King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

Instructions:

1. Calculators and Mobiles are not allowed.
2. Write neatly and eligibly. You may lose points for messy work.
3. Show all your work. No points for answers without justification.
4. Make sure that you have 6 pages of problems (Total of 8 Problems)

	Points	Maximum Points				
page 1		20				
page 2		20				
page 3		15				
page 4		17				
page 5		18				
page 6		10				
Total		100				

1. (15 points) Sketch the graph of a function f that satisfies the following conditions:

2
(i) $\lim _{x \rightarrow-\infty} f(x)=0$

2, (v) $\lim _{x \rightarrow-2^{+}} f(x)=3$

4
(ii) $f(-3)=-1$

2, (vi) $\lim _{x \rightarrow 0} f(x)=2$
2
(iii) $\lim _{x \rightarrow-3} f(x)=2$

2, (vii) f has a jump discontinuity at $x=2$

2
(iv) $\lim _{x \rightarrow-2^{-}} f(x)=-\infty$

$$
2,\left(\text { viii } \lim _{x \rightarrow \infty} f(x)=\infty\right.
$$

Other graphs re possible
ssible
3. (10 points) Use the graph of $f(x)=\frac{1}{x}$ to find a number $\delta>0$ such that for all x,

$$
0<|x-2|<\delta \Rightarrow\left|f(x)-\frac{1}{2}\right|<\frac{1}{8}
$$

- $\varepsilon=\frac{1}{8}$
- From the graph

$$
\begin{aligned}
& f\left(x_{1}\right)=\frac{5}{8} \Rightarrow \frac{1}{x_{1}}=\frac{5}{8} \Rightarrow x_{1}=\frac{8}{5} 2 \text { (1) } \\
& f\left(x_{2}\right)=\frac{3}{8} \Rightarrow \frac{1}{x_{2}}=\frac{3}{8} \Rightarrow x_{2}=\frac{8}{3} 2 \text { (1) }
\end{aligned}
$$

$$
\begin{equation*}
\delta=\operatorname{minimum~of~}\left\{2-x_{1}, x_{2}-2\right\} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
=\operatorname{minimum} f\left\{\frac{2}{5}, \frac{2}{3}\right\} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
=\frac{2}{5} 5 \tag{1}
\end{equation*}
$$

(or any smaller positive number)

4. (10 points) For what values of a and b is

$$
g(x)= \begin{cases}a x-2 b & x \leq 0 \\ x^{2}+3 a-b & 0<x \leq 2 \\ 3 x-5 & x>2\end{cases}
$$

continuous at every x ?

- g is Continuous m $(-\infty, 0),(0,2),(2, \infty)$ as it is a polynomial on each of these intervals
- For g to be continuous at every x, we have to check continuity at $x=0, x=\bar{c}$ For this to happen wa must have

$$
\begin{align*}
& \text { For this to happen we must } \begin{array}{l}
\lim _{x \rightarrow 0^{-}} g(x)=\lim _{x \rightarrow 0^{+}} g(x) \mid=g(a) \\
\begin{array}{ll}
\lim _{x \rightarrow 0^{-}}(a x-2 b)=\lim _{x \rightarrow 0^{+}}\left(x^{2}+3 a-b\right) & \Rightarrow-2 b=3 a-b \\
& \Rightarrow 3 a+b=0 \sim \text { (1) }
\end{array}
\end{array} . \begin{array}{l}
2
\end{array} \tag{2}
\end{align*}
$$

$$
\begin{array}{r}
2 . \tag{2}\\
\lim _{x \rightarrow 2^{-}} g(x)=\lim _{x \rightarrow 2^{+}} g(x) \\
\lim _{x \rightarrow 2^{-}}\left(x^{2}+3 a-b\right)=\lim _{x \rightarrow 2^{+}}(3 x-5)
\end{array}
$$

$$
\Rightarrow 4+3 a-b=6-5
$$

$$
\begin{equation*}
\Rightarrow 3 a+b=-3 \sim(2) \tag{2}
\end{equation*}
$$

Solving (1) \& (2), we get $a=-\frac{1}{2}$ \& $b=\frac{3}{2} 2^{2}$
5. Find the limit if it exists. Justify your work.
a) $(6$ points $) \lim _{x \rightarrow 2} \frac{\sqrt{x+7}-3}{x^{3}-4 x} \cdot \frac{\sqrt{x+7}+3}{\sqrt{x+7}+3}<2$

