- 1. If the line $y = \alpha x + \beta$ is the slant asymptote to the curve $y = \frac{6x^3 4x^2 + 15x + 4}{2x^2 + 5}$, then $\alpha + \beta =$
 - (a) 1
 - (b) 0
 - (c) 2
 - (d) -2
 - (e) -1

2. The graph of $f(x) = \frac{1}{2}x - \sin x$, $0 < x < 3\pi$ is concave upward on the interval(s)

(a)
$$(0,\pi)$$
 and on $(2\pi,3\pi)$
(b) $\left(\frac{\pi}{2},\frac{3\pi}{2}\right)$
(c) $\left(0,\frac{\pi}{2}\right)$ and on $\left(\pi,\frac{3\pi}{2}\right)$
(d) $\left(0,\frac{\pi}{2}\right)$ and on $(\pi,3\pi)$
(e) $\left(\frac{3\pi}{2},3\pi\right)$

MASTER

3. A particle moves in a straight line and has acceleration given by $a(t) = 2 \sinh t$. Its initial velocity $v(0) = -\frac{1}{3} \operatorname{cm/s}$ and its initial displacement is s(0) = 0, then s(1) =

(a)
$$\left(2\sinh 1 - \frac{7}{3}\right)$$
 cm
(b) $\left(2\cosh 1 + \frac{2}{3}\right)$ cm
(c) $\left(2\sinh t - \frac{2}{3}\right)$ cm
(d) $\left(2\cosh 1 - \frac{2}{3}\right)$ cm
(e) $\left(2\sinh 1 - \frac{5}{3}\right)$ cm

4. The asymptotes of
$$f(x) = \frac{x^3 + 2x^2 - 3x}{2x^3 - x^2 - x}$$
 are

- (a) one horizontal and one vertical asymptotes
- (b) one horizontal and two vertical asymptotes
- (c) no horizontal and three vertical asymptotes
- (d) one horizontal and three vertical asymptotes
- (e) one horizontal, one slant, and one vertical asymptotes

- MASTER
- 5. The radius of a circle increases from 3 cm to 3.025 cm. Using differentials, the best approximation in the increase of its area is equal to
 - (a) $0.15 \,\pi \, \mathrm{cm}^2$
 - (b) $0.75 \,\pi \, \mathrm{cm}^2$
 - (c) $0.45 \,\pi \,\mathrm{cm}^2$
 - (d) $0.09 \,\pi \,\mathrm{cm}^2$
 - (e) $0.18 \,\pi \,\mathrm{cm}^2$

6. The graph of the function

$$f(x) = (x-3)(x+1)^3$$

is increasing on

- (a) $(2,\infty)$
- (b) $(-\infty, -1)$ and on $(2, \infty)$
- (c) $(-\infty,\infty)$
- (d) $(-\infty, -2)$ and on $(1, \infty)$
- (e) $(-\infty, -1)$ and on $(3, \infty)$

- 7. If $\lim_{h\to 0} \frac{g(2+h) g(2)}{h} = 5$ and g(2) = -3, then the *y*-intercept of the tangent line to the graph of *g* at (2, -3) is
 - (a) (0, -13)
 - (b) (0, 11)
 - (c) (0, -11)
 - (d) (0,9)
 - (e) (0, -15)

8. If
$$f(x) = 4^{\sin(\pi x)}$$
, then $f'\left(\frac{1}{6}\right) =$

- (a) $\pi\sqrt{3}\ln 4$
- (b) $\pi \ln 2$
- (c) $-2\pi\sqrt{3}\ln 4$
- (d) $3\pi\sqrt{3}\ln 4$
- (e) $\pi \ln 4$

MASTER

- 9. The sum of all critical points of the function $f(x) = \frac{x^2 + 1}{\sqrt{2x + 1}}$ is
 - (a) $\frac{1}{3}$ (b) $-\frac{1}{2}$ (c) $-\frac{5}{6}$ (d) $\frac{1}{6}$ (e) $\frac{4}{3}$

