx -

L
2x dx +

L
5 dx

L
(x2

- 2x + 5) dx =
x3

3
- x2

+ 5x + C.

x2
- 2x + 5,sx3>3d - x2

+ 5x

L
 sx2

- 2x + 5d dx .

L

 

 a1x + 2e2xb  dx = ln ƒ x ƒ + e2x
+ C.

L
 cos x dx = sin x + C ,

L
 2x dx = x2

+ C ,
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This formula is more complicated than it needs to be. If we combine and 
into a single arbitrary constant the formula simplifies to

and still gives all the possible antiderivatives there are. For this reason, we recommend that
you go right to the final form even if you elect to integrate term-by-term. Write

Find the simplest antiderivative you can for each part and add the arbitrary constant of
integration at the end.

 =
x3

3
- x2

+ 5x + C .

 
L

sx2
- 2x + 5d dx =

L
x2 dx -

L
2x dx +

L
5 dx

x3

3
- x2

+ 5x + C

C = C1 - 2C2 + 5C3 ,
5C3C1, -2C2 ,
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Exercises 4.8

Finding Antiderivatives
In Exercises 1–24, find an antiderivative for each function. Do as
many as you can mentally. Check your answers by differentiation.

1. a. 2x b. c.

2. a. 6x b. c.

3. a. b. c.

4. a. b. c.

5. a. b. c.

6. a. b. c.

7. a. b. c.

8. a. b. c.

9. a. b. c.

10. a. b. c.

11. a. b. c.

12. a. b. c.

13. a. b. 3 sin x c.

14. a. b. c.

15. a. b. c.

16. a. b. c.

17. a. csc x cot x b. c. -p csc 
px
2

 cot 
px
2

-csc 5x cot 5x

1 - 8 csc2 2x-

3
2

 csc2  
3x
2

csc2 x

-sec2  
3x
2

2
3

 sec2  
x
3

sec2 x

cos 
px
2

+ p cos x
p

2
 cos  

px
2

p cos px

sin px - 3 sin 3x-p sin px

1 +

4
3x

-

1
x2

2
5x

1
3x

1 -

5
x

7
x

1
x

-

3
2

 x-5>2
-

1
2

 x-3>21
2

 x-1>2

-

1
3

 x-4>31
3

 x-2>32
3

 x-1>3

23 x +

1

23 x

1

323 x

4
3
23 x

2x +

1

2x

1

22x

3
2

 2x

x3
-

1
x3

1
2x3-

2
x3

2 -

5
x2

5
x2

1
x2

-x-3
+ x - 1

x-3

2
+ x22x-3

x-4
+ 2x + 3x-4

-3x-4

x7
- 6x + 8x7

x2
- 2x + 1x2

18. a. sec x tan x b. 4 sec 3x tan 3x c.

19. a. b. c.

20. a. b. c.

21. a. b. c.

22. a. b. c.

23. a. b. c.

24. a. b. c.

Finding Indefinite Integrals
In Exercises 25–70, find the most general antiderivative or indefinite
integral. Check your answers by differentiation.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.
L

 
4 + 2t

t3  dt
L

 
t2t + 2t

t2  dt

L
x-3sx + 1d dx

L
2xs1 - x-3d dx

L
a1

7
-

1

y5>4 b  dy
L
a8y -

2

y1>4 b  dy

L
a2x

2
+

2

2x
b  dx

L
A2x + 23 x B  dx

L
x-5>4 dx

L
x-1>3 dx

L
a1

5
-

2
x3 + 2xb  dx

L
a 1

x2 - x2
-

1
3
b  dx

L
s1 - x2

- 3x5d dx
L

s2x3
- 5x + 7d dx

L
at2

2
+ 4t3b  dt

L
a3t2

+

t
2
b  dt

L
s5 - 6xd dx

L
sx + 1d dx

p x
- x-1x2

+ 2xx - a1
2
b x

1
1 + 4x2

1
2(x2

+ 1)
2

21 - x2

x22 - 1xpx23

a5
3
b x

2-x3x

e-x>5e4x>3e-2x

ex>2e-xe3x

sec 
px
2

 tan 
px
2
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43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55.

56.

57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

(Hint: )

67. 68.

(Hint: )

69. 70.

Checking Antiderivative Formulas
Verify the formulas in Exercises 71–82 by differentiation.

71.

72.

73.

74.

75.

76.

77.
L

 
1

x + 1
 dx = ln (x + 1) + C, x 7 -1

L
 

1
sx + 1d2 dx =

x
x + 1

+ C

L
 

1
sx + 1d2 dx = -

1
x + 1

+ C

L
csc2 ax - 1

3
b  dx = -3 cot ax - 1

3
b + C

L
sec2 s5x - 1d dx =

1
5

 tan s5x - 1d + C

L
s3x + 5d-2 dx = -

s3x + 5d-1

3
+ C

L
s7x - 2d3 dx =

s7x - 2d4

28
+ C

L
 

csc u

csc u - sin u
 du

L
 cos u stan u + sec ud du

1 + cot2 x = csc2 x

L
s1 - cot2 xd dx

L
cot2 x dx

1 + tan2 u = sec2 u

L
s2 + tan2 ud du

L
s1 + tan2 ud du

L
x22 - 1 dx

L
 3x23 dx

L
 a 2

21 - y2
-

1

y1>4 b  dy
L

 a1x -

5
x2

+ 1
b  dx

L
 
1 - cos 6t

2
 dt

L
 
1 + cos 4t

2
 dt

L
s2 cos 2x - 3 sin 3xd dx

L
ssin 2x - csc2 xd dx

L
 
1
2

 scsc2 x - csc x cot xd dx

L
s4 sec x tan x - 2 sec2 xd dx

L
s1.3dx dx

L
 (e-x

+ 4x) dx

L
s2ex

- 3e-2xd dx
L

se3x
+ 5e-xd dx

L
 
2
5

 sec u tan u du
L

 
csc u cot u

2
 du

L
a- sec2 x

3
b  dx

L
s -3 csc2 xd dx

L
3 cos 5u du

L
7 sin 

u

3
  du

L
s -5 sin td dt

L
s -2 cos td dt 78.

79.

80.

81.

82.

83. Right, or wrong? Say which for each formula and give a brief rea-
son for each answer.

a.

b.

c.

84. Right, or wrong? Say which for each formula and give a brief rea-
son for each answer.

a.

b.

c.

85. Right, or wrong? Say which for each formula and give a brief rea-
son for each answer.

a.

b.

c.

86. Right, or wrong? Say which for each formula and give a brief
reason for each answer.

a.

b.

c.

87. Right, or wrong? Give a brief reason why.

88. Right, or wrong? Give a brief reason why.

L
 
x cos (x2) - sin (x2)

x2  dx =

sin (x2)
x + C

L
 
-15(x + 3)2

(x - 2)4  dx = ax + 3
x - 2

b3

+ C

L
22x + 1 dx =

1
3

 A22x + 1 B3 + C

L
22x + 1 dx = 2x2

+ x + C

L
22x + 1 dx = 2x2

+ x + C

L
6s2x + 1d2 dx = s2x + 1d3

+ C

L
3s2x + 1d2 dx = s2x + 1d3

+ C

L
s2x + 1d2 dx =

s2x + 1d3

3
+ C

L
 tan u sec2 u du =

1
2

 sec2 u + C

L
 tan u sec2 u du =

1
2

 tan2 u + C

L
 tan u sec2 u du =

sec3 u

3
+ C

L
x sin x dx = -x cos x + sin x + C

L
x sin x dx = -x cos x + C

L
x sin x dx =

x2

2
 sin x + C

L
ssin-1 xd2 dx = xssin-1 xd2

- 2x + 221 - x2 sin-1 x + C

L
 
tan-1 x

x2  dx = ln x -

1
2

 ln s1 + x2d -

tan-1 x
x + C

L
 

dx

2a2
- x2

= sin-1 ax
a b + C

L
 

dx

a2
+ x2 =

1
a tan-1 ax

a b + C

L
 xex dx = xex

- ex
+ C
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Initial Value Problems

89. Which of the following graphs shows the solution of the initial
value problem

Give reasons for your answer.

90. Which of the following graphs shows the solution of the initial
value problem

Give reasons for your answer.

Solve the initial value problems in Exercises 91–112.

91.

92.

93.

94.

95.

96.

97.

98.

99.
dr
du

= -p sin pu, r s0d = 0

ds
dt

= cos t + sin t, s spd = 1

ds
dt

= 1 + cos t, s s0d = 4

dy

dx
=

1

22x
 , y s4d = 0

dy

dx
= 3x-2>3, y s -1d = -5

dy

dx
= 9x2

- 4x + 5, y s -1d = 0

dy

dx
=

1
x2 + x, x 7 0; y s2d = 1

dy

dx
= 10 - x, y s0d = -1

dy

dx
= 2x - 7, y s2d = 0

x

y

0

(–1, 1)
(–1, 1) (–1, 1)

(a)

x

y

0

(b)

x

y

0

(c)

dy

dx
= -x, y = 1 when x = -1?

x

y

0 1–1

(a)

(1, 4)

x

y

0 1–1

(b)

(1, 4)

x

y

0 1–1

(c)

(1, 4)

1

2

3

4

1

2

3

4

1

2

3

4

dy

dx
= 2x, y = 4 when x = 1?
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100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113. Find the curve in the xy-plane that passes through the
point (9, 4) and whose slope at each point is 

114. a. Find a curve with the following properties:

i)

ii) Its graph passes through the point (0, 1), and has a hori-
zontal tangent there.

b. How many curves like this are there? How do you know?

Solution (Integral) Curves
Exercises 115–118 show solution curves of differential equations. In
each exercise, find an equation for the curve through the labeled point.

115. 116.

d2y

dx2 = 6x

y = ƒsxd
32x .

y = ƒsxd
y‡s0d = 0, y–s0d = y¿s0d = 1, y s0d = 3

y s4d
= -cos x + 8 sin 2x ;

y‡s0d = 7, y–s0d = y¿s0d = -1, y s0d = 0

y s4d
= -sin t + cos t ;

d3 u

dt3 = 0; u–s0d = -2, u¿s0d = -

1
2

, us0d = 22

d3y

dx3 = 6; y–s0d = -8, y¿s0d = 0, y s0d = 5

d2s

dt2 =

3t
8

 ; ds
dt
`
t=4

= 3, s s4d = 4

d2r

dt2 =

2
t3 ; dr

dt
`
t=1

= 1, r s1d = 1

d2y

dx2 = 0; y¿s0d = 2, y s0d = 0

d2y

dx2 = 2 - 6x; y¿s0d = 4, y s0d = 1

dy
dt

=

8
1 + t2 + sec2 t, y(0) = 1

dy
dt

=

3

t2t2
- 1

, t 7 1, y(2) = 0

dy
dt

= 8t + csc2 t, y ap
2
b = -7

dy
dt

=

1
2

 sec t tan t, y s0d = 1

dr
du

= cos pu, r s0d = 1

x
0

(1, 0.5)

1

1

2

–1

y � 1 �     x1/3dy
dx

4
3

x
1

1

y

2–1

2

–1

0

 

(–1, 1)

� x � 1
dy
dx
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117. 118.

Applications
119. Finding displacement from an antiderivative of velocity

a. Suppose that the velocity of a body moving along the s-axis is

iii) Find the body’s displacement over the time interval from
to given that when 

iii) Find the body’s displacement from to given
that when 

iii) Now find the body’s displacement from to 
given that when 

b. Suppose that the position s of a body moving along a coordi-
nate line is a differentiable function of time t. Is it true that
once you know an antiderivative of the velocity function

you can find the body’s displacement from to
even if you do not know the body’s exact position at

either of those times? Give reasons for your answer.

120. Liftoff from Earth A rocket lifts off the surface of Earth with
a constant acceleration of How fast will the rocket be
going 1 min later?

121. Stopping a car in time You are driving along a highway at a
steady 60 mph ( ) when you see an accident ahead and
slam on the brakes. What constant deceleration is required to stop
your car in 242 ft? To find out, carry out the following steps.

1. Solve the initial value problem

Measuring time and distance from
when the brakes are applied

2. Find the value of t that makes (The answer will
involve k.)

3. Find the value of k that makes for the value of t you
found in Step 2.

122. Stopping a motorcycle The State of Illinois Cycle Rider Safety
Program requires motorcycle riders to be able to brake from 30 mph

to 0 in 45 ft. What constant deceleration does it take to
do that?
(44 ft>sec)

s = 242

ds>dt = 0.