$$
\begin{aligned}
& =\lim _{x \rightarrow 2} \frac{(x+7)-9}{\left(x^{3}-4 x\right)(\sqrt{x+7}+3)} \\
& =\lim _{x \rightarrow 2} \frac{x-2}{x(x-2)(x+2)(\sqrt{x+7}+3)} \\
& =\lim _{x \rightarrow 2} \frac{1}{x(x+2)(\sqrt{x+7}+3)} \\
& =\frac{1}{2 \cdot 4(3+3)}=\frac{1}{48}
\end{aligned}
$$

b) (5 points) $\lim _{x \rightarrow-2} \frac{\frac{1}{x}+\frac{1}{2}}{x^{3}+8}$

$$
\begin{aligned}
& =\lim _{x \rightarrow-2} \frac{\frac{2+x}{2 x-2}}{x^{3}+8} \\
& =\lim _{x \rightarrow-2} \frac{(2+x)}{2 x} \cdot \frac{1}{\left(x+2\left(x^{2}-2 x+4\right)\right.} \\
& =\lim _{x \rightarrow-2} \frac{1}{2 x\left(x^{2}-2 x+4\right)} \\
& =\frac{1}{-4(4+4+4)}=-\frac{1}{48}
\end{aligned}
$$

c) (4 points) $\begin{aligned} & \lim _{x \rightarrow 1^{+}} \frac{x}{1-x}=\left(\lim _{x \rightarrow 1^{+}} x\right)\left(\lim _{x \rightarrow 1^{+}} \frac{1}{1-x}\right)=(1) \cdot(-\infty) \\ &=-\infty\end{aligned}$ As $x \rightarrow i^{+}, x \rightarrow 1 \&$

$$
1-x \rightarrow 0^{-} \text {(through negative values) }
$$

then

$$
\begin{equation*}
\lim _{x \rightarrow 1^{+}} \frac{x}{1-x}=-\infty \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
& \text { d) (6 points) } \lim _{x \rightarrow \infty}(\sqrt{3 x+5}-\sqrt{x+5}) \\
& \text { (1) }=\lim _{x \rightarrow \infty}(\sqrt{3 x+5}-\sqrt{x+5}) \cdot \frac{\sqrt{3 x+5}+\sqrt{x+5}}{\sqrt{3 x+5}+\sqrt{x+5}} \\
& \text { (1) }=\lim _{x \rightarrow \infty} \frac{2 x}{\sqrt{3 x+5}+\sqrt{x+5}}
\end{aligned}
$$

$$
\text { (1) }=\lim _{x \rightarrow \infty} \frac{2 x}{\sqrt{x}\left[\sqrt{3+\frac{5}{x}}+\sqrt{1+\frac{5}{x}}\right]}
$$

$$
\text { (1) }=\lim _{x \rightarrow \infty} \frac{2 \sqrt{x}}{\sqrt{3+\frac{5}{x}}+\sqrt{1+\frac{5}{x}}}
$$

$$
=\frac{\infty}{\sqrt{3}+1}=\infty
$$

$$
\begin{aligned}
& \text { e) }\left(5 \text { points) } \lim _{x \rightarrow \infty} \frac{2+\sin x}{x}\right. \\
& -1 \leq \operatorname{Sin} x \leq 1 \quad \text { for all } x
\end{aligned}
$$

©
$\begin{array}{ll}\text { (1) } & \Rightarrow \quad 1 \leq 2+\sin x \leq 3 \\ & \Rightarrow \\ x & \frac{1}{2+\sin x} \\ x & \frac{3}{x} \quad(x>0 \text { as } x \rightarrow \infty)\end{array}$
(1) as $\lim _{x \rightarrow \infty} \frac{1}{x}=0=\lim _{x \rightarrow \infty} \frac{3}{x}$, then
(2)
(1)
(2) $\lim _{x \rightarrow \infty} \frac{2+\sin x}{x}=0$, by the Squeeze Theorem (Sondwich Theoren)

$$
\text { f) } \begin{aligned}
\text { (6 points) } \left.\begin{array}{rl}
& \lim _{x \rightarrow 0^{-}} \frac{\left|x \cos (2 x)-\frac{x}{2}\right|}{\sin (3 x)} \\
= & \lim _{x \rightarrow 0^{-}} \frac{2\left(\operatorname{lx|}\left|\cos (2 x)-\frac{1}{2}\right|\right.}{\sin (3 x)} \\
= & \lim _{x \rightarrow 0^{-}} \frac{-x\left|\cos (2 x)-\frac{1}{2}\right|}{\sin (3 x)} \\
= & \lim _{x \rightarrow 0^{-}}-\frac{\left|\cos (2 x)-\frac{1}{2}\right|}{3 \cdot \frac{\sin (3 x)}{3 x}} 2 \\
= & -\frac{1 / 2}{3 \cdot 1} \\
=-\frac{1}{6}
\end{array}\right) .
\end{aligned}
$$

- There are no vertical asymptotes since $|x-1|^{3}+9 \neq 0$ for all real numbers x.