10. Using Newton's Method to estimate $\sqrt[5]{3}$ with $x_1 = 1$, we find that $x_2 =$

- (a) 1.4
- (b) 1.5
- (c) 1.6
- (d) 1.2
- (e) 1.8

- 11. The volume of a right circular cylinder is decreasing at the rate of $88\pi \text{ cm}^3/\text{s}$, while the height is increasing at the rate of 2 cm/s. Then at the instant when the radius is 2 cm and the height is 6 cm, the radius is [Volume of a cylinder = Area of base × height].
 - (a) decreasing at the rate of 4 cm/s
 - (b) increasing at the rate of 2 cm/s
 - (c) decreasing at the rate of 11 cm/s

(d) increasing at the rate of
$$\frac{1}{2}$$
 cm/s

(e) decreasing at the rate of
$$\frac{2}{3}$$
 cm/s

12. The limit
$$\lim_{x \to 0^+} [(\sin 2x)(\ln 3x)]$$

- (a) is equal to 0
- (b) is equal to $-\frac{3}{2}$
- (c) is equal to $-\frac{2}{3}$
- 0
- (d) is equal to -6
- (e) does not exist

13. Which one of the following statements is **TRUE** for any given function f(x)?

- (a) If f''(x) exists at x = a, then f'(x) is continuous at x = a
- (b) If $\lim_{x \to a} f(x)$ exists, then f(x) is continuous at x = a
- (c) If $\lim_{x \to a} f(x)$ exists, then f(x) is defined at a
- (d) If $\lim_{x \to a} f(x) = f(a)$, then f'(x) exists at x = a
- (e) If f'(x) exists at x = a, then f''(x) exists at x = a

14. If
$$f(x) = \operatorname{sech}\left(\frac{x}{2}\right)$$
, then $f'(\ln 4) =$

(a)
$$-\frac{6}{25}$$

(b) $\frac{12}{25}$
(c) $-\frac{3}{25}$
(d) $\frac{16}{25}$
(e) $-\frac{4}{25}$

- 15. The number of points that satisfy the conclusion of the Rolle's Theorem for the function $f(x) = x^4 4x^2 + 3$ on the interval [-1, 1] is
 - (a) 1
 - (b) 0
 - (c) 2
 - (d) 3
 - $(e) \quad 4$

- 16. If M_{max} and N_{min} are, respectively, the numbers of the local maximum values and the local minimum values of the function $f(x) = x^{4/5}(x-4)^2$, then
 - (a) $M_{\text{max}} = 1$ and $N_{\text{min}} = 2$
 - (b) $M_{\text{max}} = 2$ and $N_{\text{min}} = 1$
 - (c) $M_{\text{max}} = 1$ and $N_{\text{min}} = 1$
 - (d) $M_{\text{max}} = 0$ and $N_{\text{min}} = 2$
 - (e) $M_{\text{max}} = 2$ and $N_{\text{min}} = 0$

MASTER

17. The graph of the function $f(x) = xe^{1-2x}$ has

(a) only one inflection point
$$\left(1, \frac{1}{e}\right)$$

(b) no inflection points

(c) only one inflection point
$$\left(\frac{1}{2}, 1\right)$$

(d) two inflection points
$$\left(\frac{1}{2}, 1\right)$$
 and $\left(1, \frac{1}{e}\right)$

(e) two inflection points
$$(0, e)$$
 and $\left(1, \frac{1}{e}\right)$

18. If
$$f'(x) = \frac{2x^4 - 3\sqrt{x}}{x}$$
 and $f(1) = \frac{1}{2}$, then $f(x) = \frac{1}{2}$

(a)
$$\frac{1}{2}x^4 - 6\sqrt{x} + 6$$

(b) $\frac{1}{4}x^4 - 3\sqrt{x} + \frac{13}{4}$
(c) $\frac{2}{5}x^3 - 3\ln|x| + \frac{1}{10}$
(d) $2x^4 + 6\sqrt{x} - \frac{15}{2}$