Initial conditions:  
ds
dt

= 88 and s = 0 when t = 0.

Differential equation: d2s

dt2 = -k sk constantd

88 ft>sec

20 m>sec2 .

t = b
t = ads>dt

t = 0.s = s0

t = 3t = 1

t = 0.s = -2
t = 3t = 1

t = 0.s = 5t = 3t = 1

ds
dt

= y = 9.8t - 3.
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x
0 2

1

y
� sin x � cos xdy

dx

(–�, –1)

x
0

(1, 2)

1

2

y

2

–2

4

6

�           � �sin �xdy
dx

1
2�x

3

123. Motion along a coordinate line A particle moves on a coordi-
nate line with acceleration 
subject to the conditions that and when 
Find

a. the velocity in terms of t

b. the position s in terms of t.

124. The hammer and the feather When Apollo 15 astronaut
David Scott dropped a hammer and a feather on the moon to
demonstrate that in a vacuum all bodies fall with the same (con-
stant) acceleration, he dropped them from about 4 ft above the
ground. The television footage of the event shows the hammer
and the feather falling more slowly than on Earth, where, in a
vacuum, they would have taken only half a second to fall the 4 ft.
How long did it take the hammer and feather to fall 4 ft on the
moon? To find out, solve the following initial value problem for s
as a function of t. Then find the value of t that makes s equal to 0.

125. Motion with constant acceleration The standard equation for
the position s of a body moving with a constant acceleration a
along a coordinate line is

(1)

where and are the body’s velocity and position at time
Derive this equation by solving the initial value problem

126. Free fall near the surface of a planet For free fall near the sur-
face of a planet where the acceleration due to gravity has a con-
stant magnitude of g Equation (1) in Exercise
125 takes the form

(2)

where s is the body’s height above the surface. The equation has
a minus sign because the acceleration acts downward, in the di-
rection of decreasing s. The velocity is positive if the object is
rising at time and negative if the object is falling.

Instead of using the result of Exercise 125, you can derive
Equation (2) directly by solving an appropriate initial value
problem. What initial value problem? Solve it to be sure you
have the right one, explaining the solution steps as you go along.

127. Suppose that

Find:

a. b.
L

g sxd dx
L

ƒsxd dx

ƒsxd =

d
dx

 A1 - 2x B and g sxd =

d
dx

 sx + 2d .

t = 0
y0

s = -

1
2

 gt2
+ y0 t + s0 , 

length-units>sec2 ,

Initial conditions:   
ds
dt

= y0 and s = s0 when t = 0.

Differential equation:  d2s

dt2 = a

t = 0.
s0y0

s =

a
2

 t2
+ y0 t + s0 , 

Initial conditions:  
ds
dt

= 0 and s = 4 when t = 0

Differential equation: d2s

dt2 = -5.2 ft>sec2

y = ds>dt

t = 1.s = 0ds>dt = 4
a = d2s>dt2

= 152t - A3>2t B ,

T
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c. d.

e. f.

128. Uniqueness of solutions If differentiable functions 
and both solve the initial value problem

on an interval I, must for every x in I? Give rea-
sons for your answer.

Fsxd = Gsxd

dy

dx
= ƒsxd, y sx0d = y0 ,

y = Gsxd
y = Fsxd

L
[ƒsxd - g sxd] dx

L
[ƒsxd + g sxd] dx

L
[-g sxd] dx

L
[-ƒsxd] dx

Chapter 4 Practice Exercises 289

COMPUTER EXPLORATIONS
Use a CAS to solve the initial value problems in Exercises 129–132.
Plot the solution curves.

129.

130.

131.

132. y– =

2
x + 2x, y s1d = 0, y¿s1d = 0

y¿ =

1

24 - x2
 , y s0d = 2

y¿ =

1
x + x, y s1d = -1

y¿ = cos2 x + sin x, y spd = 1

Chapter 4 Questions to Guide Your Review

1. What can be said about the extreme values of a function that is
continuous on a closed interval?

2. What does it mean for a function to have a local extreme value on
its domain? An absolute extreme value? How are local and ab-
solute extreme values related, if at all? Give examples.

3. How do you find the absolute extrema of a continuous function
on a closed interval? Give examples.

4. What are the hypotheses and conclusion of Rolle’s Theorem? Are
the hypotheses really necessary? Explain.

5. What are the hypotheses and conclusion of the Mean Value Theo-
rem? What physical interpretations might the theorem have?

6. State the Mean Value Theorem’s three corollaries.

7. How can you sometimes identify a function ƒ(x) by knowing 
and knowing the value of ƒ at a point Give an example.

8. What is the First Derivative Test for Local Extreme Values? Give
examples of how it is applied.

9. How do you test a twice-differentiable function to determine
where its graph is concave up or concave down? Give examples.

10. What is an inflection point? Give an example. What physical sig-
nificance do inflection points sometimes have?

11. What is the Second Derivative Test for Local Extreme Values?
Give examples of how it is applied.

12. What do the derivatives of a function tell you about the shape of
its graph?

13. List the steps you would take to graph a polynomial function.
Illustrate with an example.

x = x0 ?
ƒ¿

14. What is a cusp? Give examples.

15. List the steps you would take to graph a rational function. Illus-
trate with an example.

16. Outline a general strategy for solving max-min problems. Give
examples.

17. Describe l’Hôpital’s Rule. How do you know when to use the rule
and when to stop? Give an example.

18. How can you sometimes handle limits that lead to indeterminate
forms and ? Give examples.

19. How can you sometimes handle limits that lead to indeterminate
forms and ? Give examples.

20. Describe Newton’s method for solving equations. Give an exam-
ple. What is the theory behind the method? What are some of the
things to watch out for when you use the method?

21. Can a function have more than one antiderivative? If so, how are
the antiderivatives related? Explain.

22. What is an indefinite integral? How do you evaluate one?
What general formulas do you know for finding indefinite 
integrals?

23. How can you sometimes solve a differential equation of the form

24. What is an initial value problem? How do you solve one? Give an
example.

25. If you know the acceleration of a body moving along a coordinate
line as a function of time, what more do you need to know to find
the body’s position function? Give an example.

dy>dx = ƒsxd?

q
q1q , 00,

q - qq>q , q # 0,

Chapter 4 Practice Exercises

Extreme Values
1. Does have any local maximum or mini-

mum values? Give reasons for your answer.

2. Does have any local maximum values?
Give reasons for your answer.

g sxd = csc x + 2 cot x

ƒsxd = x3
+ 2x + tan x

3. Does have an absolute minimum
value? An absolute maximum? If so, find them or give reasons
why they fail to exist. List all critical points of ƒ.

ƒsxd = s7 + xds11 - 3xd1>3
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4. Find values of a and b such that the function

has a local extreme value of 1 at Is this extreme value a lo-
cal maximum, or a local minimum? Give reasons for your answer.

5. Does have an absolute minimum value? An ab-
solute maximum? If so, find them or give reasons why they fail to
exist. List all critical points of g.

6. Does have an absolute minimum value? An
absolute maximum? If so, find them or give reasons why they fail
to exist. List all critical points of ƒ.

In Exercises 7 and 8, find the absolute maximum and absolute mini-
mum values of ƒ over the interval.

7.

8.

9. The greatest integer function defined for all values
of x, assumes a local maximum value of 0 at each point of [0, 1).
Could any of these local maximum values also be local minimum
values of ƒ? Give reasons for your answer.

10. a. Give an example of a differentiable function ƒ whose first de-
rivative is zero at some point c even though ƒ has neither a lo-
cal maximum nor a local minimum at c.

b. How is this consistent with Theorem 2 in Section 4.1? Give
reasons for your answer.

11. The function does not take on either a maximum or a
minimum on the interval even though the function is
continuous on this interval. Does this contradict the Extreme
Value Theorem for continuous functions? Why?

12. What are the maximum and minimum values of the function
on the interval Notice that the interval is

not closed. Is this consistent with the Extreme Value Theorem for
continuous functions? Why?

13. A graph that is large enough to show a function’s global behavior
may fail to reveal important local features. The graph of 

is a case in point.

a. Graph ƒ over the interval Where does the
graph appear to have local extreme values or points of in-
flection?

b. Now factor and show that ƒ has a local maximum at 

and local minima at 

c. Zoom in on the graph to find a viewing window that shows
the presence of the extreme values at and 

The moral here is that without calculus the existence of two
of the three extreme values would probably have gone unnoticed.
On any normal graph of the function, the values would lie close
enough together to fall within the dimensions of a single pixel on
the screen.

(Source: Uses of Technology in the Mathematics Curriculum,
by Benny Evans and Jerry Johnson, Oklahoma State University,
published in 1990 under National Science Foundation Grant
USE-8950044.)

14. (Continuation of Exercise 13.)

a. Graph over
the interval Where does the graph appear to
have local extreme values or points of inflection?

-2 … x … 2.
ƒsxd = sx8>8d - s2>5dx5

- 5x - s5>x2d + 11

x = 23.x = 23 5

;1.73205.x = ;23 L23 5 L 1.70998

x =ƒ¿sxd

-2.5 … x … 2.5 .

sx8>8d - sx6>2d - x5
+ 5x3

ƒsxd =

-1 … x 6 1?y = ƒ x ƒ

0 6 x 6 1
y = 1>x

ƒsxd = :x; ,

ƒ(x) = (4>x) + ln x2, 1 … x … 4

ƒ(x) = x - 2 ln x, 1 … x … 3

ƒ(x) = 2e x>(1 + x 2)

g(x) = e x
- x

x = 3.

ƒsxd =

ax + b

x2
- 1

290 Chapter 4: Applications of Derivatives

b. Show that ƒ has a local maximum value at 
and a local minimum value at 

c. Zoom in to find a viewing window that shows the presence of
the extreme values at and 

The Mean Value Theorem
15. a. Show that decreases on every interval in its

domain.

b. How many solutions does the equation have?
Give reasons for your answer.

16. a. Show that increases on every interval in its domain.

b. If the conclusion in part (a) is really correct, how do you ex-
plain the fact that is less than 

17. a. Show that the equation has exactly one so-
lution on [0, 1].

b. Find the solution to as many decimal places as you can.

18. a. Show that increases on every interval in its
domain.

b. Show that has no local maximum or mini-
mum values.

19. Water in a reservoir As a result of a heavy rain, the volume of
water in a reservoir increased by 1400 acre-ft in 24 hours. Show
that at some instant during that period the reservoir’s volume was
increasing at a rate in excess of 225,000 . (An acre-foot is

the volume that would cover 1 acre to the depth of 1 ft.
A cubic foot holds 7.48 gal.)

20. The formula gives a different function for each
value of C. All of these functions, however, have the same deriva-
tive with respect to x, namely Are these the only dif-
ferentiable functions whose derivative is 3? Could there be any
others? Give reasons for your answers.

21. Show that

even though

Doesn’t this contradict Corollary 2 of the Mean Value Theorem?
Give reasons for your answer.

22. Calculate the first derivatives of and 
What can you conclude about the graphs of these

functions?

Analyzing Graphs
In Exercises 23 and 24, use the graph to answer the questions.

23. Identify any global extreme values of ƒ and the values of x at
which they occur.

y

x

(1, 1)
2,    1

2

0

y � f (x)

⎛
⎝

⎛
⎝

-1>sx2
+ 1d .

g sxd =ƒsxd = x2>sx2
+ 1d

x
x + 1

Z -

1
x + 1

.

d
dx

 a x
x + 1

b =

d
dx

 a- 1
x + 1

b

F¿sxd = 3.

Fsxd = 3x + C

43,560 ft3 ,
gal>min

ƒsxd = x3
+ 2x

ƒsxd = x>sx + 1d

x4
+ 2x2

- 2 = 0

tan sp>4d = 1?tan p = 0

y = tan u

sin2 t - 3t = 5

g std = sin2 t - 3t

x = 23 2 .x =
725

x = 23 2 L 1.2599.
x =

725 L 1.2585

T

T

T
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24. Estimate the intervals on which the function is

a. increasing.

b. decreasing.

c. Use the given graph of to indicate where any local extreme
values of the function occur, and whether each extreme is a
relative maximum or minimum.

Each of the graphs in Exercises 25 and 26 is the graph of the position
function of an object moving on a coordinate line (t represents
time). At approximately what times (if any) is each object’s  (a) velocity
equal to zero? (b) acceleration equal to zero? During approximately
what time intervals does the object move (c) forward? (d) backward?

25.

26.

Graphs and Graphing
Graph the curves in Exercises 27–42.

27. 28.

29.

