King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

Math 101
Final Exam
Term 122
Monday 20/15/2013
Net Time Allowed: 180 minutes

MASTER VERSION

- 1. An equation of the tangent line to the curve $y = \frac{1}{x^3}$ when x = -1 is given by
 - (a) y = -3x 4
 - (b) y = -2x 3
 - (c) $y = -\frac{1}{3}x \frac{4}{3}$
 - (d) $y = \frac{1}{3}x + 1$
 - (e) y = -3x 2

- 2. Let μ be a real number not equal to -1. Then $\lim_{x\to 1} \frac{x^{\frac{\mu}{\mu+1}}-1}{x-1} =$
 - (a) $\frac{\mu}{\mu+1}$
 - (b) $\frac{\mu+1}{\mu}$
 - (c) $\frac{1}{\mu + 1}$
 - (d) $\mu + 1$
 - (e) does not exist

- 3. $\sum_{k=1}^{7} (2k + 6k^2) =$
 - (a) (16)(7)(8)
 - (b) (15)(7)(8)
 - (c) (16)(7)
 - (d) (7)(8)(10)
 - (e) (7)(8)(14)

- 4. Using four rectangles and the **midpoint rule**, the area under the graph of $f(x) = 1 + x^2$ from x = 0 to x = 4 is approximately equal to
 - (a) 25
 - (b) 20
 - (c) 30
 - (d) 27
 - (e) 18

5. Suppose that $g(x) \le f(x) \le h(x)$ for all $x \ne 2$ and suppose that

$$\lim_{x \to 2} g(x) = \lim_{x \to 2} h(x) = -5.$$

Which one of the following statements is **TRUE**:

- (a) $\lim_{x\to 2} f(x) \neq 0$
- (b) f(2) must be equal to -5
- (c) f(2) cannot be equal to 0
- (d) $\lim_{x\to 2} f(x)$ can be different from -5
- (e) f(2) and $\lim_{x\to 2} f(x)$ must be equal

- 6. If $f(x) = \frac{x^3 + 2x^2 1}{(x+1)^2}$, then an equation of the oblique asymptote for the graph of f is
 - (a) y x = 0
 - (b) y x 1 = 0
 - (c) y + x = 0
 - (d) y + x + 1 = 0
 - (e) f does not have an oblique asymptote

7. If $f(x) = \cot^{-1}\left(\frac{1}{x}\right) - \tan^{-1}x$, then f'(1) =

- (a) f'(2)
- (b) does not exist
- (c) -1
- (d) $\frac{-2}{3}$
- (e) f'(0)

8. If $y = (\sec x + \tan x)(\sec x - \tan x)$, then $\frac{dy}{dx} =$

- (a) 0
- (b) $\sec^2 x$
- (c) $\sec^3 x$
- (d) 1
- (e) $\sec^2 x \tan x$

- 9. The slope of the **normal line** to the curve $2y + \pi \sin(xy) = 2\pi$ at the point $(1, \pi)$ is
 - (a) $\frac{\pi 2}{\pi^2}$
 - (b) 0
 - (c) $\frac{1}{\pi}$
 - (d) $-\frac{2}{\pi^2}$
 - (e) None of them

- 10. Newton's method is used to estimate the x-coordinate of the point of intersection of the curves $y = \sqrt{x}$ and $y = 1 x^2$. If we start with $x_0 = 1$, then $x_1 =$
 - (a) $\frac{3}{5}$
 - (b) 0
 - (c) $\frac{-1}{2}$
 - (d) $\frac{1}{2}$
 - (e) $\frac{8}{5}$

11. If the function

$$f(x) = \begin{cases} \frac{x+b}{b+1} & x < 0\\ x^2 + b & x \ge 0 \end{cases}$$

is continuous everywhere, then f(-1) =

- (a) -1
- (b) 0
- (c) 2
- (d) 4
- (e) -3

12. Let $f(x) = \sqrt{1 - 3x}$. The **greatest possible** value of $\delta > 0$ for which $\lim_{x \to -1} f(x) = 2$, when $\varepsilon = \frac{1}{2}$ is

