King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

> Math 101 Final Exam Term 092 Sunday 13/06/2010 Net Time Allowed: 180 minutes

MASTER VERSION

- 1. An equation of the tangent line to the curve $y = x^2 \ln x$ when x = 1 is given by
 - (a) y = x 1
 - (b) y = 3x 3
 - (c) y = x
 - (d) $y = \frac{1}{2}x \frac{1}{2}$

(e)
$$y = 2 - 2x$$

2. If the line y = Ax + B is a slant asymptote of the curve

$$y = \frac{4x^3 - 6x^2 + 1}{x^2 - 2x + 3},$$

then A - 2B =

- (a) 0
- (b) 1
- (c) -7
- (d) 6
- (e) -10

3. Newton's Method is used to find an approximation to one of the real roots of the equation

 $x^5 = x + 1.$

If $x_1 = 1$ is the first approximation, then the second approximation $x_2 =$

(a) $\frac{5}{4}$ (b) $\frac{3}{7}$ (c) 1 (d) $\frac{1}{2}$ (e) $\frac{1}{3}$

- 4. The linear approximation of $f(x) = e^{\sin x}$ at a = 0 is given by
 - (a) $e^{\sin x} \approx 1 + x$
 - (b) $e^{\sin x} \approx 1 x$
 - (c) $e^{\sin x} \approx 1 + 2x$
 - (d) $e^{\sin x} \approx 2 + x$

(e)
$$e^{\sin x} \approx \frac{1}{2} - x$$

5. If
$$g(x) = \cosh^5(2x)$$
, then $g'(x) =$

- (a) $10\sinh(2x) \cdot \cosh^4(2x)$
- (b) $-10\cosh^4(2x)$
- (c) $-5\sinh(2x)\cdot\cosh^4(2x)$
- (d) $5\cosh^4(2x)$
- (e) $20\sinh(2x) \cdot \cosh^4(2x)$

6. The function $f(x) = \frac{1}{1 - \sin(2x)}$ is continuous everywhere except at the numbers

(a)
$$\frac{\pi}{4} + k\pi$$
, k is integer

- (b) $2k\pi$, k is integer
- (c) $\frac{\pi}{3} + 2k\pi$, k is integer
- (d) $\frac{\pi}{2} + k\pi$, k is integer
- (e) $\frac{2\pi}{3} + k\pi$, k is integer

- 7. The function f(x) = |2x+3| has
 - (a) one critical number
 - (b) two critical numbers
 - (c) three critical numbers
 - (d) four critical numbers
 - (e) no critical numbers

8. The slope of the tangent line to the graph of

$$\pi xy = 8\tan^{-1}\left(\frac{2y}{x}\right)$$

at the point (2,1) is

(a)
$$\frac{2+\pi}{4-2\pi}$$

(b)
$$\frac{4-\pi}{2-\pi}$$

(c)
$$\frac{1+2\pi}{4-2\pi}$$

(d)
$$\frac{2+\pi}{1-4\pi}$$

(e)
$$\frac{16}{\pi}$$

 π

9. $\lim_{x \to 0} \frac{x^2 - \tan^{-1} x}{x \cos x} =$

(a) -1(b) 3 (c) $+\infty$, (d) 2 (e) $-\frac{1}{2}$

10. If
$$y = \frac{x+1}{x-1}$$
, then $y''' + 3(y')^2 =$

(a) 0
(b)
$$\frac{12}{(x-1)^4}$$

(c) $\frac{8}{(x-1)^4}$
(d) $\frac{20}{(x-1)^3}$
(e) $\frac{-10}{(x-1)^4}$

- 11. The value(s) of c satisfying the conclusion of Rolle's Theorem for $f(x) = \sqrt{x} - \frac{1}{4}x$ on the interval [0, 16] is (are)
 - (a) 4
 - (b) ± 4
 - (c) 0 and 4
 - (d) 1
 - (e) ± 2

12. If
$$y = (\sqrt{x})^{\tan x}$$
, then $y' =$

(a)
$$y \left[\frac{\tan x}{2x} + \sec^2 x \cdot \ln \sqrt{x} \right]$$

(b) $y \left[\frac{\tan x}{x} + \sec^2 x \right]$
(c) $y \tan x \cdot \ln \sqrt{x}$
(d) $\frac{\tan x \cdot (\sqrt{x})^{\tan x - 1}}{2\sqrt{x}}$

(e) $y \left[\tan x + \sec^2 x \cdot \ln x \right]$

13. The function

$$f(x) = \begin{cases} x+1, & \text{if } x \le 1\\ \frac{1}{x} & \text{if } 1 < x < 3\\ \sqrt{x-3} & \text{if } x \ge 3 \end{cases}$$

is continuous on

- (a) $(-\infty, 1) \cup (1, 3) \cup (3, +\infty)$
- (b) $(-\infty, 0) \cup (0, 1) \cup (1, +\infty)$
- (c) $(-\infty,3) \cup (3,+\infty)$
- (d) $(-\infty, +\infty)$
- (e) $[3, +\infty)$