30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

Each of Exercises 43–48 gives the first derivative of a function
(a) At what points, if any, does the graph of ƒ have a local

maximum, local minimum, or inflection point? (b) Sketch the general
shape of the graph.

43. 44.

45. 46.

47. 48. y¿ = 4x2
- x4y¿ = x4

- 2x2

y¿ = x2s6 - 4xdy¿ = 6xsx + 1dsx - 2d
y¿ = x2

- x - 6y¿ = 16 - x2

y = ƒsxd .

y = tan-1 a1x by = sin-1 a1x b
y = ln (sin x)y = ln (x2

- 4x + 3)

y = xe-x2

y = (x - 3)2 ex

y = x24 - x2y = x23 - x

y = x1>3sx - 4dy = x - 3x2>3
y = x2s2x2

- 9dy = x3s8 - xd

y = s1>8dsx3
+ 3x2

- 9x - 27d

y = -x3
+ 6x2

- 9x + 3

y = x3
- 3x2

+ 3y = x2
- sx3>6d

t

s

0 2 4 6 8

s � f (t)

t

s

0 3 6 9 12 14

s � f (t)

s = ƒstd

y

x

(–3, 1)

(2, 3)

–1

–2

y � f ' (x)

ƒ¿

y = ƒsxd

Chapter 4 Practice Exercises 291

In Exercises 49–52, graph each function. Then use the function’s first
derivative to explain what you see.

49. 50.

51. 52.

Sketch the graphs of the rational functions in Exercises 53–60.

53. 54.

55. 56.

57. 58.

59. 60.

Using L’Hôpital’s Rule
Use l’Hôpital’s Rule to find the limits in Exercises 61–72.

61. 62.

63. 64.

65. 66.

67. 68.

69. 70.

71.

72.

Find the limits in Exercises 73–84.

73. 74.

75. 76.

77. 78.

79. 80.

81. 82.

83. 84.

Optimization
85. The sum of two nonnegative numbers is 36. Find the numbers if

a. the difference of their square roots is to be as large as possible.

b. the sum of their square roots is to be as large as possible.

86. The sum of two nonnegative numbers is 20. Find the numbers

a. if the product of one number and the square root of the other
is to be as large as possible.

b. if one number plus the square root of the other is to be as
large as possible.

lim
x: q

 a1 +

2
x +

7
x2 blim

x: q

 a1 +

b
x b

kx

lim
y:0+

 e-1>y ln ylim
t:0+

 aet

t -

1
t b

lim
x:4

 
sin2 spxd

ex - 4
+ 3 - x

lim
t:0+

 
t - ln s1 + 2td

t 2

lim
x:0

 
4 - 4e x

xe xlim
x:0

 
5 - 5 cos x
e x

- x - 1

lim
x:0

 
2-sin x

- 1
ex

- 1
lim
x:0

 
2sin x

- 1
e x

- 1

lim
u:0

 
3u - 1
u

lim
x:0

 
10x

- 1
x

lim
x: q

a x3

x2
- 1

-

x3

x2
+ 1
b

lim
x: q

A2x2
+ x + 1 - 2x2

- x B
lim
x:0
a 1

x4 -

1
x2 blim

x:0
 scsc x - cot xd

lim
x:0+

2x sec xlim
x:p>2-

 sec 7x cos 3x

lim
x:0

  
sin mx
sin nx

lim
x:0

  
sin2 x

tan sx2d

lim
x:0

  
tan x

x + sin x
lim

x:p
 
tan x

x

lim
x:1

  
xa

- 1

xb
- 1

lim
x:1

 
x2

+ 3x - 4
x - 1

y =

x2

x2
- 4

y =

x2
- 4

x2
- 3

y =

x4
- 1
x2y =

x3
+ 2

2x

y =

x2
- x + 1

xy =

x2
+ 1
x

y =

2x
x + 5

y =

x + 1
x - 3

y = x2>3
- sx - 1d1>3y = x1>3

+ sx - 1d1>3
y = x2>3

+ sx - 1d2>3y = x2>3
+ sx - 1d1>3
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87. An isosceles triangle has its vertex at the origin and its base paral-
lel to the x-axis with the vertices above the axis on the curve

Find the largest area the triangle can have.

88. A customer has asked you to design an open-top rectangular
stainless steel vat. It is to have a square base and a volume of

to be welded from quarter-inch plate, and to weigh no
more than necessary. What dimensions do you recommend?

89. Find the height and radius of the largest right circular cylinder

that can be put in a sphere of radius 

90. The figure here shows two right circular cones, one upside down
inside the other. The two bases are parallel, and the vertex of the
smaller cone lies at the center of the larger cone’s base. What val-
ues of r and h will give the smaller cone the largest possible
volume?

91. Manufacturing tires Your company can manufacture x hun-
dred grade A tires and y hundred grade B tires a day, where

and

Your profit on a grade A tire is twice your profit on a grade B tire.
What is the most profitable number of each kind to make?

92. Particle motion The positions of two particles on the s-axis are
and 

a. What is the farthest apart the particles ever get?

b. When do the particles collide?

93. Open-top box An open-top rectangular box is constructed from
a 10-in.-by-16-in. piece of cardboard by cutting squares of equal
side length from the corners and folding up the sides. Find analyt-
ically the dimensions of the box of largest volume and the maxi-
mum volume. Support your answers graphically.

94. The ladder problem What is the approximate length (in feet)
of the longest ladder you can carry horizontally around the corner
of the corridor shown here? Round your answer down to the near-
est foot.

x

y

0

6

8

(8, 6)

s2 = cos st + p>4d .s1 = cos t

y =

40 - 10x
5 - x

.

0 … x … 4

h

r
12'

6'

23.

32 ft3 ,

y = 27 - x2 .
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Newton’s Method
95. Let Show that the equation has a

solution in the interval [2, 3] and use Newton’s method to find it.

96. Let Show that the equation has a so-
lution in the interval [3, 4] and use Newton’s method to find it.

Finding Indefinite Integrals
Find the indefinite integrals (most general antiderivatives) in Exer-
cises 97–120. Check your answers by differentiation.

97. 98.

99. 100.

101. 102.

103. 104.

105. 106.

107. 108.

109. 110.

111. Hint: 

112.

113. 114.

115. 116.

117. 118.

119. 120.

Initial Value Problems
Solve the initial value problems in Exercises 121–124.

121.

122.

123.

124.

Applications and Examples
125. Can the integrations in (a) and (b) both be correct? Explain.

a.

b.
L

 
dx

21 - x2
= -

L
-

dx

21 - x2
= -cos-1 x + C

L
 

dx

21 - x2
= sin-1 x + C

d3r

dt3
= -cos t; r–s0d = r¿s0d = 0, r s0d = -1

d2r

dt2 = 152t +

3

2t
; r¿s1d = 8, r s1d = 0

dy

dx
= ax +

1
x b

2

, y s1d = 1

dy

dx
=

x2
+ 1
x2 , y s1d = -1

L
 

du

216 - u2L
 

3

2x2x2
- 1

 dx

L
 2p+ r dr

L
 u1 -p du

L
 (5s

+ s5) ds
L

 a1
2

 et
- e-tb  dt

L
 a 5

x2 +

2
x2

+ 1
b  dx

L
 a3x - xb  dx

L
cos2  

x
2

  dx

bsin2 u =

1 - cos 2u
2Q

L
sin2  

x
4

  dx

L
 sec 
u

3
 tan 
u

3
 du

L
 csc 22u cot 22u du

L
csc2 ps ds

L
sec2 

s
10

 ds

L
s2 - xd3>5 dx

L
x3s1 + x4d-1>4 dx

L
 

u

27 + u2
 du

L
3u2u2

+ 1 du

L
 

6 dr

Ar - 22 B3L
 

dr

sr + 5d2

L
a 1

22t
-

3
t4 b  dt

L
a32t +

4
t2
b  dt

L
a8t3 -

t2

2
+ tb  dt

L
sx3

+ 5x - 7d dx

ƒsxd = 75ƒsxd = x4
- x3 .

ƒsxd = -4ƒsxd = 3x - x3 .

T
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126. Can the integrations in (a) and (b) both be correct? Explain.

a.

b.

127. The rectangle shown here has one side on the positive y-axis,
one side on the positive x-axis, and its upper right-hand vertex
on the curve What dimensions give the rectangle its
largest area, and what is that area?

128. The rectangle shown here has one side on the positive y-axis,
one side on the positive x-axis, and its upper right-hand vertex
on the curve What dimensions give the rectangle
its largest area, and what is that area?

x

y

0

0.2 y � 

1

0.1
x2

ln x

y = sln xd>x2 .

x

y

0

1 y � e–x2

y = e-x2

.

u = -x = cos-1 s -xd + C

 = cos-1 u + C

 =

L
 

-du

21 - u2

 
L

 
dx

21 - x2
=

L
 

-du

21 - s -ud2

L
 

dx

21 - x2
= -

L
-

dx

21 - x2
= -cos-1 x + C
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In Exercises 129 and 130, find the absolute maximum and minimum
values of each function on the given interval.

129.

130.

In Exercises 131 and 132, find the absolute maxima and minima of
the functions and say where they are assumed.

131.

132.

133. Graph the following functions and use what you see to locate
and estimate the extreme values, identify the coordinates of the
inflection points, and identify the intervals on which the graphs
are concave up and concave down. Then confirm your estimates
by working with the functions’ derivatives.

a. b. c.

134. Graph Does the function appear to have an ab-
solute minimum value? Confirm your answer with calculus.

135. Graph over Explain what you see.

136. A round underwater transmission cable consists of a core of cop-
per wires surrounded by nonconducting insulation. If x denotes
the ratio of the radius of the core to the thickness of the insulation,
it is known that the speed of the transmission signal is given by the
equation If the radius of the core is 1 cm, what
insulation thickness h will allow the greatest transmission speed?

Insulation

x � r
h

h
r

Core

y = x2 ln s1>xd .

[0, 3p] .ƒsxd = ssin xdsin x

ƒsxd = x ln x .

y = s1 + x) e-xy = e-x2

y = sln xd>1x

g(x) = e23 - 2x - x2

ƒ(x) = ex>2x4
+ 1

y = 10xs2 - ln xd, s0, e2]

y = x ln 2x - x, c 1
2e

, 
e
2
d

T

T

T
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Functions and Derivatives
1. What can you say about a function whose maximum and mini-

mum values on an interval are equal? Give reasons for your an-
swer.

2. Is it true that a discontinuous function cannot have both an ab-
solute maximum and an absolute minimum value on a closed in-
terval? Give reasons for your answer.

3. Can you conclude anything about the extreme values of a continu-
ous function on an open interval? On a half-open interval? Give
reasons for your answer.

4. Local extrema Use the sign pattern for the derivative

to identify the points where ƒ has local maximum and minimum
values.

dƒ

dx
= 6sx - 1dsx - 2d2sx - 3d3sx - 4d4

5. Local extrema

a. Suppose that the first derivative of is

At what points, if any, does the graph of ƒ have a local maxi-
mum, local minimum, or point of inflection?

b. Suppose that the first derivative of is

At what points, if any, does the graph of ƒ have a local maxi-
mum, local minimum, or point of inflection?

6. If for all x, what is the most the values of ƒ can in-
crease on [0, 6]? Give reasons for your answer.

7. Bounding a function Suppose that ƒ is continuous on [a, b]
and that c is an interior point of the interval. Show that if

on [a, c) and on (c, b], then ƒ(x) is never
less than ƒ(c) on [a, b].

ƒ¿sxd Ú 0ƒ¿sxd … 0

ƒ¿sxd … 2

y¿ = 6x sx + 1dsx - 2d .

y = ƒsxd

y¿ = 6sx + 1dsx - 2d2 .

y = ƒsxd

dx = -du
x = -u
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8. An inequality

a. Show that for every value of x.

b. Suppose that ƒ is a function whose derivative is 
Use the result in part (a) to show that

for any a and b.

9. The derivative of is zero at but ƒ is not a con-
stant function. Doesn’t this contradict the corollary of the Mean
Value Theorem that says that functions with zero derivatives are
constant? Give reasons for your answer.

10. Extrema and inflection points Let be the product of
two differentiable functions of x.

a. If ƒ and g are positive, with local maxima at and if 
and change sign at a, does h have a local maximum at a?

b. If the graphs of ƒ and g have inflection points at does
the graph of h have an inflection point at a?

In either case, if the answer is yes, give a proof. If the answer is no,
give a counterexample.

11. Finding a function Use the following information to find the
values of a, b, and c in the formula 

i) The values of a, b, and c are either 0 or 1.

ii) The graph of ƒ passes through the point 

iii) The line is an asymptote of the graph of ƒ.