- (a) $\frac{7}{12}$
- (b) $\frac{9}{12}$
- (c) $\frac{5}{12}$
- (d) $\frac{5}{2}$
- (e) $\frac{3}{2}$

13. Evaluate the limit $\lim_{x \to -\infty} (x + \sqrt{x^2 + 2x})$

- (a) -1
- (b) 1
- (c) -2
- (d) 2
- (e) 0

14. If $y = (2x)^{\sin(2x)}, \frac{dy}{dx} =$

- (a) $y \left[\frac{\sin(2x)}{x} + 2\ln(2x)\cos(2x) \right]$
- (b) $y \left[\frac{\sin(2x)}{2x} + 2\ln(2x)\cos(2x) \right]$
- (c) $y \left[\frac{\sin(2x)}{x} 2\ln(2x)\cos(2x) \right]$
- (d) $\sin(2x) (2x)^{\sin(2x)-1} \ln(2x)$
- (e) $y \left[\frac{\cos(2x)}{x} 2\ln(2x)\sin(2x) \right]$

15. Evaluate the limit $\lim_{x\to -1^+} (\sqrt{x+1} \ln(x+1))$

- (a) 0
- (b) 1
- (c) -1
- (d) ∞
- (e) $-\infty$

16. Let $f(x) = \cos^2 x + \sin x$, $0 < x < \pi$. Which one of the following statements is **TRUE**:

- (a) f is decreasing on the intervals $\left(\frac{\pi}{6}, \frac{\pi}{2}\right)$ and $\left(\frac{5\pi}{6}, \pi\right)$
- (b) f is decreasing on the interval $\left(\frac{\pi}{6}, \frac{5\pi}{6}\right)$
- (c) f is increasing on the interval $\left(\frac{\pi}{3}, \frac{2\pi}{3}\right)$
- (d) f is increasing on the intervals $\left(0, \frac{\pi}{3}\right)$ and $\left(\frac{\pi}{2}, \frac{2\pi}{3}\right)$
- (e) f is decreasing on the intervals $\left(\frac{\pi}{6}, \frac{\pi}{2}\right)$ and $\left(\frac{2\pi}{3}, \pi\right)$

17. If F(x) = f(xf(xf(x))) where f(1) = 2, f(2) = 3, f'(1) = 4, f'(2) = 5 and f'(3) = 6, then F'(1) =

- (a) 198
- (b) 0
- (c) -1
- (d) -200
- (e) 144

- 18. Let $f(x) = \frac{2x^2}{x^2 1}$. Which one of the following statements is **TRUE**:
 - (a) The graph of f is concave up on $(-\infty, -1) \cup (1, \infty)$
 - (b) The graph of f is concave up on $(-\infty, -1) \cup (0, 1)$
 - (c) The graph of f is concave down on $(-1,1) \cup (1,\infty)$
 - (d) The graph of f is concave down on $(-1,0) \cup (1,\infty)$
 - (e) f has two inflection points

- 19. Let $f(x) = x^2 \sqrt{5 \frac{x}{2}}, x \in [-2, 2]$. Which one of the following statements is **TRUE**?
 - (a) f has a local minimum at x = 0
 - (b) f has a local maximum at x = 8
 - (c) the absolute maximum value of f is 8
 - (d) f has absolute minimum at x = -2
 - (e) f has no absolute minimum

- 20. The most general antiderivative of $f(t) = \frac{te^{2t} + \sqrt[3]{t}}{t}$ is
 - (a) $\frac{1}{2}e^{2t} + 3t^{1/3} + C$
 - (b) $e^{2t} + 3t^{2/3} + C$
 - (c) $te^{2t} + t^{-2/3} + C$
 - (d) $2e^{2t} \frac{3}{2}t^{-5/3} + C$
 - (e) $\frac{1}{2}e^{2t} \frac{3}{2}t^{-5/3} + C$