- 14. If M and m are respectively the absolute maximum and absolute minimum values of $f(x) = x^4 - 4x^2 + 2$ on the interval [-2, 3], then M + m =
 - (a) 45
 - (b) 49
 - (c) 50
 - (d) 41
 - (e) 53

15. $\lim_{x \to -1^{-}} \frac{x}{x^{2} - 1} =$ (a) $-\infty$ (b) $+\infty$ (c) $-\frac{1}{2}$ (d) 0
(e) -1

16. The most general antiderivative of the function

$$f(x) = \frac{3x^{1/4} - x + x^2 e^x}{x^2}$$

is

(a)
$$-4x^{-3/4} - \ln |x| + e^x + C$$

(b) $x^{-3/4} - \frac{1}{x^2} + e^x + C$
(c) $-4x^{-3/4} - \ln |x| + \frac{e^{x+1}}{x+1} + C$
(d) $3x^{-5/4} + \ln |x| + e^x + C$
(e) $-\frac{4}{9}x^{-7/4} - \frac{1}{x^2} + e^x + C$

- 17. Let $y = x^4 + 5x^2 2$. Using differentials, the change in y when x changes from 1 to 1.001 is approximately equal to
 - (a) 0.014
 - (b) 0.001
 - (c) 0.01
 - (d) 0.021
 - (e) 0.045

18. If
$$y = (u^2 - 1)^3$$
 and $u = \sqrt[3]{1+x}$, then $\frac{dy}{dx}|_{x=7} =$

- (a) 9
- (b) 12
- (c) $\frac{3}{4}$
- (d) $\frac{2}{3}$
- (e) 6

MASTER

19.
$$\lim_{x \to +\infty} \left(1 - \frac{1}{2x} \right)^{4x} =$$

- (a) e^{-2}
- (b) e^{-6}
- (c) $e^{\frac{1}{2}}$
- (d) e^{-1}
- (e) *e*

20. $(\cosh x - \sinh x)^{30} + (\cosh x + \sinh x)^{30} =$

- (a) $2\cosh(30x)$
- (b) $2\sinh(30x)$
- (c) e^{30x}
- (d) $(2\cosh x)^{30}$
- (e) 2

21. The graph of the function $f(x) = 3x^{2/3} \left(\frac{1}{5}x - 1\right)$ is **concave upward** on the interval(s)

- (a) $(-1, +\infty)$
- (b) $(-\infty, -1)$ and $(2, +\infty)$
- (c) $(-\infty, -1)$
- (d) $(-\infty, 0)$ and $(2, +\infty)$

(e)
$$(-1,2)$$

22. If a particle is moving according to the following data

$$a(t) = 6t - \sqrt{t}$$
, $v(1) = \frac{1}{3}$, $s(1) = \frac{-4}{15}$,

then s(2) =

(a) $5 - \frac{16}{15}\sqrt{2}$ (b) $15 - 4\sqrt{2}$ (c) $6 + \frac{4}{15}\sqrt{2}$ (d) $8 - \frac{16}{15}\sqrt{2}$ (e) $9 + \frac{2}{15}\sqrt{2}$ Math 101, Final Exam, Term 092

23. The function
$$f(x) = 2x - \tan x, \ -\frac{\pi}{2} < x < \frac{\pi}{2}$$

(a) has a local maximum at $x = \frac{\pi}{4}$

(b) has a local maximum at
$$x = -\frac{\pi}{4}$$

(c) has a local minimum at $x = \frac{\pi}{3}$

(d) has a local minimum at
$$x = \frac{\pi}{4}$$

(e) has no local minimum at any point in
$$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
.

- 24. The function $f(x) = 1 + \frac{1}{x} + \frac{1}{x^2}$ is **increasing** on the interval(s)
 - (a) (-2,0)
 - (b) $(-2, +\infty)$
 - (c) $(-\infty, 0)$ and $(2, \infty)$
 - (d) $(-\infty, -2)$
 - (e) $(-\infty, -2)$ and $(0, +\infty)$

25. A street light is located at the top of a 7-meter-tall pole. A man 2m tall walks away from the pole with a speed 3m/s along a straight path. When the man is 15m from the pole, the tip of his shadow is moving at a rate of

(a)
$$\frac{21}{5} m/s$$

(b) $3 m/s$
(c) $\frac{7}{5} m/s$
(d) $\frac{2}{7} m/s$
(e) $\frac{4}{7} m/s$

- 26. The area of the largest rectangle that has its base on the x-axis and its other two vertices above the x-axis and lying on the parabola $y = 9 x^2$ is
 - (a) $12\sqrt{3}$
 - (b) $\frac{81}{4}$
 - (c) $2\sqrt{3}$
 - (d) 9
 - (e) $4\sqrt{3}$