12. Horizontal tangent For what value or values of the constant k
will the curve have exactly one horizon-
tal tangent?

Optimization
13. Largest inscribed triangle Points A and B lie at the ends of a

diameter of a unit circle and point C lies on the circumference. Is
it true that the area of triangle ABC is largest when the triangle is
isosceles? How do you know?

14. Proving the second derivative test The Second Derivative Test
for Local Maxima and Minima (Section 4.4) says:

a. ƒ has a local maximum value at if and

b. ƒ has a local minimum value at if and

To prove statement (a), let Then use the fact that

to conclude that for some 

Thus, is positive for and negative for
Prove statement (b) in a similar way.

15. Hole in a water tank You want to bore a hole in the side of the
tank shown here at a height that will make the stream of water
coming out hit the ground as far from the tank as possible. If you
drill the hole near the top, where the pressure is low, the water
will exit slowly but spend a relatively long time in the air. If you

0 6 h 6 d .
-d 6 h 6 0ƒ¿sc + hd

0 6 ƒ h ƒ 6 d Q ƒ¿sc + hd
h

6 ƒ–scd + P 6 0.

d 7 0,

ƒ–scd = lim
h:0

 
ƒ¿sc + hd - ƒ¿scd

h
= lim

h:0
 
ƒ¿sc + hd

h

P = s1>2d ƒ ƒ–scd ƒ .

ƒ–scd 7 0.
ƒ¿scd = 0x = c

ƒ–scd 6 0
ƒ¿scd = 0x = c

y = x3
+ kx2

+ 3x - 4

y = 1

s -1, 0d .

sbx2
+ cx + 2d .

ƒsxd = sx + ad>

x = a ,

g¿

ƒ¿x = a ,

h = ƒg

x = 0,ƒsxd = x2

ƒƒsbd - ƒsad ƒ …

1
2

 ƒb - a ƒ

x>s1 + x2d .
ƒ¿sxd =

-1>2 … x>s1 + x2d … 1>2

294 Chapter 4: Applications of Derivatives

drill the hole near the bottom, the water will exit at a higher veloc-
ity but have only a short time to fall. Where is the best place, if
any, for the hole? (Hint: How long will it take an exiting particle
of water to fall from height y to the ground?)

16. Kicking a field goal An American football player wants to kick
a field goal with the ball being on a right hash mark. Assume that
the goal posts are b feet apart and that the hash mark line is a dis-
tance feet from the right goal post. (See the accompanying
figure.) Find the distance h from the goal post line that gives the
kicker his largest angle Assume that the football field is flat.

17. A max-min problem with a variable answer Sometimes the
solution of a max-min problem depends on the proportions of the
shapes involved. As a case in point, suppose that a right circular
cylinder of radius r and height h is inscribed in a right circular
cone of radius R and height H, as shown here. Find the value of r
(in terms of R and H) that maximizes the total surface area of the
cylinder (including top and bottom). As you will see, the solution
depends on whether or 

H

R

r

h

H 7 2R .H … 2R

Goal post line

Football

� �
h

b a

Goal posts

b .

a 7 0

       

x

y

Range

Ground

h

y

0

Tank kept full,
top open

Exit velocity � �64(h � y)
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18. Minimizing a parameter Find the smallest value of the posi-
tive constant m that will make greater than or
equal to zero for all positive values of x.

Limits
19. Evaluate the following limits.

a. b.

c. d.

e. f.

g. h.

20. L’Hôpital’s Rule does not help with the following limits. Find
them some other way.

a. b.

Theory and Examples
21. Suppose that it costs a company to produce x

units per week. It can sell x units per week at a price of
per unit. Each of a, b, c, and e represents a

positive constant. (a) What production level maximizes the
profit? (b) What is the corresponding price? (c) What is the
weekly profit at this level of production? (d) At what price should
each item be sold to maximize profits if the government imposes
a tax of t dollars per item sold? Comment on the difference be-
tween this price and the price before the tax.

22. Estimating reciprocals without division You can estimate the
value of the reciprocal of a number a without ever dividing by a if
you apply Newton’s method to the function For
example, if the function involved is 

a. Graph Where does the graph cross the 
x-axis?

b. Show that the recursion formula in this case is

so there is no need for division.

23. To find we apply Newton’s method to 
Here we assume that a is a positive real number and q is a positive
integer. Show that is a “weighted average” of and 
and find the coefficients such that

What conclusion would you reach if and were equal?
What would be the value of in that case?

24. The family of straight lines (a, b arbitrary constants)
can be characterized by the relation Find a similar rela-
tion satisfied by the family of all circles

where h and r are arbitrary constants. (Hint: Eliminate h and r
from the set of three equations including the given one and two
obtained by successive differentiation.)

sx - hd2
+ sy - hd2

= r2 ,

y– = 0.
y = ax + b

x1

a>x0
q - 1x0

x1 = m0 x0 + m1 a a

x0
q - 1 b , 

     m0 7 0, m1 7 0,

m0 + m1 = 1.

m0, m1

a>x0
q - 1 ,x0x1

ƒsxd = xq
- a .x = 2q a ,

xn + 1 = xns2 - 3xnd ,

y = s1>xd - 3.

ƒsxd = s1>xd - 3.a = 3,
ƒsxd = s1>xd - a .

P = c - ex dollars

y = a + bx dollars

lim
x: q

 
2x

x + 72x
lim

x: q

 
2x + 5

2x + 5

lim
x:2

  
x3

- 8
x2

- 4
lim
x:0

 
sec x - 1

x2

lim
x:0

  
sin x2

x sin x
lim
x:0

  
x - sin x
x -  tan x

lim
x:p>2ssec x - tan xdlim

x:0
 x csc2 22x

lim
x:0

 sin 5x cot 3xlim
x:0

 
2 sin 5x

3x

mx - 1 + s1>xd
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25. Free fall in the fourteenth century In the middle of the four-
teenth century, Albert of Saxony (1316–1390) proposed a model
of free fall that assumed that the velocity of a falling body was
proportional to the distance fallen. It seemed reasonable to think
that a body that had fallen 20 ft might be moving twice as fast as
a body that had fallen 10 ft. And besides, none of the instru-
ments in use at the time were accurate enough to prove other-
wise. Today we can see just how far off Albert of Saxony’s
model was by solving the initial value problem implicit in his
model. Solve the problem and compare your solution graphi-
cally with the equation You will see that it describes a
motion that starts too slowly at first and then becomes too fast
too soon to be realistic.

26. Group blood testing During World War II it was necessary to ad-
minister blood tests to large numbers of recruits. There are two stan-
dard ways to administer a blood test to N people. In method 1, each
person is tested separately. In method 2, the blood samples of x peo-
ple are pooled and tested as one large sample. If the test is negative,
this one test is enough for all x people. If the test is positive, then
each of the x people is tested separately, requiring a total of 
tests. Using the second method and some probability theory it can
be shown that, on the average, the total number of tests y will be

With and find the integer value of x that
minimizes y. Also find the integer value of x that maximizes y.
(This second result is not important to the real-life situation.) The
group testing method was used in World War II with a savings of
80% over the individual testing method, but not with the given
value of q.

27. Assume that the brakes of an automobile produce a constant de-
celeration of (a) Determine what k must be to bring an
automobile traveling 60 ( ) to rest in a distance of
100 ft from the point where the brakes are applied. (b) With the
same k, how far would a car traveling 30 travel before being
brought to a stop?

28. Let ƒ(x), g(x) be two continuously differentiable functions satisfy-
ing the relationships and Let

If find h(10).

29. Can there be a curve satisfying the following conditions? 
is everywhere equal to zero and, when and

Give a reason for your answer.

30. Find the equation for the curve in the xy-plane that passes through
the point if its slope at x is always 

31. A particle moves along the x-axis. Its acceleration is At
the particle is at the origin. In the course of its motion, it

reaches the point where but no point beyond b.
Determine its velocity at 

32. A particle moves with acceleration Assum-
ing that the velocity and the position when

find

a. the velocity y in terms of t.

b. the position s in terms of t.

33. Given with By considering the
minimum, prove that for all real x if and only if
b2

- ac … 0.
ƒsxd Ú 0

a 7 0.ƒsxd = ax2
+ 2bx + c

t = 0,
s = -4>15y = 4>3 a = 2t - (1>2t) .

t = 0.
b 7 0,x = b ,

t = 0,
a = - t2 .

3x2
+ 2.s1, -1d

dy>dx = 1.
x = 0,  y = 0

d2y>dx2

hs0d = 5,hsxd = ƒ2sxd + g2sxd .
ƒ–sxd = -ƒsxd .ƒ¿sxd = g sxd

mi>hr

88 ft>secmi>hr
k ft>sec2 .

N = 1000,q = 0.99

y = N a1 - qx
+

1
x b .

x + 1

s = 16t2 .

T
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34. Schwarz’s inequality

a. In Exercise 33, let

and deduce Schwarz’s inequality:

b. Show that equality holds in Schwarz’s inequality only if there
exists a real number x that makes equal for every
value of i from 1 to n.

35. The best branching angles for blood vessels and pipes When
a smaller pipe branches off from a larger one in a flow system, we
may want it to run off at an angle that is best from some energy-
saving point of view. We might require, for instance, that energy
loss due to friction be minimized along the section AOB shown in
the accompanying figure. In this diagram, B is a given point to be
reached by the smaller pipe, A is a point in the larger pipe up-
stream from B, and O is the point where the branching occurs. A
law due to Poiseuille states that the loss of energy due to friction
in nonturbulent flow is proportional to the length of the path and
inversely proportional to the fourth power of the radius. Thus, the
loss along AO is and along OB is where k is a
constant, is the length of AO, is the length of OB, R is the ra-
dius of the larger pipe, and r is the radius of the smaller pipe. The
angle is to be chosen to minimize the sum of these two losses:

L = k 
d1

R4 + k 
d2

r4 .

u

d2d1

skd2d>r4 ,skd1d>R4

-biai x

… Aa1
2

+ a2
2

+
Á

+ an
2 B Ab1

2
+ b2

2
+

Á
+ bn

2 B .
sa1 b1 + a2 b2 +

Á
+ an bnd2

ƒsxd = sa1 x + b1d2
+ sa2 x + b2d2

+
Á

+ san x + bnd2,
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In our model, we assume that and are fixed.
Thus we have the relations

so that

We can express the total loss L as a function of 

a. Show that the critical value of for which equals 
zero is

b. If the ratio of the pipe radii is estimate to the
nearest degree the optimal branching angle given in part (a).

r>R = 5>6,

uc = cos-1 
r4

R4 .

dL>duu

L = k aa - b cot u

R4 +

b csc u

r4 b .

u :

d1 = a - d2 cos u = a - b cot u .

d2 = b csc u ,

d1 + d2 cos u = a d2 sin u = b ,

BC = bAC = a

a

C

B

O

A

d1

d2

d2 cos �

b � d2 sin �

�

Chapter 4 Technology Application Projects

Mathematica/Maple Modules:
Motion Along a Straight Line:
You will observe the shape of a graph through dramatic animated visualizations of the derivative relations among the position, velocity, and
acceleration. Figures in the text can be animated.

Newton’s Method: Estimate to How Many Places?
Plot a function, observe a root, pick a starting point near the root, and use Newton’s Iteration Procedure to approximate the root to a desired
accuracy. The numbers and are approximated.22p, e ,

p

Position : Velocity : Acceleration
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5
INTEGRATION

OVERVIEW A great achievement of classical geometry was obtaining formulas for the
areas and volumes of triangles, spheres, and cones. In this chapter we develop a method to
calculate the areas and volumes of very general shapes. This method, called integration, is
a tool for calculating much more than areas and volumes. The integral is of fundamental
importance in statistics, the sciences, and engineering. We use it to calculate quantities
ranging from probabilities and averages to energy consumption and the forces against a
dam’s floodgates. We study a variety of these applications in the next chapter, but in this
chapter we focus on the integral concept and its use in computing areas of various regions
with curved boundaries.

5.1 Area and Estimating with Finite Sums

The definite integral is the key tool in calculus for defining and calculating quantities im-
portant to mathematics and science, such as areas, volumes, lengths of curved paths, prob-
abilities, and the weights of various objects, just to mention a few. The idea behind the in-
tegral is that we can effectively compute such quantities by breaking them into small
pieces and then summing the contributions from each piece. We then consider what hap-
pens when more and more, smaller and smaller pieces are taken in the summation process.
Finally, if the number of terms contributing to the sum approaches infinity and we take the
limit of these sums in the way described in Section 5.3, the result is a definite integral. We
prove in Section 5.4 that integrals are connected to antiderivatives, a connection that is one
of the most important relationships in calculus.

