Ki	ng Fahd University of Petroleum and Minerals Department of Mathematics and Statistics
MASTER	MATH 101 - Term 122 - Exam II Duration: 120 minutes
Name:	KEY
ID Number:	Section Number:

Check that this exam has 20 questions.

Instructions:

- 1. Any type of calculators, pagers, or mobile phones are \mathbf{NOT} allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use erasers attached to the pencil.
- 4. Write your name, ID number, and section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and section number, make sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

Math 101-T-122 (Exam II) Page 1 of 10 MASTER 1. Let $f(x) = \frac{x+2}{2x+5}$ on the interval $(-\infty, \frac{-5}{2})$ and P(c, f(c)) be a point on the graph of f. If the tangent line at P is perpendicular to the line x + y + 1 = 0, then the y-intercept of the tangent line is

- a) 4 b) -4
- c) 0
- d) 1
- e) -1

2. If
$$f(t) = \frac{1}{\sqrt{t}} - \sqrt{t}$$
, then $\frac{\mathrm{d}^3 f}{\mathrm{d}t^3}$ is equal to

a)
$$\frac{-3}{8}t^{-7/2}(t+5)$$

b) $\frac{3}{8}t^{-7/2}(t+3)$
c) $\frac{1}{4}t^{-5/2}(t+5)$
d) $\frac{-1}{4}t^{-5/2}(3-t)$
e) $\frac{3}{4}t^{-7/2}(t-5)$

Math 101-T122 (Exam II) Page 2 of 10

MASTER

3. Using the graph of f below, decide which one of the following inequalities is **TRUE**.

a) f'(0) < f'(b) < f'(e)b) f'(-3) < f'(b) < f'(0)c) f'(a) < f'(c) < f'(e)d) f'(2) < f'(d) < f'(c)e) f'(-2) < f'(1) < f'(d)

4. If $f(x) = \begin{cases} -x & , x \le 0 \\ \sqrt{x} & , x > 0 \end{cases}$, then which one of the following statements is **FALSE**?

- a) the slope of the curve y = f(x) at x = 0 is 1
- b) f has a vertical tangent at x = 0
- c) f is continuous at x = 0
- d) f is not differentiable at x = 0
- e) the left hand derivative of f at x = 0 is -1

5. If
$$f(x) = (2x+3)^3(x^2-3)^{-2}$$
, then $f'(1) =$

a) 100 b) 50 c) -25d) $\frac{175}{2}$ e) $\frac{-125}{2}$

6. Let
$$f(x) = \begin{cases} 2-x & , x < 1 \\ x^2 - 2x + 2 & , x \ge 1 \end{cases}$$
. Then
a) $f'(x) = \begin{cases} -1 & , x < 1 \\ 2x - 2 & , x > 1 \end{cases}$
b) $f'(x) = \begin{cases} -1 & , x \le 1 \\ 2x - 2 & , x > 1 \end{cases}$
c) $f'(x) = \begin{cases} -1 & , x \le 1 \\ 2x - 2 & , x > 1 \\ 2x - 2 & , x \ge 1 \end{cases}$

d) f'(x) exists for all x except $x = \frac{1}{2}$ e) f'(x) does not exist

- 7. If the position in meters of a body moving along the s-axis is $s = t^3 12t^2 + 45t$ in the time interval [0, 10], then the time interval(s) where the particle is moving forward is (are)
 - a) $(0,3) \cup (5,10)$
 - b) (0,4)c) (4,10)
 - d) (3,5)
 - e) $(0,3) \cup (4,10)$

8. The value of the limit
$$\lim_{\theta \to \pi/6} \left(\frac{\cot \theta - \sqrt{3}}{\theta - \pi/6} \right)$$
 is equal to

a) -4
b) -2
c) 6
d) -8
e) 3

Math 101-T122 (Exam II)

9. Let $f(x) = \ln(\cos x)$, $-\frac{\pi}{2} < x < \frac{\pi}{2}$. If c satisfies 2f'(c) + f''(c) = 0, then f(c) is equal to

a)
$$\frac{-\ln 2}{2}$$

b)
$$-\ln 2$$

c)
$$\ln 2$$

d)
$$\frac{\ln 2}{2}$$

e)
$$0$$

- 10. If $F(x) = f(g(x^2))$ where g(4) = 2, g'(4) = -3, f'(4) = -6, and f'(2) = -2, then F'(2) =
 - a) 24
 b) -8
 c) 6
 d) -12
 e) -36

Math 101-T122 (Exam II)