21. The **number** of the critical points of $f(x) = |x^3 - 4x|$ is

- (a) 5
- (b) 4
- (c) 3
- (d) 2
- (e) 1

22. The real values of x_0 and L that satisfy the following limit

$$\lim_{x \to x_0} \frac{\ln(x+1)}{x - x_0} = 3L$$

are

(a)
$$x_0 = 0$$
; $L = \frac{1}{3}$

(b)
$$x_0 = -1; L = \frac{1}{2}$$

(c)
$$x_0 = -2; L = 1$$

(d)
$$x_0 = 1$$
; $L = \frac{1}{3}$

(e)
$$x_0 = \frac{1}{3}$$
; $L = \frac{1}{4}$

- 23. Approximating $\tan^{-1}(1.01)$ using a linearization of $f(x) = \tan^{-1}(x)$ at a suitably chosen integer near 1.01 is equal to
 - (a) $\frac{\pi}{4} + 0.005$
 - (b) $\frac{\pi}{2} + 0.005$
 - (c) $\frac{\pi}{4} + 0.01$
 - (d) $\frac{\pi}{2} + 0.01$
 - (e) 0.005

- 24. The value(s) of c satisfying the conclusion of the Mean Value Theorem for the function $f(x) = x + \frac{1}{x}$, on the interval $\left[\frac{1}{2}, 2\right]$ is (are)
 - (a) 1
 - (b) -1 and 1
 - (c) $\frac{1}{2}$ and $\frac{3}{2}$
 - (d) $\frac{1}{4}$ and 1
 - (e) 1 and $\frac{7}{4}$

- 25. Let a > 0 and let $f(x) = \frac{x^2}{3} + \frac{x}{a}$, $a \le x \le 2a$. The value of a such that the **average rate of change** of the function f on the interval [a, 2a] is the **smallest possible** is
 - (a) 1
 - (b) $\frac{1}{\sqrt{2}}$
 - (c) $\sqrt{2}$
 - (d) 2
 - (e) $\sqrt{3}$

- 26. A surveyor, standing 50ft from the base of a building, measures the angle of elevation to the top of the building to be 45° . How accurately must the angle be measured for the percentage error in estimating the height of the building to be less than 3%?
 - (a) 1.5%
 - (b) 1%
 - (c) 2%
 - (d) 2.5%
 - (e) 3%

- 27. The volume of a cube is increasing at the rate of $270 \, cm^3/min$ at the instant its edges are $6 \, cm$ long. At the same instant, the rate at which the lengths of the edges is changing is equal to
 - (a) $2.5 \, cm/min$
 - (b) $3 \, cm/min$
 - (c) $3.5 \, cm/min$
 - (d) $2 \, cm/min$
 - (e) $4 \, cm/min$

- 28. The least amount of material needed to construct an opentop right circular can that will hold a volume of $1000\,cm^3$ is equal to
 - (a) $300\pi^{1/3} cm^2$
 - (b) $100\pi^{-2/3} cm^2$
 - (c) $10\pi^{-1/3} cm^2$
 - (d) $400\pi^{1/3} \, cm^2$
 - (e) $300\pi^{-2/3} cm^2$

Q	MM	V1	V2	V3	V4
1	a	a	a	е	a
2	a	d	С	d	С
3	a	е	е	е	d
4	a	a	d	С	b
5	a	a	d	С	b
6	a	d	a	d	b
7	a	a	е	a	С
8	a	a	е	b	е
9	a	С	a	d	b
10	a	b	a	С	d
11	a	a	С	С	c
12	a	С	е	a	d
13	a	d	b	С	e
14	a	a	С	a	d
15	a	С	С	a	b
16	a	b	b	С	b
17	a	a	е	С	d
18	a	С	С	С	d
19	a	a	d	С	a
20	a	d	d	С	a
21	a	d	е	b	a
22	a	b	е	a	е
23	a	С	d	a	С
24	a	b	е	d	c
25	a	b	a	b	С
26	a	a	a	С	a
27	a	С	b	b	b
28	a	a	b	е	е