- 27. If f(1) = 2 and $f'(x) \ge 5$ for $1 \le x \le 4$, then the smallest possible value that f(4) can have is (Hint: Use the Mean Value Theorem)
 - (a) 17
 - (b) 10
 - (c) -15
 - (d) 2
 - (e) 5

28. If the line $y = \frac{3}{2}x + 6$ is tangent to the curve $y = c\sqrt{x}$ at the point (a, b), then ac + b =

- (a) 36
- (b) -12
- (c) 12
- (d) 24
- (e) -36

- 21. The area of the largest rectangle that has its base on the x-axis and its other two vertices above the x-axis and lying on the parabola $y = 9 x^2$ is
 - (a) 9
 - (b) $4\sqrt{3}$
 - (c) $12\sqrt{3}$
 - (d) $2\sqrt{3}$

(e)
$$\frac{81}{4}$$

22. The function
$$f(x) = 2x - \tan x, \ -\frac{\pi}{2} < x < \frac{\pi}{2}$$

(a) has a local minimum at
$$x = \frac{\pi}{3}$$

(b) has a local maximum at
$$x = \frac{\pi}{4}$$

(c) has a local maximum at
$$x = -\frac{\pi}{4}$$

(d) has no local minimum at any point in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

(e) has a local minimum at
$$x = \frac{\pi}{4}$$

23. A street light is located at the top of a 7-meter-tall pole. A man 2m tall walks away from the pole with a speed 3m/s along a straight path. When the man is 15m from the pole, the tip of his shadow is moving at a rate of

(a)
$$\frac{21}{5} m/s$$

(b) $3 m/s$
(c) $\frac{4}{7} m/s$
(d) $\frac{2}{7} m/s$
(e) $\frac{7}{5} m/s$

24. The graph of the function $f(x) = 3x^{2/3} \left(\frac{1}{5}x - 1\right)$ is **concave upward** on the interval(s)

- (a) $(-\infty, -1)$
- (b) $(-\infty, 0)$ and $(2, +\infty)$
- (c) $(-1, +\infty)$
- (d) $(-\infty, -1)$ and $(2, +\infty)$
- (e) (-1, 2)

- 25. The function $f(x) = 1 + \frac{1}{x} + \frac{1}{x^2}$ is **increasing** on the interval(s)
 - (a) $(-\infty, -2)$
 - (b) $(-\infty, -2)$ and $(0, +\infty)$
 - (c) $(-\infty, 0)$ and $(2, \infty)$
 - (d) (-2,0)

(e)
$$(-2, +\infty)$$

26.
$$(\cosh x - \sinh x)^{30} + (\cosh x + \sinh x)^{30} =$$

- (a) 2
- (b) $(2\cosh x)^{30}$
- (c) e^{30x}
- (d) $2\cosh(30x)$
- (e) $2\sinh(30x)$

27. If a particle is moving according to the following data

$$a(t) = 6t - \sqrt{t}$$
, $v(1) = \frac{1}{3}$, $s(1) = \frac{-4}{15}$

then s(2) =

(a)
$$6 + \frac{4}{15}\sqrt{2}$$

(b) $15 - 4\sqrt{2}$
(c) $8 - \frac{16}{15}\sqrt{2}$
(d) $9 + \frac{2}{15}\sqrt{2}$
(e) $5 - \frac{16}{15}\sqrt{2}$

- 28. If f(1) = 2 and $f'(x) \ge 5$ for $1 \le x \le 4$, then the smallest possible value that f(4) can have is (Hint: Use the Mean Value Theorem)
 - (a) 17
 - (b) 10
 - (c) -15
 - (d) 2
 - (e) 5

Q	MM	V1	V2	V3	V4
1	a	b	с	b	b
2	a	a	е	с	b
3	a	е	с	е	d
4	a	с	a	a	е
5	a	d	с	е	е
6	a	е	b	е	e
7	a	е	a	е	a
8	a	с	с	b	a
9	a	е	с	d	с
10	a	b	b	d	d
11	a	с	d	е	b
12	a	a	с	b	e
13	a	b	a	d	b
14	a	d	d	с	b
15	a	a	е	d	d
16	a	с	е	a	b
17	a	b	d	a	d
18	a	е	е	d	e
19	a	е	d	d	d
20	a	d	d	b	d
21	a	b	с	b	с
22	a	a	е	a	b
23	a	b	b	b	a
24	a	d	с	с	с
25	a	b	a	b	d
26	a	d	d	е	d
27	a	a	d	a	е
28	a	a	с	b	a