The basis for formulating definite integrals is the construction of appropriate finite
sums. Although we need to define precisely what we mean by the area of a general region
in the plane, or the average value of a function over a closed interval, we do have intuitive
ideas of what these notions mean. So in this section we begin our approach to integration
by approximating these quantities with finite sums. We also consider what happens when
we take more and more terms in the summation process. In subsequent sections we look at
taking the limit of these sums as the number of terms goes to infinity, which then leads to
precise definitions of the quantities being approximated here.

Area

Suppose we want to find the area of the shaded region R that lies above the x-axis, below
the graph of and between the vertical lines and (Figure 5.1).
Unfortunately, there is no simple geometric formula for calculating the areas of general
shapes having curved boundaries like the region R. How, then, can we find the area of R?

While we do not yet have a method for determining the exact area of R, we can ap-
proximate it in a simple way. Figure 5.2a shows two rectangles that together contain the
region R. Each rectangle has width and they have heights 1 and moving from
left to right. The height of each rectangle is the maximum value of the function ƒ,

3>4,1>2

x = 1x = 0y = 1 - x2 ,FIGURE 5.1 The area of the region
R cannot be found by a simple
formula.

0.5 1

0.5

0

1

x

y

R

y � 1 � x2
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298 Chapter 5: Integration

obtained by evaluating ƒ at the left endpoint of the subinterval of [0, 1] forming the
base of the rectangle. The total area of the two rectangles approximates the area A of
the region R,

This estimate is larger than the true area A since the two rectangles contain R. We say that
0.875 is an upper sum because it is obtained by taking the height of each rectangle as the
maximum (uppermost) value of ƒ(x) for a point x in the base interval of the rectangle. In
Figure 5.2b, we improve our estimate by using four thinner rectangles, each of width 
which taken together contain the region R. These four rectangles give the approximation

which is still greater than A since the four rectangles contain R.
Suppose instead we use four rectangles contained inside the region R to estimate the

area, as in Figure 5.3a. Each rectangle has width as before, but the rectangles are1>4

A L 1 #  
1
4

+
15
16

 #  
1
4

+
3
4

 #  
1
4

+
7

16
 #  

1
4

=
25
32

= 0.78125,

1>4,

A L 1 #  
1
2

+
3
4

 #  
1
2

=
7
8

= 0.875.

FIGURE 5.2 (a) We get an upper estimate of the area of R by using two rectangles
containing R. (b) Four rectangles give a better upper estimate. Both estimates overshoot
the true value for the area by the amount shaded in light red.

0.5 0.750.25 1

0.5

0

1

x

y

R

y � 1 � x2
(0, 1)

⎛
⎝

⎛
⎝

1
2

3
4

,

⎛
⎝

⎛
⎝

1
4

15
16

,

⎛
⎝

⎛
⎝

3
4

7
16

,

(b)

0.5 1

0.5

0

1

x

y

R

y � 1 � x2

(0, 1)

⎛
⎝

⎛
⎝

1
2

3
4

,

(a)

0.25 0.5 0.75 1

1

0.5

0
x

y

(a)

y � 1 � x2⎛
⎝

⎛
⎝

1
4

15
16

,

⎛
⎝

⎛
⎝

3
4

7
16

,

⎛
⎝

⎛
⎝

1
2

3
4

,

0.125
0.25

0.375
0.5

(b)

0.625
0.75

0.875
1

0.5

0

1

x

y

y � 1 � x2⎛
⎝

⎛
⎝

3
8

55
64

,

⎛
⎝

⎛
⎝

5
8

39
64

,

⎛
⎝

⎛
⎝

1
8

63
64

,

⎛
⎝

⎛
⎝

7
8

15
64

,

FIGURE 5.3 (a) Rectangles contained in R give an estimate for the area that undershoots
the true value by the amount shaded in light blue. (b) The midpoint rule uses rectangles
whose height is the value of at the midpoints of their bases. The estimate
appears closer to the true value of the area because the light red overshoot areas roughly
balance the light blue undershoot areas.

y = ƒsxd
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5.1 Area and Estimating with Finite Sums 299

shorter and lie entirely beneath the graph of ƒ. The function is decreasing
on [0, 1], so the height of each of these rectangles is given by the value of ƒ at the right
endpoint of the subinterval forming its base. The fourth rectangle has zero height and
therefore contributes no area. Summing these rectangles with heights equal to the mini-
mum value of ƒ(x) for a point x in each base subinterval gives a lower sum approximation
to the area,

This estimate is smaller than the area A since the rectangles all lie inside of the region R.
The true value of A lies somewhere between these lower and upper sums:

By considering both lower and upper sum approximations we get not only estimates
for the area, but also a bound on the size of the possible error in these estimates since the
true value of the area lies somewhere between them. Here the error cannot be greater than
the difference 

Yet another estimate can be obtained by using rectangles whose heights are the values
of ƒ at the midpoints of their bases (Figure 5.3b). This method of estimation is called the
midpoint rule for approximating the area. The midpoint rule gives an estimate that is
between a lower sum and an upper sum, but it is not quite so clear whether it overestimates
or underestimates the true area. With four rectangles of width as before, the midpoint
rule estimates the area of R to be

In each of our computed sums, the interval [a, b] over which the function ƒ is defined
was subdivided into n subintervals of equal width (also called length) 
and ƒ was evaluated at a point in each subinterval: in the first subinterval, in the sec-
ond subinterval, and so on. The finite sums then all take the form

By taking more and more rectangles, with each rectangle thinner than before, it appears
that these finite sums give better and better approximations to the true area of the region R.

Figure 5.4a shows a lower sum approximation for the area of R using 16 rectangles of
equal width. The sum of their areas is 0.634765625, which appears close to the true area,
but is still smaller since the rectangles lie inside R.

Figure 5.4b shows an upper sum approximation using 16 rectangles of equal width.
The sum of their areas is 0.697265625, which is somewhat larger than the true area be-
cause the rectangles taken together contain R. The midpoint rule for 16 rectangles gives a
total area approximation of 0.6669921875, but it is not immediately clear whether this es-
timate is larger or smaller than the true area.

EXAMPLE 1 Table 5.1 shows the values of upper and lower sum approximations to the
area of R using up to 1000 rectangles. In Section 5.2 we will see how to get an exact value
of the areas of regions such as R by taking a limit as the base width of each rectangle goes
to zero and the number of rectangles goes to infinity. With the techniques developed there,
we will be able to show that the area of R is exactly  .

Distance Traveled

Suppose we know the velocity function (t) of a car moving down a highway, without chang-
ing direction, and want to know how far it traveled between times and If we al-
ready know an antiderivative F(t) of (t) we can find the car’s position function s(t) by settingy

t = b .t = a
y

2>3

ƒsc1d ¢x + ƒsc2d ¢x + ƒsc3d ¢x +
Á

+ ƒscnd ¢x .

c2c1

¢x = sb - ad>n ,

A L
63
64

 #  
1
4

+
55
64

 #  
1
4

+
39
64

 #  
1
4

+
15
64

 #  
1
4

=
172
64

 #  
1
4

= 0.671875.

1>4

0.78125 - 0.53125 = 0.25.

0.53125 6 A 6 0.78125.

A L
15
16

 #  
1
4

+
3
4

 #  
1
4

+
7

16
 #  

1
4

+ 0 #  
1
4

=
17
32

= 0.53125.

ƒsxd = 1 - x2

FIGURE 5.4 (a) A lower sum using 16
rectangles of equal width 
(b) An upper sum using 16 rectangles.

¢x = 1>16.

1

1

0
x

y

(a)

y � 1 � x2

1

1

0
x

y

(b)

y � 1 � x2
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300 Chapter 5: Integration

The distance traveled can then be found by calculating the change in posi-
tion, If the velocity function is known only by the readings at
various times of a speedometer on the car, then we have no formula from which to obtain an
antiderivative function for velocity. So what do we do in this situation?

When we don’t know an antiderivative for the velocity function (t), we can apply the
same principle of approximating the distance traveled with finite sums in a way similar to
our estimates for area discussed before. We subdivide the interval [a, b] into short time in-
tervals on each of which the velocity is considered to be fairly constant. Then we approxi-
mate the distance traveled on each time subinterval with the usual distance formula

and add the results across [a, b].
Suppose the subdivided interval looks like

with the subintervals all of equal length Pick a number in the first interval. If is
so small that the velocity barely changes over a short time interval of duration then the
distance traveled in the first time interval is about If is a number in the second
interval, the distance traveled in the second time interval is about The sum of the
distances traveled over all the time intervals is

where n is the total number of subintervals.

EXAMPLE 2 The velocity function of a projectile fired straight into the air is
Use the summation technique just described to estimate how

far the projectile rises during the first 3 sec. How close do the sums come to the exact
value of 435.9 m?

Solution We explore the results for different numbers of intervals and different choices
of evaluation points. Notice that ƒ(t) is decreasing, so choosing left endpoints gives an up-
per sum estimate; choosing right endpoints gives a lower sum estimate.

(a) Three subintervals of length 1, with ƒ evaluated at left endpoints giving an upper sum:

t 
0 1 2 3

�t

t1 t2 t3

ƒstd = 160 - 9.8t m>sec.

D L yst1d ¢t + yst2d ¢t +
Á

+ ystnd ¢t ,

yst2d ¢t .
t2yst1d ¢t .

¢t,
¢tt1¢t .

t (sec) ba

�t �t �t

t1 t2 t3

distance = velocity * time

y

ssbd - ssad = F(b) - F(a).
sstd = Fstd + C .

TABLE 5.1 Finite approximations for the area of R

Number of
subintervals Lower sum Midpoint rule Upper sum

2 .375 .6875 .875

4 .53125 .671875 .78125

16 .634765625 .6669921875 .697265625

50 .6566 .6667 .6766

100 .66165 .666675 .67165

1000 .6661665 .66666675 .6671665
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With ƒ evaluated at and 2, we have

(b) Three subintervals of length 1, with ƒ evaluated at right endpoints giving a lower sum:

With ƒ evaluated at and 3, we have

(c) With six subintervals of length , we get

These estimates give an upper sum using left endpoints: and a lower
sum using right endpoints: These six-interval estimates are somewhat
closer than the three-interval estimates. The results improve as the subintervals get
shorter.

As we can see in Table 5.2, the left-endpoint upper sums approach the true value
435.9 from above, whereas the right-endpoint lower sums approach it from below. The true
value lies between these upper and lower sums. The magnitude of the error in the closest
entries is 0.23, a small percentage of the true value.

It would be reasonable to conclude from the table’s last entries that the projectile rose
about 436 m during its first 3 sec of flight.

 Error percentage =
0.23

435.9
L 0.05%.

 = ƒ 435.9 - 435.67 ƒ = 0.23.

 Error magnitude = ƒ true value - calculated value ƒ

D L 428.55.
D L 443.25;

t 
0 1 2 3

t 
0 1 2 3

�t �t

t1 t2 t3 t4 t5 t6 t1 t2 t3 t4 t5 t6

1>2
 = 421.2.

 = [160 - 9.8s1d]s1d + [160 - 9.8s2d]s1d + [160 - 9.8s3d]s1d

 D L ƒst1d ¢t + ƒst2d ¢t + ƒst3d ¢t

t = 1, 2 ,

t 
0 1 2 3

�t

t1 t2 t3

 = 450.6.

 = [160 - 9.8s0d]s1d + [160 - 9.8s1d]s1d + [160 - 9.8s2d]s1d

 D L ƒst1d ¢t + ƒst2d ¢t + ƒst3d ¢t

t = 0, 1 ,

5.1 Area and Estimating with Finite Sums 301

TABLE 5.2 Travel-distance estimates

Number of Length of each Upper Lower
subintervals subinterval sum sum

3 1 450.6 421.2

6 443.25 428.55

12 439.58 432.23

24 437.74 434.06

48 436.82 434.98

96 436.36 435.44

192 436.13 435.671>64

1>32

1>16

1>8
1>4
1>2
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302 Chapter 5: Integration

Displacement Versus Distance Traveled

If an object with position function s(t) moves along a coordinate line without changing
direction, we can calculate the total distance it travels from to by summing
the distance traveled over small intervals, as in Example 2. If the object reverses direction
one or more times during the trip, then we need to use the object’s speed which is
the absolute value of its velocity function, (t), to find the total distance traveled. Using
the velocity itself, as in Example 2, gives instead an estimate to the object’s displacement,

the difference between its initial and final positions.
To see why using the velocity function in the summation process gives an estimate to

the displacement, partition the time interval [a, b] into small enough equal subintervals 
so that the object’s velocity does not change very much from time to Then 
gives a good approximation of the velocity throughout the interval. Accordingly, the
change in the object’s position coordinate during the time interval is about

The change is positive if is positive and negative if is negative.
In either case, the distance traveled by the object during the subinterval is about

The total distance traveled is approximately the sum

We revisit these ideas in Section 5.4.

