King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

CODE 001

Math 101 Final Exam Term 082 Monday 22/6/2009

CODE 001

Net Time Allowed: 180 minutes

Name:		
ID:	Sec:	

Check that this exam has 28 questions.

Important Instructions:

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. The graph of
$$f(x) = \frac{x^4 + x^2}{(x^2 + 9)(x + 1)}$$
 has

- (a) one slant asymptote and one vertical asymptote
- (b) two slant asymptotes and two vertical asymptotes
- (c) one horizontal asymptote and two vertical asymptotes
- (d) one slant asymptote and three vertical asymptotes
- (e) one horizontal, one vertical, and one slant asymptote

- 2. The function $f(x) = \frac{\ln(x-1)}{2-\sqrt{x}}$ is continuous on
 - (a) $(1,4) \cup (4,+\infty)$
 - (b) $[0, +\infty)$
 - (c) $(\sqrt{2}, +\infty)$
 - (d) $(2, +\infty)$
 - (e) $(1, +\infty)$

3. Using Newton's Method to find a root of the equation

$$3x - \sin(2\pi x) = 1$$

starting with $x_1 = \frac{1}{2}$, we find that $x_2 =$

- (a) $\frac{\pi + 1}{2\pi + 3}$
- (b) $2\pi 1$
- (c) $\frac{1}{4\pi + 6}$
- $(d) \quad \frac{1}{2\pi + 1}$
- (e) $\frac{1}{2}$

- 4. $\lim_{x \to 5^+} \frac{4 x}{(x 5)^3}$
 - (a) $\frac{4}{5}$
 - (b) -1
 - (c) $\frac{1}{2}$
 - (d) $+\infty$
 - (e) $-\infty$

- 5. The number of the inflection points of the graph of $y = \frac{1}{56}x^8 \frac{1}{30}x^6 + 80$ is
 - (a) 4
 - (b) 6
 - (c) 3
 - (d) 2
 - (e) 1

- 6. The slope of the tangent line to the curve $\cos(xy^2) = y^3 x + \frac{\pi}{2} 1$ at $\left(\frac{\pi}{2}, 1\right)$ is
 - (a) $-\frac{1}{3}$
 - (b) $\frac{1}{3}$
 - (c) 1
 - (d) 0
 - (e) -1

- 7. The sum of the critical numbers of the function $f(x) = \sqrt[3]{x^2 x}$ is
 - (a) 1
 - (b) $\frac{3}{2}$
 - (c) $-\frac{1}{2}$
 - (d) $\frac{1}{2}$
 - (e) 2

- 8. All values of x where the tangent line to the graph of $y = \tan^2 x$ is horizontal are given by
 - (a) $n\pi$, n is integer
 - (b) $\frac{2n-1}{2}\pi$, *n* is integer
 - (c) $\frac{n}{2}\pi$, *n* is integer
 - (d) $(2n-1)\pi$, n is integer
 - (e) $\left(n + \frac{1}{2}\right) \pi$, n is integer

- 9. If g is a differentiable function and $f(x) = [g(x^2)]^2$, then f'(x) =
 - (a) $2g'(x^2)$
 - (b) $4xg'(x^2)$
 - (c) $4xg(x^2)g'(x^2)$
 - $(d) \quad 4x^3g'(x^4)$
 - (e) $2g(x^2)$

- 10. If $f(t) = te^t \sin t$, then f'(t) =
 - (a) $e^t \cos t + t \sin t$
 - (b) $te^t \sin t te^t \cos t$
 - (c) $e^t \cos t$
 - (d) $te^t \cos t + (t+1)e^t \sin t$
 - (e) $te^t \cos t + te^t \sin t$

- 11. An equation of the tangent line to the curve $y = x^{(2^x)}$ at the point (1,1) is
 - (a) $y = \frac{1}{2}x + \frac{1}{2}$
 - (b) y = 3x 2
 - (c) $y = \frac{1}{3}x + \frac{2}{3}$
 - $(d) \quad y = 2x 1$
 - (e) y = x

- 12. If $f''(x) = -3x^{-2}$, f'(3) = 2, f(1) = -1, then f(e) = -1
 - (a) e 3
 - (b) $\frac{3}{e} + 1$
 - (c) $\frac{-3}{e^2}$
 - (d) 0
 - (e) e+1

13. If $f(x) = e^{1-2x}$, then $f^{(n)}(x) =$

- (a) $(-2)^n e^{1-2x}$
- (b) e^{1-2x}
- (c) $2^n e^{1-2x}$
- (d) $(-1)^n e^{1-2x}$
- (e) $(1-2x)^n e^{1-2x}$

14. Sand is being dumped from a truck at a rate of $0.5 \text{ ft}^3/\text{min}$ to form a pile in the shape of a cone whose height is always equal to the diameter of its base. When the pile is 2 ft high, the height of the pile is increasing at a rate of [The volume of a cone is $V = \frac{1}{3}\pi r^2 h$]

- (a) $\frac{1}{2\pi}$ ft/min
- (b) $\frac{\pi}{2}$ ft/min
- (c) $\frac{2}{\pi}$ ft/min
- (d) 2π ft/min
- (e) $\frac{1}{2}$ ft/min