(e)
$$\frac{1}{2}x^4 - 6\sqrt{x}$$

- 19. If A is the area of the largest rectangle that has its base on the x-axis and its other two vertices above the x-axis and lying on the parabola $y = 27 x^2$, then A =
 - (a) 108
 - (b) 95
 - (c) 64
 - (d) 116
 - (e) 81

20. Given $f(x) = \begin{cases} 2 & \text{if } x < -2 \\ |x| & \text{if } -2 \le x < 1 \\ \sqrt{x-1} & \text{if } x \ge 1 \end{cases}$, which one of the following statements is **FALSE** about f? [Hint: Sketch the graph of f]

- (a) f has a removable discontinuity at x = 1
- (b) f is continuous at x = -2
- (c) f is decreasing on (-2, 0)
- (d) $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x)$
- (e) $\lim_{x \to 1} f(x)$ does not exist

If L is the linearization of $f(x) = \sin^{-1} x$ at $x = \frac{1}{2}$, then $L\left(\frac{1}{3}\right) =$ 21.

(a)
$$\frac{\pi}{6} - \frac{\sqrt{3}}{9}$$

(b) $\frac{\pi}{3} - \frac{\sqrt{3}}{6}$
(c) $\frac{\pi}{6} - \frac{\sqrt{3}}{3}$
(d) $\frac{\pi}{3} - \frac{\sqrt{3}}{3}$
(e) $\frac{\pi}{6} - \frac{2\sqrt{3}}{3}$

The slope of the tangent line to the graph of $y\sqrt{x} - x\sqrt{y} - 12 = 0$ at the point (9,16) 22.is equal to

- $\frac{32}{45}$ (a)
- $\frac{28}{15}$ (b)
- (c)
- $\frac{32}{9}\\\frac{14}{25}$
- (d)
- $\frac{32}{3}$ (e)

- 23. Suppose that f is continuous on [6, 15] and differentiable on (6, 15). If f(6) = -2, and $f'(x) \le 10$ for 6 < x < 15, then the largest possible value of f(15) is
 - (a) 88
 - (b) 10
 - (c) -10
 - (d) 90
 - (e) 9

24. Given that $f(x) = \frac{2x}{\sqrt{x^2 - 4}}$ and $f'(x) = \frac{-8}{(x^2 - 4)^{3/2}}$, which one of the following statements is **TRUE** about the graph of f?

- (a) The graph has no inflection points
- (b) The graph has only one vertical asymptote
- (c) The graph has only one local minimum
- (d) The graph is concave downward on $(2, \infty)$
- (e) The graph has no horizontal asymptotes

25.

MASTER

- (a) f has no absolute or local maximum
- (b) f has no absolute or local minimum
- (c) f has local minimum but no absolute minimum
- (d) f has local and absolute minimum f(0) = 2
- (e) f has absolute maximum f(5) = 37

26. The limit
$$\lim_{x \to \infty} (\sqrt{4x^2 + 3x} - 2x)$$

(a) is equal to
$$\frac{3}{4}$$

(b) is equal to $\frac{3}{8}$
(c) is equal to $\frac{2}{3}$
(d) is equal to 0
(e) does not exist

- 27. If (α, β) is the point on the curve $y = 1 + 30x^2 5x^3$ at which the tangent line has the largest slope, then $\alpha + \beta =$
 - (a) 83
 - (b) 72
 - (c) 86
 - $(d) \quad 77$
 - (e) 80

28. Which one of the following statements is **TRUE** about the function $f(x) = \frac{3}{2}(x-1)^{2/3} + 8?$

- (a) f has a vertical tangent line at x = 1
- (b) f has a vertical asymptote at x = 1
- (c) f is discontinuous at x = 1
- (d) f is differentiable at x = 1
- (e) f has no critical numbers