EXAMPLE 3 In Example 4 in Section 3.4, we analyzed the motion of a heavy rock
blown straight up by a dynamite blast. In that example, we found the velocity of the rock at
any time during its motion to be The rock was 256 ft above the
ground 2 sec after the explosion, continued upwards to reach a maximum height of 400 ft
at 5 sec after the explosion, and then fell back down to reach the height of 256 ft again at

after the explosion. (See Figure 5.5.)
If we follow a procedure like that presented in Example 2, and use the velocity func-

tion in the summation process over the time interval [0, 8], we will obtain an estimate
to 256 ft, the rock’s height above the ground at The positive upward motion (which
yields a positive distance change of 144 ft from the height of 256 ft to the maximum
height) is cancelled by the negative downward motion (giving a negative change of 144 ft
from the maximum height down to 256 ft again), so the displacement or height above the
ground is being estimated from the velocity function.

On the other hand, if the absolute value is used in the summation process, we
will obtain an estimate to the total distance the rock has traveled: the maximum height
reached of 400 ft plus the additional distance of 144 ft it has fallen back down from that
maximum when it again reaches the height of 256 ft at That is, using the ab-
solute value of the velocity function in the summation process over the time interval [0, 8],
we obtain an estimate to 544 ft, the total distance up and down that the rock has traveled in
8 sec. There is no cancellation of distance changes due to sign changes in the velocity
function, so we estimate distance traveled rather than displacement when we use the ab-
solute value of the velocity function (that is, the speed of the rock).

As an illustration of our discussion, we subdivide the interval [0, 8] into sixteen subin-
tervals of length and take the right endpoint of each subinterval in our calcula-
tions. Table 5.3 shows the values of the velocity function at these endpoints.

Using in the summation process, we estimate the displacement at 

Error magnitude = 256 - 192 = 64

+ 0 - 16 - 32 - 48 - 64 - 80 - 96d # 1
2

= 192

s144 + 128 + 112 + 96 + 80 + 64 + 48 + 32 + 16

t = 8:ystd

¢t = 1>2

t = 8 sec.

ƒ ystd ƒ

t = 8.
ystd

t = 8 sec

ystd = 160 - 32t ft>sec.

ƒ yst1d ƒ  ¢t + ƒ yst2d ƒ ¢t +
Á

+ ƒ ystnd ƒ  ¢t .

ƒ ystkd ƒ  ¢t .

ystkdystkd

ystkd ¢t .

ystkdtk .tk - 1

¢t

ssbd - ssad,

y
ƒ ystd ƒ ,

t = bt = a

TABLE 5.3 Velocity Function

t t

0 160 4.5 16

0.5 144 5.0 0

1.0 128 5.5

1.5 112 6.0

2.0 96 6.5

2.5 80 7.0

3.0 64 7.5

3.5 48 8.0

4.0 32

-96

-80

-64

-48

-32

-16

Y(t)Y(t)

FIGURE 5.5 The rock 
in Example 3. The height 
256 ft is reached at 

and 
The rock falls 144 ft 
from its maximum 
height when t = 8.

t = 8 sec.t = 2

s

256

H
ei

gh
t (

ft
)

400

s 5 0

144
(1) (2)
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Using in the summation process, we estimate the total distance traveled over
the time interval 

If we take more and more subintervals of [0, 8] in our calculations, the estimates to
256 ft and 544 ft improve, approaching their true values. 

Average Value of a Nonnegative Continuous Function

The average value of a collection of n numbers is obtained by adding them
together and dividing by n. But what is the average value of a continuous function ƒ on an
interval [a, b]? Such a function can assume infinitely many values. For example, the tem-
perature at a certain location in a town is a continuous function that goes up and down
each day. What does it mean to say that the average temperature in the town over the
course of a day is 73 degrees?

When a function is constant, this question is easy to answer. A function with constant
value c on an interval [a, b] has average value c. When c is positive, its graph over [a, b]
gives a rectangle of height c. The average value of the function can then be interpreted
geometrically as the area of this rectangle divided by its width (Figure 5.6a).b - a

x1, x2 , Á , xn

Error magnitude = 544 - 528 = 16

+ 0 + 16 + 32 + 48 + 64 + 80 + 96d # 1
2

= 528

s144 + 128 + 112 + 96 + 80 + 64 + 48 + 32 + 16

[0, 8]:
ƒ ystd ƒ
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x

y

x

y

0 a b

c

0 a b

c
y � c

y � g(x)

(a) (b)

FIGURE 5.6 (a) The average value of on [a, b] is the area of the
rectangle divided by (b) The average value of g(x) on [a, b] is the
area beneath its graph divided by b - a .

b - a .
ƒsxd = c

What if we want to find the average value of a nonconstant function, such as the func-
tion g in Figure 5.6b? We can think of this graph as a snapshot of the height of some water
that is sloshing around in a tank between enclosing walls at and As the
water moves, its height over each point changes, but its average height remains the same.
To get the average height of the water, we let it settle down until it is level and its height is
constant. The resulting height c equals the area under the graph of g divided by We
are led to define the average value of a nonnegative function on an interval [a, b] to be the
area under its graph divided by For this definition to be valid, we need a precise 
understanding of what is meant by the area under a graph. This will be obtained in Section
5.3, but for now we look at an example.

EXAMPLE 4 Estimate the average value of the function on the interval

Solution Looking at the graph of sin x between 0 and in Figure 5.7, we can see that its
average height is somewhere between 0 and 1. To find the average we need to calculate the
area A under the graph and then divide this area by the length of the interval, 

We do not have a simple way to determine the area, so we approximate it with finite
sums. To get an upper sum approximation, we add the areas of eight rectangles of equal

p - 0 = p .

p

[0, p].
ƒsxd = sin x

b - a .

b - a .

x = b .x = a

FIGURE 5.7 Approximating the
area under between
0 and to compute the average
value of sin x over using
eight rectangles (Example 4).

[0, p] ,
p

ƒsxd = sin x

1

0 �
x

y

�
2

f (x) � sin x
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304 Chapter 5: Integration

width that together contain the region beneath the graph of and above the
x-axis on We choose the heights of the rectangles to be the largest value of sin x on
each subinterval. Over a particular subinterval, this largest value may occur at the left end-
point, the right endpoint, or somewhere between them. We evaluate sin x at this point to
get the height of the rectangle for an upper sum. The sum of the rectangle areas then esti-
mates the total area (Figure 5.7):

To estimate the average value of sin x we divide the estimated area by and obtain the ap-
proximation 

Since we used an upper sum to approximate the area, this estimate is greater than the ac-
tual average value of sin x over If we use more and more rectangles, with each rectan-
gle getting thinner and thinner, we get closer and closer to the true average value. Using the
techniques covered in Section 5.3, we will show that the true average value is 

As before, we could just as well have used rectangles lying under the graph of
and calculated a lower sum approximation, or we could have used the midpoint

rule. In Section 5.3 we will see that in each case, the approximations are close to the true
area if all the rectangles are sufficiently thin.

Summary

The area under the graph of a positive function, the distance traveled by a moving object that
doesn’t change direction, and the average value of a nonnegative function over an interval
can all be approximated by finite sums. First we subdivide the interval into subintervals,
treating the appropriate function ƒ as if it were constant over each particular subinterval.
Then we multiply the width of each subinterval by the value of ƒ at some point within it,
and add these products together. If the interval [a, b] is subdivided into n subintervals of
equal widths and if is the value of ƒ at the chosen point in the
kth subinterval, this process gives a finite sum of the form

The choices for the could maximize or minimize the value of ƒ in the kth subinterval, or
give some value in between. The true value lies somewhere between the approximations
given by upper sums and lower sums. The finite sum approximations we looked at im-
proved as we took more subintervals of thinner width.

ck

ƒsc1d ¢x + ƒsc2d ¢x + ƒsc3d ¢x +
Á

+ ƒscnd ¢x .

ckƒsckd¢x = sb - ad>n ,

y = sin x

2>p L 0.64.

[0, p] .

2.365>p L 0.753.
p

 L s.38 + .71 + .92 + 1 + 1 + .92 + .71 + .38d #  
p
8

= s6.02d #  
p
8

L 2.365.

 A L asin 
p
8

+ sin 
p
4

+ sin 
3p
8

+ sin 
p
2

+ sin 
p
2

+ sin 
5p
8

+ sin 
3p
4

+ sin 
7p
8
b # p

8

[0, p] .
y = sin xp>8

Exercises 5.1

Area
In Exercises 1–4, use finite approximations to estimate the area under
the graph of the function using

a. a lower sum with two rectangles of equal width.

b. a lower sum with four rectangles of equal width.

c. an upper sum with two rectangles of equal width.

d. an upper sum with four rectangles of equal width.

1. between and 

2. between and x = 1.x = 0ƒsxd = x3

x = 1.x = 0ƒsxd = x2

3. between and 

4. between and 

Using rectangles whose height is given by the value of the func-
tion at the midpoint of the rectangle’s base (the midpoint rule), esti-
mate the area under the graphs of the following functions, using first
two and then four rectangles.

5. between and 

6. between and 

7. between and 

8. between and x = 2.x = -2ƒsxd = 4 - x2

x = 5.x = 1ƒsxd = 1>x
x = 1.x = 0ƒsxd = x3

x = 1.x = 0ƒsxd = x2

x = 2.x = -2ƒsxd = 4 - x2

x = 5.x = 1ƒsxd = 1>x
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Distance
9. Distance traveled The accompanying table shows the velocity

of a model train engine moving along a track for 10 sec. Estimate
the distance traveled by the engine using 10 subintervals of length
1 with

a. left-endpoint values.

b. right-endpoint values.

5.1 Area and Estimating with Finite Sums 305

12. Distance from velocity data The accompanying table gives
data for the velocity of a vintage sports car accelerating from 0 to
142 mi h in 36 sec (10 thousandths of an hour).>

Time Velocity Time Velocity
(sec) (in. sec) (sec) (in. sec)

0 0 6 11
1 12 7 6
2 22 8 2
3 10 9 6
4 5 10 0
5 13

//

Time Velocity Time Velocity
(min) (m sec) (min) (m sec)

0 1 35 1.2
5 1.2 40 1.0

10 1.7 45 1.8
15 2.0 50 1.5
20 1.8 55 1.2
25 1.6 60 0
30 1.4

//

Velocity Velocity
Time (converted to ft sec) Time (converted to ft sec)
(sec) (30 mi h � 44 ft sec) (sec) (30 mi h � 44 ft sec)

0 0 70 15
10 44 80 22
20 15 90 35
30 35 100 44
40 30 110 30
50 44 120 35
60 35

////
//

Time Velocity Time Velocity
(h) (mi h) (h) (mi h)

0.0 0 0.006 116
0.001 40 0.007 125
0.002 62 0.008 132
0.003 82 0.009 137
0.004 96 0.010 142
0.005 108

//

t 0 1 2 3 4 5

a 32.00 19.41 11.77 7.14 4.33 2.63

10. Distance traveled upstream You are sitting on the bank of a
tidal river watching the incoming tide carry a bottle upstream.
You record the velocity of the flow every 5 minutes for an hour,
with the results shown in the accompanying table. About how far
upstream did the bottle travel during that hour? Find an estimate
using 12 subintervals of length 5 with

a. left-endpoint values.

b. right-endpoint values.

11. Length of a road You and a companion are about to drive a
twisty stretch of dirt road in a car whose speedometer works but
whose odometer (mileage counter) is broken. To find out how
long this particular stretch of road is, you record the car’s velocity
at 10-sec intervals, with the results shown in the accompanying
table. Estimate the length of the road using

a. left-endpoint values.

b. right-endpoint values.

hours
0

20

0.01

40

60

80

100

120

140

160

0.0080.0060.0040.002

mi/hr

a. Use rectangles to estimate how far the car traveled during the
36 sec it took to reach 142 mi h.

b. Roughly how many seconds did it take the car to reach the
halfway point? About how fast was the car going then?