15. If

$$f(x) = \begin{cases} x^2 + 1 & \text{if } x < 1\\ ax + b & \text{if } 1 \le x < 3\\ 3 - 2x & \text{if } x \ge 3 \end{cases}$$

is continuous on $(-\infty, +\infty)$, then f(2) =

- (a) 5
- (b) $\frac{7}{2}$
- (c) $-\frac{1}{2}$
- (d) 2
- (e) $-\frac{5}{2}$

16. If
$$x^6 + y^6 = 1$$
, then $y'' =$

- (a) $-\frac{5x^4}{y^{11}}$
- (b) $-\frac{x^5}{y^5}$
- (c) $\frac{10x^4}{y^{10}}$
- $(d) \quad \frac{x^6+1}{y^5}$
- (e) $\frac{-1}{y^6}$

- 17. Let $f(x) = e^x + \sin x$. Using the linear approximation of f at a = 0, we find that $f(0.1) \approx$
 - (a) 1.2
 - (b) 1
 - (c) 2.2
 - (d) 2
 - (e) 1.5

- 18. Which one of the following statements is **TRUE**?
 - (a) if f'(x) = g'(x) for all x, then f(x) = g(x) for all x.
 - (b) If f is continuous at a, then f is differentiable at a.
 - (c) If $f(x) = \pi^4$, then $f'(x) = 4\pi^3$.
 - (d) if f'(c) = 0 and f''(c) > 0, then f has a local minimum at c.
 - (e) If f has an absolute minimum value at c, then f'(c) = 0.

- 19. If $\tanh x = -\frac{2}{3}$, then $\cosh x =$
 - (a) $\pm \frac{3}{\sqrt{5}}$
 - (b) $\frac{3}{\sqrt{5}}$
 - (c) $-\frac{1}{\sqrt{5}}$
 - (d) $\pm \frac{1}{\sqrt{5}}$
 - (e) $-\frac{3}{\sqrt{5}}$

- 20. If $G(x) = \frac{1 + \sinh x}{1 + \cosh x}$, then G(0) + G'(0) =
 - (a) 1/4
 - (b) 0
 - (c) 3/4
 - (d) 2
 - (e) 1

- 21. If the point (x, y) lying on the line y + 3x = 3 is **the closest** point to the origin, then x + 2y =
 - (a) $\frac{6}{5}$
 - (b) $\frac{3}{5}$
 - (c) $\frac{3}{2}$
 - (d) 2
 - (e) 3

- 22. The graph of $f(x) = \sqrt[3]{x} (2-x)$
 - (a) is concave down on the interval $(-\infty, 0)$
 - (b) is concave up on the intervals $(-\infty, -1)$ and (0, 1)
 - (c) has one inflection point only
 - (d) has an inflection point at x = 1
 - (e) is concave up on the interval (-1,0)

- 23. If an equation of the tangent line to the curve $y = e^x$ that is parallel to the line x 4y = 1 is given by y = ax + b, then 4(b a) =
 - (a) ln 4
 - (b) 1
 - (c) 0
 - (d) $1 + \ln 4$
 - (e) $2 \ln 4$

- 24. $\lim_{x \to 0^+} (1 \tan^{-1}(2x))^{1/x} =$
 - (a) e
 - (b) $-\epsilon$
 - (c) e^{-2}
 - (d) e^{-1}
 - (e) \sqrt{e}

- 25. The function $f(x) = xe^{2x}$
 - (a) is increasing on $(-1, +\infty)$
 - (b) is increasing on $\left(-\infty, -\frac{1}{2}\right)$
 - (c) has a local maximum at $x = -\frac{1}{2}$
 - (d) has a local minimum at x = -1
 - (e) is increasing on $\left(-\frac{1}{2}, +\infty\right)$

- 26. If M and m are respectively the absolute maximum and absolute minimum values of $f(x) = x + 2\cos x$ on $\left[0, \frac{\pi}{3}\right]$, then $3M \sqrt{3}m =$
 - (a) $\pi + 3\sqrt{3}$
 - (b) $\frac{\pi}{3} + 2$
 - (c) $2\pi + \sqrt{3}$
 - (d) 2
 - (e) $\frac{\pi}{2} + \sqrt{3}$

- 27. The value(s) of c satisfying the conclusion of the Mean Value Theorem for $f(x) = \frac{x}{x+2}$ on [1, 4] is(are)
 - (a) 4
 - (b) $-2 \pm 3\sqrt{2}$
 - (c) $-2 3\sqrt{2}$
 - (d) $-2 + 3\sqrt{2}$
 - (e) 1, 2

- 28. $\lim_{x \to 0} \frac{\cos(mx) \cos(nx)}{x^2} = \qquad (m \text{ and } n \text{ are constants})$
 - (a) does not exist
 - (b) 1
 - (c) $\frac{1}{2}(n^2 m^2)$
 - $(d) \quad 0$
 - (e) $n^2 + m^2$

Q	MM	V1	V2	V3	V4
1	a	a	С	a	b
2	a	a	b	a	b
3	a	a	b	d	a
4	a	е	a	b	a
5	a	d	a	b	a
6	a	d	b	b	е
7	a	b	d	е	С
8	a	a	е	a	С
9	a	С	a	d	a
10	a	d	С	С	a
11	a	d	С	d	С
12	a	е	d	a	b
13	a	a	b	b	c
14	a	a	b	е	е
15	a	С	a	d	c
16	a	a	С	c	a
17	a	a	d	е	b
18	a	d	\mathbf{c}	a	c
19	a	b	b	d	d
20	a	е	d	\mathbf{c}	a
21	a	С	a	d	е
22	a	е	b	d	d
23	a	a	b	b	е
24	a	С	е	a	c
25	a	е	a	c	d
26	a	е	b	е	е
27	a	d	d	c	d
28	a	С	a	d	c