Math 101, Exam I, Term 131
Page 5 of 6
6. (10 points) Find the horizontal and vertical asymptotes of the curve $y=\frac{x^{3}-3 x+1}{|x-1|^{3}+9}$. Justify your answer using limits.

- For H.A., we have to find $\lim _{x \rightarrow \pm \infty} f(x)$:

$$
\begin{align*}
* \lim _{x \rightarrow \infty} \frac{x^{3}-3 x+1}{|x-1|^{3}+9} & =\lim _{x \rightarrow \infty} \frac{x \rightarrow-\infty}{x^{3}-3 x+1}(x-1)^{3}+9 \\
& =\lim _{x \rightarrow \infty} \frac{1-\frac{3}{x^{2}} \frac{1}{x^{3}}}{\left(1-\frac{1}{x}\right)^{3}+\frac{9}{x^{3}}} \text { (1) } x \rightarrow \infty \Rightarrow x-1>0 \text { so }|x-1|=x-1 \tag{1}\\
& =\frac{1-0+0}{1+0}=1 \text { (1) } \tag{8}\\
* \lim _{x \rightarrow-\infty} \frac{x^{3}-3 x+1}{|x-1|^{3}+9} & =\lim _{x \rightarrow-\infty} \frac{x^{3}-3 x+1}{(1-x)^{3}+9} \text { (1) as } x \rightarrow-\infty \Rightarrow x-1<0 \& \text { so }|x-1|=1-x \\
& =\lim _{x \rightarrow-\infty} \frac{1-\frac{3}{x^{2}}+\frac{1}{x^{3}}}{\left(\frac{1}{x}-1\right)^{3}+\frac{9}{x^{3}}} \quad \text { (1) } \\
& =\frac{1-0+0}{-1+0}=-1 \tag{1}
\end{align*}
$$

So the H.A. are $y=1$ and $y=-1$
7. (8 points) Use the Intermediate Value Theorem to show that the equation $x^{2}-\cos (\pi x)=4$ has a solution.

- Let $f(x)=x^{2}-\cos (\pi x)-4$
- $f(0)=-5 ; f(1)=-2 ; f(2)=-1 ; f(3)=6$

Since f is continuous $n(-\infty, \infty)$ \& hence on $[2,3]$

$$
\begin{equation*}
\text { \& } f(2)=-1<0 \text { \& } f(3)=6>0 \tag{2}
\end{equation*}
$$

then, b_{y} the intermediate Value Theorem,
\& So the equation $x^{2}-\cos (\pi x)=-4$ has a Solution in $(2,3)$.
8. (10 points) Use limits to find the equation of the tangent line to the graph of $f(x)=x-\frac{1}{x}$ at $x=3$.

$$
\begin{align*}
\text { Slope } & \left.=\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[(3+h)-\frac{1}{3+h}-\frac{8}{3}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{8+6 h+h^{2}}{3+h}-\frac{8}{3}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h} \cdot \frac{24+18 h+3 h^{2}-24 h-8 h}{3(3+h)} \\
& =\lim _{h \rightarrow 0} \frac{1}{h} \cdot \frac{3 h^{2}+10 h}{3(3+h)} \\
& =\lim _{h \rightarrow 0} \frac{1}{h} \cdot \frac{h(3 h+10)}{3(3+h)} \\
& =\lim _{h \rightarrow 0} \frac{3 h+10}{3(3+h)}= \\
& =\frac{10}{9}
\end{align*}
$$

- point of tangency is $\left(3, \frac{8}{3}\right)$
- The equation of the tangent line is

$$
\begin{equation*}
y-\frac{8}{3}=\frac{10}{9}(x-3) \tag{2}
\end{equation*}
$$

$\stackrel{\text { or }}{=} \quad y=\frac{10}{9} x-\frac{2}{3}$