13. Free fall with air resistance An object is dropped straight
down from a helicopter. The object falls faster and faster but its
acceleration (rate of change of its velocity) decreases over time
because of air resistance. The acceleration is measured in 
and recorded every second after the drop for 5 sec, as shown:

ft>sec2

>

a. Find an upper estimate for the speed when 

b. Find a lower estimate for the speed when 

c. Find an upper estimate for the distance fallen when 

14. Distance traveled by a projectile An object is shot straight up-
ward from sea level with an initial velocity of 400 ft sec.

a. Assuming that gravity is the only force acting on the object,
give an upper estimate for its velocity after 5 sec have
elapsed. Use for the gravitational acceleration.

b. Find a lower estimate for the height attained after 5 sec.

g = 32 ft>sec2

>
t = 3.

t = 5.

t = 5.
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Average Value of a Function
In Exercises 15–18, use a finite sum to estimate the average value of ƒ
on the given interval by partitioning the interval into four subintervals
of equal length and evaluating ƒ at the subinterval midpoints.

15. on [0, 2] 16. on [1, 9]

17. on [0, 2]

18. on [0, 4]

Examples of Estimations
19. Water pollution Oil is leaking out of a tanker damaged at sea.

The damage to the tanker is worsening as evidenced by the in-
creased leakage each hour, recorded in the following table.

t

y

0 2 4

1

1 3

 cos⎛
⎝

⎛
⎝
4

y � 1 � �t
4

ƒstd = 1 - acos 
pt
4
b4

1 2

0.5

0

1

1.5

t

y

y � � sin2 �t1
2

ƒstd = s1>2d + sin2 pt

ƒsxd = 1>xƒsxd = x3

Measurements are taken at the end of each month determining
the rate at which pollutants are released into the atmosphere,
recorded as follows.

Time (h) 0 1 2 3 4

Leakage (gal h) 50 70 97 136 190/

Time (h) 5 6 7 8

Leakage (gal h) 265 369 516 720/

a. Give an upper and a lower estimate of the total quantity of oil
that has escaped after 5 hours.

b. Repeat part (a) for the quantity of oil that has escaped after
8 hours.

c. The tanker continues to leak 720 gal h after the first 8 hours.
If the tanker originally contained 25,000 gal of oil, approxi-
mately how many more hours will elapse in the worst case
before all the oil has spilled? In the best case?

20. Air pollution A power plant generates electricity by burning
oil. Pollutants produced as a result of the burning process are re-
moved by scrubbers in the smokestacks. Over time, the scrubbers
become less efficient and eventually they must be replaced when
the amount of pollution released exceeds government standards.

>

Month Jan Feb Mar Apr May Jun

Pollutant
release rate 0.20 0.25 0.27 0.34 0.45 0.52
(tons day) >

Month Jul Aug Sep Oct Nov Dec

Pollutant
release rate 0.63 0.70 0.81 0.85 0.89 0.95
(tons day)>

a. Assuming a 30-day month and that new scrubbers allow only
0.05 ton day to be released, give an upper estimate of the to-
tal tonnage of pollutants released by the end of June. What is
a lower estimate?

b. In the best case, approximately when will a total of 125 tons
of pollutants have been released into the atmosphere?

21. Inscribe a regular n-sided polygon inside a circle of radius 1 and
compute the area of the polygon for the following values of n:

a. 4 (square) b. 8 (octagon) c. 16

d. Compare the areas in parts (a), (b), and (c) with the area of
the circle.

22. (Continuation of Exercise 21. )

a. Inscribe a regular n-sided polygon inside a circle of radius 1
and compute the area of one of the n congruent triangles
formed by drawing radii to the vertices of the polygon.

b. Compute the limit of the area of the inscribed polygon as

c. Repeat the computations in parts (a) and (b) for a circle of
radius r.

COMPUTER EXPLORATIONS
In Exercises 23–26, use a CAS to perform the following steps.

a. Plot the functions over the given interval.

b. Subdivide the interval into 200, and 1000 subinter-
vals of equal length and evaluate the function at the midpoint
of each subinterval.

c. Compute the average value of the function values generated
in part (b).

d. Solve the equation for x using the av-
erage value calculated in part (c) for the partitioning.

23. on 24. on

25. on 26. on cp
4

, p dƒsxd = x sin2 
1
xcp

4
, p dƒsxd = x sin 

1
x

[0, p]ƒsxd = sin2 x[0, p]ƒsxd = sin x

n = 1000
ƒsxd = saverage valued

n = 100,

n : q .

>
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5.2 Sigma Notation and Limits of Finite Sums

In estimating with finite sums in Section 5.1, we encountered sums with many terms (up
to 1000 in Table 5.1, for instance). In this section we introduce a more convenient notation
for sums with a large number of terms. After describing the notation and stating several of
its properties, we look at what happens to a finite sum approximation as the number of
terms approaches infinity.

Finite Sums and Sigma Notation

Sigma notation enables us to write a sum with many terms in the compact form

The Greek letter (capital sigma, corresponding to our letter S), stands for “sum.” The
index of summation k tells us where the sum begins (at the number below the symbol)
and where it ends (at the number above ). Any letter can be used to denote the index, but
the letters i, j, and k are customary.

Thus we can write

and

The lower limit of summation does not have to be 1; it can be any integer.

EXAMPLE 1

ƒs1d + ƒs2d + ƒs3d +
Á

+ ƒs100d = a

100

i = 1
ƒsid .

12
+ 22

+ 32
+ 42

+ 52
+ 62

+ 72
+ 82

+ 92
+ 102

+ 112
= a

11

k = 1
k2,

k 5 1

ak

n

The index k ends at k 5 n.

The index k starts at k 5 1.

ak is a formula for the kth term.

The summation symbol
(Greek letter sigma)

©

©

©

a

n

k = 1
ak = a1 + a2 + a3 +

Á
+ an - 1 + an .

5.2 Sigma Notation and Limits of Finite Sums 307

A sum in The sum written out, one The value
sigma notation term for each value of k of the sum

15

16
3

+
25
4

=
139
12

42

4 - 1
+

52

5 - 1a

5

k = 4
 

k2

k - 1

1
2

+
2
3

=
7
6

1
1 + 1

+
2

2 + 1a

2

k = 1
 

k
k + 1

-1 + 2 - 3 = -2s -1d1s1d + s -1d2s2d + s -1d3s3da

3

k = 1
s -1dk k

1 + 2 + 3 + 4 + 5a

5

k = 1
k
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308 Chapter 5: Integration

EXAMPLE 2 Express the sum in sigma notation.

Solution The formula generating the terms changes with the lower limit of summa-
tion, but the terms generated remain the same. It is often simplest to start with or

, but we can start with any integer.

When we have a sum such as

we can rearrange its terms,

Regroup terms.

This illustrates a general rule for finite sums:

Four such rules are given below. A proof that they are valid can be obtained using mathe-
matical induction (see Appendix 2).

a

n

k = 1
sak + bkd = a

n

k = 1
ak + a

n

k = 1
bk

 = a

3

k = 1
 k + a

3

k = 1
 k

2.

 = s1 + 2 + 3d + s12
+ 22

+ 32d

 a

3

k = 1
sk + k 2d = s1 + 12d + s2 + 22d + s3 + 32d

a

3

k = 1
sk + k 2d

 Starting with k = -3:  1 + 3 + 5 + 7 + 9 = a

1

k = -3
s2k + 7d

 Starting with k = 2:   1 + 3 + 5 + 7 + 9 = a

6

k = 2
s2k - 3d

 Starting with k = 1:   1 + 3 + 5 + 7 + 9 = a

5

k = 1
s2k - 1d

 Starting with k = 0:   1 + 3 + 5 + 7 + 9 = a

4

k = 0
s2k + 1d

k = 1
k = 0

1 + 3 + 5 + 7 + 9

Algebra Rules for Finite Sums

1. Sum Rule:

2. Difference Rule:

3. Constant Multiple Rule: (Any number c)

4. Constant Value Rule: (c is any constant value.)a

n

k = 1
c = n # c

a

n

k = 1
cak = c #

a

n

k = 1
ak

a

n

k = 1
(ak - bk) = a

n

k = 1
ak - a

n

k = 1
bk

a

n

k = 1
(ak + bk) = a

n

k = 1
ak + a

n

k = 1
bk

EXAMPLE 3 We demonstrate the use of the algebra rules.

(a)

(b) Constant Multiple Rulea

n

k = 1
s -akd = a

n

k = 1
s -1d # ak = -1 #

a

n

k = 1
ak = -a

n

k = 1
ak

a

n

k = 1
s3k - k 2d = 3a

n

k = 1
k - a

n

k = 1
k 2 Difference Rule and

Constant Multiple Rule
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5.2 Sigma Notation and Limits of Finite Sums 309

(c) Sum Rule

(d)

Over the years people have discovered a variety of formulas for the values of finite sums.
The most famous of these are the formula for the sum of the first n integers (Gauss is said
to have discovered it at age 8) and the formulas for the sums of the squares and cubes of
the first n integers.

EXAMPLE 4 Show that the sum of the first n integers is

Solution The formula tells us that the sum of the first 4 integers is

Addition verifies this prediction:

To prove the formula in general, we write out the terms in the sum twice, once forward and
once backward.

If we add the two terms in the first column we get Similarly, if we add
the two terms in the second column we get The two terms in any
column sum to When we add the n columns together we get n terms, each equal to

for a total of Since this is twice the desired quantity, the sum of the first
n integers is 

Formulas for the sums of the squares and cubes of the first n integers are proved using
mathematical induction (see Appendix 2). We state them here.

sndsn + 1d>2.
nsn + 1d .n + 1,

n + 1.
2 + sn - 1d = n + 1.

1 + n = n + 1.

1 + 2 + 3 +
Á

+ n

n + sn - 1d + sn - 2d +
Á

+ 1

1 + 2 + 3 + 4 = 10.

s4ds5d
2

= 10.

a

n

k = 1
k =

nsn + 1d
2

.

a

n

k = 1
 
1
n = n # 1

n = 1

 = 6 + 12 = 18

 = s1 + 2 + 3d + s3 # 4d

 a

3

k = 1
sk + 4d = a

3

k = 1
k + a

3

k = 1
4

Constant Value Rule

Constant Value Rule
( is constant)1>n

HISTORICAL BIOGRAPHY

Carl Friedrich Gauss
(1777–1855)

 The first n cubes: a

n

k = 1
k 3

= ansn + 1d
2

b2

The first n squares:   a
n

k = 1
k 2

=

nsn + 1ds2n + 1d
6

Limits of Finite Sums

The finite sum approximations we considered in Section 5.1 became more accurate as the
number of terms increased and the subinterval widths (lengths) narrowed. The next exam-
ple shows how to calculate a limiting value as the widths of the subintervals go to zero and
their number grows to infinity.

EXAMPLE 5 Find the limiting value of lower sum approximations to the area of the re-
gion R below the graph of and above the interval [0, 1] on the x-axis using
equal-width rectangles whose widths approach zero and whose number approaches infin-
ity. (See Figure 5.4a.)

y = 1 - x2
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310 Chapter 5: Integration

Solution We compute a lower sum approximation using n rectangles of equal width
and then we see what happens as We start by subdividing [0, 1]

into n equal width subintervals

Each subinterval has width . The function is decreasing on [0, 1], and its small-
est value in a subinterval occurs at the subinterval’s right endpoint. So a lower sum is con-
structed with rectangles whose height over the subinterval is 

giving the sum

We write this in sigma notation and simplify,

Difference Rule

Sum of the First n Squares

Numerator expanded

We have obtained an expression for the lower sum that holds for any n. Taking the
limit of this expression as we see that the lower sums converge as the number of
subintervals increases and the subinterval widths approach zero:

The lower sum approximations converge to . A similar calculation shows that the upper
sum approximations also converge to . Any finite sum approximation
also converges to the same value, . This is because it is possible to show that any finite
sum approximation is trapped between the lower and upper sum approximations. For this
reason we are led to define the area of the region R as this limiting value. In Section 5.3 we
study the limits of such finite approximations in a general setting.

Riemann Sums

The theory of limits of finite approximations was made precise by the German mathemati-
cian Bernhard Riemann. We now introduce the notion of a Riemann sum, which underlies
the theory of the definite integral studied in the next section.

We begin with an arbitrary bounded function ƒ defined on a closed interval [a, b].
Like the function pictured in Figure 5.8, ƒ may have negative as well as positive values. We
subdivide the interval [a, b] into subintervals, not necessarily of equal widths (or lengths),
and form sums in the same way as for the finite approximations in Section 5.1. To do so,
we choose points between a and b and satisfying

a 6 x1 6 x2 6
Á

6 xn - 1 6 b .