MASTER

11. The slope of the tangent line to the curve $y = \ln\left(\frac{\sin^{-1}x}{\pi x}\right)$ at $x = \frac{1}{2}$ is

a)
$$\frac{4\sqrt{3}}{\pi} - 2$$

b)
$$\frac{4}{\pi} - 2\pi$$

c)
$$\frac{4\sqrt{3}}{3\pi} - 2$$

d)
$$\frac{4}{5\pi} - 2\pi$$

e)
$$\frac{4}{\pi} - \sqrt{3}$$

12. The equation of the normal line to the curve $(x^2+y^2) = (x-y)^2$ at the point (1,-1) is

- a) x + y = 0
- b) 2x + y + 1 = 0
- c) y 2x = 0
- d) x + 2y = 0
- e) x y 1 = 0

13. Let
$$xy + y^2 = 1$$
. $\frac{d^2y}{dx^2}$ at $(0, -1)$ is equal to

a)
$$\frac{-1}{4}$$

b) $\frac{1}{8}$
c) $\frac{-1}{2}$
d) 1

14. If $f(t) = 3^{\log_2 t} + \log_2 (3^t)$, then f'(2) is equal to

a)
$$\frac{\ln 243}{\ln 4}$$

b)
$$\frac{\ln 9}{\ln 2}$$

c)
$$1 + \log_2 9$$

d)
$$\ln\left(\frac{4}{3}\right)$$

e)
$$1 + \log_2 6$$

15. If
$$y = (\sin x)^{\csc x}$$
, then $\frac{\mathrm{d}y}{\mathrm{d}x}$ is equal to

a)
$$(\sin x)^{\csc x} \csc x \cot x (1 - \ln(\sin x))$$

b) $-(\sin x)^{\csc x-1} \csc x \cot x$

- b) $-(\sin x)^{\cos x} \csc x \cot x$ c) $(\sin x)^{\csc x} \csc x \cot x (1 - \ln(\csc x))$
- d) $-(\sin x)^{\csc x} \csc x \cot x \ln(\cos x)$
- e) $(\sin x)^{\csc x} \csc x \cot x \ln (\sin x)$

16. The derivative of $y = \cot^{-1} x + \tan^{-1} \left(\frac{1}{x}\right)$ is equal to

a)
$$\frac{-2}{1+x^2}$$

b) $\frac{2x^2}{1+x^2}$
c) 0
d) $\frac{-1}{1+x^2}$
e) $\frac{1}{1+x^2}$

Math 101-T122 (Exam II) Page 9 of 10

MASTER

17. The width of a rectangle is increasing at the rate 2 cm/sec while the diagonal is decreasing at the rate 3 cm/sec. When the width is 4 cm and the diagonal is 5 cm, the rate of change of the area of the rectangle is

a)
$$\frac{-74}{3}$$
 cm/sec²
b) $\frac{-10}{3}$ cm/sec²
c) $\frac{-2}{3}$ cm/sec²
d) $\frac{92}{3}$ cm/sec²
e) $\frac{20}{3}$ cm/sec²

18. A rock thrown vertically upward from the ground at a velocity of 192 ft/sec reaches a height of $s(t) = 192t - 16t^2$ ft after t seconds. Using the given table of values of s, the total distance travelled by the rock from t = 3 to t = 8 is

t	3	4	5	6	7	8
s(t)	432	512	560	576	560	512

- a) 208 ft
- b) 80 ft
- c) 144 ft
- d) 64 ft
- e) 276 ft

Math 101-T122 (Exam II) Page **10 of 10**

MASTER

19. A particle moves along the curve $y = x^3$ in the first quadrant in such a way that its x-coordinate (measured in meters) increases at a steady 3 m/sec. How fast is the angle of inclination θ of the line joining the particle to the origin changing when x = 2 m?

a)
$$\frac{12}{17}$$

b) $\frac{6}{17}$
c) $\frac{-3}{17}$
d) $\frac{3}{8}$
e) $\frac{-2}{27}$

20. The rate of change of $f(x) = \frac{x^2 e^{\sqrt{x-1}}}{1-x}$ with respect to x at x = 2 is

[Hint: You may use logarithmic differentiation.]

a) -2e

- b) 8*e*
- c) 10*e*
- d) -6e
- e) 5*e*

Q	MM	V1	V2	V3	V4
1	a	e	a	d	е
2	a	е	b	с	b
3	a	d	с	a	с
4	a	d	е	a	e
5	a	b	b	е	с
6	a	с	е	е	b
7	a	e	b	е	е
8	a	e	с	b	е
9	a	с	с	a	с
10	a	a	a	е	b
11	a	с	a	a	a
12	a	b	b	е	d
13	a	e	d	с	a
14	a	b	с	a	a
15	a	a	е	b	d
16	a	b	с	d	b
17	a	b	d	с	d
18	a	e	е	b	с
19	a	b	d	с	d
20	a	с	с	b	b

ANSWER KEY