5x1, x2 , x3 , Á , xn - 16n - 1

2>3 gn
k = 1 ƒsckds1>nd2>3 2>3

lim
n: q

a1 -
2n3

+ 3n2
+ n

6n3 b = 1 -
2
6

=
2
3

.

n : q ,

 = 1 -
2n3

+ 3n2
+ n

6n3 .

 = 1 - a 1
n3 b  

sndsn + 1ds2n + 1d
6

 = n # 1
n -

1
n3a

n

k = 1
k 2

 = a

n

k = 1
 
1
n - a

n

k = 1
 
k 2

n3

 = a

n

k = 1
 a1n -

k 2

n3 b
 a

n

k = 1
ƒ ak

n b a1n b = a

n

k = 1
a1 - ak

n b
2b a1n b

cƒ a1n b d a1n b + cƒ a2n b d a1n b +
Á

+ cƒ ak
n b d a1n b +

Á
+ cƒ ann b d a1n b .

1 - sk>nd2 ,
ƒsk>nd =[sk - 1d>n, k>n]

1 - x21>n
c0, 

1
n d , c1n , 

2
n d , Á , cn - 1

n , 
n
n d .

n : q .¢x = s1 - 0d>n,

Constant Value and
Constant Multiple Rules
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y

x
0 ba

y 5 f (x)

FIGURE 5.8 A typical continuous
function over a closed interval
[a, b].

y = ƒsxd

To make the notation consistent, we denote a by and b by so that

The set

is called a partition of [a, b].
The partition P divides [a, b] into n closed subintervals

The first of these subintervals is the second is and the kth subinterval of
P is for k an integer between 1 and n.

The width of the first subinterval is denoted the width of the second
is denoted and the width of the kth subinterval is If all n

subintervals have equal width, then the common width is equal to 

In each subinterval we select some point. The point chosen in the kth subinterval
is called Then on each subinterval we stand a vertical rectangle that

stretches from the x-axis to touch the curve at These rectangles can be above
or below the x-axis, depending on whether is positive or negative, or on the x-axis
if (Figure 5.9).

On each subinterval we form the product This product is positive, nega-
tive, or zero, depending on the sign of When the product is
the area of a rectangle with height and width When the product

is a negative number, the negative of the area of a rectangle of width that
drops from the x-axis to the negative number ƒsckd .

¢xkƒsckd #
¢xk

ƒsckd 6 0,¢xk .ƒsckd
ƒsckd #

¢xkƒsckd 7 0,ƒsckd .
ƒsckd #

¢xk .
ƒsckd = 0

ƒsckd
sck , ƒsckdd .

ck .[xk - 1, xk]

x
{ { { { { {x0 5 a x1 x2 xk21 xk xn21 xn 5 b

DxnDxkDx1 Dx2

sb - ad>n .¢x
¢xk = xk - xk - 1 .¢x2 ,[x1, x2]

¢x1 ,[x0 , x1]

x

• • • • • •

kth subinterval

x0 � a xn � bx1 x2 xk�1 xn�1xk

[xk - 1, xk] ,
[x1, x2] ,[x0 , x1] ,

[x0 , x1], [x1, x2], Á , [xn - 1, xn] .

P = 5x0 , x1, x2 , Á , xn - 1, xn6
a = x0 6 x1 6 x2 6

Á
6 xn - 1 6 xn = b .

xn ,x0

x

y

0

(c2,  f (c2))

(c1,  f (c1))

x0 � a x1 x2 xk�1 xk xn�1 xn � b

ck cn
c2c1

kth rectangle

(ck,  f (ck))

y � f (x)
(cn,  f (cn))

FIGURE 5.9 The rectangles approximate the region between the graph of the function
and the x-axis. Figure 5.8 has been enlarged to enhance the partition of 

and selection of points that produce the rectangles.ck

[a, b]y = ƒsxd
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312 Chapter 5: Integration

Finally we sum all these products to get

The sum is called a Riemann sum for ƒ on the interval [a, b]. There are many such
sums, depending on the partition P we choose, and the choices of the points in 
the subintervals. For instance, we could choose n subintervals all having equal width

to partition and then choose the point to be the right-hand end-
point of each subinterval when forming the Riemann sum (as we did in Example 5). This
choice leads to the Riemann sum formula

Similar formulas can be obtained if instead we choose to be the left-hand endpoint, or
the midpoint, of each subinterval.

In the cases in which the subintervals all have equal width we can
make them thinner by simply increasing their number n. When a partition has subintervals
of varying widths, we can ensure they are all thin by controlling the width of a widest
(longest) subinterval. We define the norm of a partition P, written to be the largest of
all the subinterval widths. If is a small number, then all of the subintervals in the parti-
tion P have a small width. Let’s look at an example of these ideas.

EXAMPLE 6 The set is a partition of [0, 2]. There are five
subintervals of P: [0, 0.2], [0.2, 0.6], [0.6, 1], [1, 1.5], and [1.5, 2]:

The lengths of the subintervals are and
The longest subinterval length is 0.5, so the norm of the partition is 

In this example, there are two subintervals of this length.

Any Riemann sum associated with a partition of a closed interval [a, b] defines rec-
tangles that approximate the region between the graph of a continuous function ƒ and the
x-axis. Partitions with norm approaching zero lead to collections of rectangles that approx-
imate this region with increasing accuracy, as suggested by Figure 5.10. We will see in the
next section that if the function ƒ is continuous over the closed interval [a, b], then no mat-
ter how we choose the partition P and the points in its subintervals to construct a
Riemann sum, a single limiting value is approached as the subinterval widths, controlled
by the norm of the partition, approach zero.

ck

7P 7 = 0.5.¢x5 = 0.5.
¢x1 = 0.2, ¢x2 = 0.4, ¢x3 = 0.4, ¢x4 = 0.5,

x 

�x1 �x2 �x3

0 0.2 0.6 1 1.5 2

�x4 �x5

P = {0, 0.2, 0.6, 1, 1.5, 2}

7P 7 7P 7 ,

¢x = sb - ad>n,

ck

Sn = a

n

k = 1
ƒ aa + k 

b - a
n b # ab - a

n b .

ck[a, b],¢x = sb - ad>n
ck

SP

SP = a

n

k = 1
ƒsckd ¢xk .

(a)

(b)

x
0 ba

y

y

x
0 ba

y � f (x)

y � f (x)

FIGURE 5.10 The curve of Figure 5.9
with rectangles from finer partitions of 
[a, b]. Finer partitions create collections of
rectangles with thinner bases that
approximate the region between the graph
of ƒ and the x-axis with increasing
accuracy.

Exercises 5.2

Sigma Notation
Write the sums in Exercises 1–6 without sigma notation. Then evalu-
ate them.

1. 2.

3. 4.

5. 6. a

4

k = 1
s -1dk cos kpa

3

k = 1
s -1dk + 1 sin 

p

k

a

5

k = 1
 sin kpa

4

k = 1
 cos kp

a

3

k = 1
 
k - 1

ka

2

k = 1
 

6k
k + 1

7. Which of the following express in
sigma notation?

a. b. c.

8. Which of the following express in
sigma notation?

a. b. c. a

3

k = -2
s -1dk + 1 2k + 2

a

5

k = 0
s -1dk 2k

a

6

k = 1
s -2dk - 1

1 - 2 + 4 - 8 + 16 - 32

a

4

k = -1
2k + 1

a

5

k = 0
2k

a

6

k = 1
2k - 1

1 + 2 + 4 + 8 + 16 + 32
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9. Which formula is not equivalent to the other two?

a. b. c.

10. Which formula is not equivalent to the other two?

a. b. c.

Express the sums in Exercises 11–16 in sigma notation. The form of your
answer will depend on your choice of the lower limit of summation.

11. 12.

13. 14.

15. 16.

Values of Finite Sums

17. Suppose that and Find the values of

a. b. c.

d. e.

18. Suppose that and Find the values of

a. b.

c. d.

Evaluate the sums in Exercises 19–32.

19. a. b. c.

20. a. b. c.

21. 22.

23. 24. a

6

k = 1
sk 2

- 5da

6

k = 1
s3 - k 2d

a

5

k = 1
 
pk
15a

7

k = 1
s -2kd

a

13

k = 1
k 3

a

13

k = 1
k 2

a

13

k = 1
k

a

10

k = 1
k 3

a

10

k = 1
k 2

a

10

k = 1
k

a

n

k = 1
sbk - 1da

n

k = 1
sak + 1d

a

n

k = 1
250bka

n

k = 1
8ak

a

n

k = 1
bk = 1.a

n

k = 1
ak = 0

a

n

k = 1
sbk - 2akda

n

k = 1
sak - bkd

a

n

k = 1
sak + bkda

n

k = 1
 
bk

6a

n

k = 1
3ak

a

n

k = 1
bk = 6.a

n

k = 1
ak = -5

-

1
5

+

2
5

-

3
5

+

4
5

-

5
5

1 -

1
2

+

1
3

-

1
4

+

1
5

2 + 4 + 6 + 8 + 10
1
2

+

1
4

+

1
8

+

1
16

1 + 4 + 9 + 161 + 2 + 3 + 4 + 5 + 6

a

-1

k = -3
k2

a

3

k = -1
sk + 1d2

a

4

k = 1
sk - 1d2

a

1

k = -1
 
s -1dk

k + 2a

2

k = 0
 
s -1dk

k + 1a

4

k = 2
 
s -1dk - 1

k - 1
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25. 26.

27. 28.

29. a. b. c.

30. a. b. c.

31. a. b. c.

32. a. b. c.

Riemann Sums
In Exercises 33–36, graph each function ƒ(x) over the given interval.
Partition the interval into four subintervals of equal length. Then add
to your sketch the rectangles associated with the Riemann sum

given that is the (a) left-hand endpoint, (b) right-
hand endpoint, (c) midpoint of the kth subinterval. (Make a separate
sketch for each set of rectangles.)

33. 34.

35. 36.

37. Find the norm of the partition 

38. Find the norm of the partition 

Limits of Riemann Sums
For the functions in Exercises 39–46, find a formula for the Riemann
sum obtained by dividing the interval [a, b] into n equal subintervals
and using the right-hand endpoint for each Then take a limit of
these sums as to calculate the area under the curve over [a, b].

39. over the interval [0, 1].

40. over the interval [0, 3].

41. over the interval [0, 3].

42. over the interval [0, 1].

43. over the interval [0, 1].

44. over the interval [0, 1].

45. over the interval [0, 1].

46. over the interval [�1, 0].ƒsxd = x2
- x3

ƒsxd = 2x3

ƒsxd = 3x + 2x 2

ƒsxd = x + x 2

ƒsxd = 3x 2

ƒsxd = x 2
+ 1

ƒsxd = 2x

ƒsxd = 1 - x 2

n : q

ck.

P = 5-2, -1.6, -0.5, 0, 0.8, 16.
P = 50, 1.2, 1.5, 2.3, 2.6, 36.

ƒsxd = sin x + 1, [-p, p]ƒsxd = sin x, [-p, p]

ƒsxd = -x2, [0, 1]ƒsxd = x2
- 1, [0, 2]

ck©
4
k = 1ƒsckd ¢xk ,

a

n

k = 1
 
k

n2a

n

k = 1

c
na

n

k = 1
a1n + 2nb

a

n

k = 1
sk - 1da

n

k = 1
ca

n

k = 1
4

a

71

k = 18
ksk - 1da

17

k = 3
k2

a

36

k = 9
k

a

264

k = 3
10a

500

k = 1
7a

7

k = 1
3

aa
7

k = 1
kb2

- a

7

k = 1
 
k 3

4a

5

k = 1
 

k 3

225
+ aa

5

k = 1
kb3

a

7

k = 1
ks2k + 1da

5

k = 1
ks3k + 5d

5.3 The Definite Integral

In Section 5.2 we investigated the limit of a finite sum for a function defined over a closed
interval [a, b] using n subintervals of equal width (or length), In this section
we consider the limit of more general Riemann sums as the norm of the partitions of [a, b]
approaches zero. For general Riemann sums the subintervals of the partitions need not
have equal widths. The limiting process then leads to the definition of the definite integral
of a function over a closed interval [a, b].

Definition of the Definite Integral

The definition of the definite integral is based on the idea that for certain functions, as the
norm of the partitions of [a, b] approaches zero, the values of the corresponding Riemann

sb - ad>n .
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