King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

Math 101
Exam II
Term 121
Thursday 22/11/2012

EXAM COVER

Number of versions: 4
Number of questions: 20
Number of Answers: 5 per question

King Fahd University of Petroleum and Minerals

 Department of Mathematics and StatisticsMath 101
Exam II
Term 121
Thursday 22/11/2012
Net Time Allowed: 120 minutes

MASTER VERSION

1. If $y=x^{2} \sin x+2 x \cos x-2 \sin x$, then $y^{\prime}=$
(a) $x^{2} \cos x$
(b) $x^{2} \cos x-4 x \sin x-4 x \cos x$
(c) $\left(x^{2}+x+1\right) \cos x$
(d) $x^{2} \sin x$
(e) $x^{2} \cos x-4 \cos x$
2. The accompanying figure shows the graph of $y=f(x)$. Then the graph of $y=f^{\prime}(x)$ lies below the x-axis on the interval(s)
(a) $(-\infty,-1)$ and $(0,1)$
(b) $(-2,2)$
(c) $(-1,0)$ and $(1, \infty)$
(d) $(-1,1)$
(e) $(-\infty,-2)$ and $(2, \infty)$
3. If $-1<x<0$, then $\frac{d}{d x} \cos ^{-1} \sqrt{1-x^{2}}=$
(a) $\frac{-1}{\sqrt{1-x^{2}}}$
(b) $\frac{-2 x}{\sqrt{1-x^{2}}}$
(c) $\frac{2}{\sqrt{1-x^{2}}}$
(d) $\frac{1}{x \sqrt{1-x^{2}}}$
(e) $\frac{-1}{x \sqrt{1-x^{2}}}$
4. Let x and y be differentiable functions of t.

If $x^{2} y^{3}=8 / 27$ and $\frac{d y}{d t}=1 / 2$, then $\frac{d x}{d t}$ when $x=1$ is equal to
(a) $-\frac{9}{8}$
(b) $\frac{4}{27}$
(c) $-\frac{3}{8}$
(d) $-\frac{2}{27}$
(e) $\frac{4}{9}$
5. If $f(x)=\ln \left(x^{2}+4\right)^{-3}-3 x \cot ^{-1}\left(\frac{x}{2}\right)$, then $f^{\prime}(-2)=$
(a) $\frac{3 \pi}{4}$
(b) $-\frac{6}{5}+\frac{3 \pi}{4}$
(c) $-3+\frac{3 \pi}{4}$
(d) $-\frac{3 \pi}{2}$
(e) $-\frac{1}{2}+\frac{3 \pi}{4}$
6. If $\lim _{h \rightarrow 0} \frac{f(-4+h)-f(-4)}{h}=3$, then which one of the following statements is FALSE?
(a) $\lim _{x \rightarrow-4} f(x)$ does not exist
(b) The function f is continuous at $x=-4$
(c) The rate of change of $f(x)$ with respect to x at $x=-4$ is 3
(d) The function f is differentiable at $x=-4$
(e) The slope of the tangent line to f at $x=-4$ is 3
7. If the function $f(x)=\left\{\begin{array}{ll}a x+b, & x>-1 \\ b x^{2}-1, & x \leq-1\end{array}\right.$ is differentiable everywhere, then $8 a+6 b=$
(a) 5
(b) -2
(c) 9
(d) -1
(e) 11
8. If at time t, the position of a body moving along the s - axis is $s(t)=t^{3}-9 t^{2}+24 t$, then the total distance traveled by the body from $t=0$ to $t=3$ is
(a) 22
(b) 20
(c) 54
(d) 64
(e) 18
9. If $f(x)=x^{4 / 3}$, then which one of the following statements is FALSE?
(a) f is not differentiable at $x=0$.
(b) $f^{\prime}(8)=\frac{8}{3}$
(c) f has a horizontal tangent at $x=0$.
(d) f has no vertical tangent at $x=0$
(e) $\lim _{x \rightarrow 0^{-}} f(x)=0$
10. If $f(t)=t^{2}\left(t^{3}-1\right)^{5}$, then $f^{\prime}(t)=$
(a) $t\left(t^{3}-1\right)^{4}\left(17 t^{3}-2\right)$
(b) $2 t\left(t^{3}-1\right)^{4}\left(15 t^{3}-4\right)$
(c) $t\left(t^{3}-1\right)^{4}\left(17 t^{3}-3\right)$
(d) $15\left(t^{3}-1\right)^{4}\left(17 t^{3}-2\right)$
(e) $t\left(t^{3}-1\right)^{5}\left(17 t^{3}-1\right)$
11. The rate of change of $s(t)=\left(e^{\tan 2 t}\right)^{3}$ with respect to t at $t=\frac{\pi}{8}$ is
(a) $12 e^{3}$
(b) $18 e^{2}$
(c) $6 e^{3}$
(d) $6 e^{2}$
(e) $3 e^{3}$
12. A table of values of f, g, f^{\prime} and g^{\prime} is given, if $H(x)=e^{x} g(f(x))$, then $H^{\prime}(0)=$
(a) 25
(b) 17
(c) 40
(d) 3
(e) 29
13. If $y^{3}+3 x=1-3 y$, then the product $\left(y^{2}+1\right)^{3} y^{\prime \prime}$ is equal to
(a) $-2 y$
(b) 1
(c) $-3 y$
(d) y
(e) $-y$
14. The sum of all values of x at which the tangent lines to the graph of $y=\frac{x-1}{x+1}$ are parallel to the line $9 x-2 y+1=0$ is
(a) -2
(b) 1
(c) -3
(d) $-2 / 3$
(e) $4 / 3$
15. If $y=\frac{2 x-1}{3 x+1}$, then $y^{\prime \prime \prime}$ is equal to
(a) $270(3 x+1)^{-4}$
(b) $-150(3 x+1)^{-4}$
(c) $-270(3 x+1)^{-3}$
(d) $150(3 x+1)^{-4}$
(e) $-90(3 x+1)^{-3}$
16. The slope of the tangent line to the graph of $y=\frac{\left(3 x^{2}+1\right)^{3 / 2}(5 x-1)^{1 / 2}}{\left(x^{3}+7\right)^{1 / 3}}$ at $x=1$, is [Hint: You may use logarithmic differentiation]
(a) 22
(b) 24
(c) 18
(d) 28
(e) 30
17. When sketching the graph of $f(x)=2-|3-x|$ we find that only one of the following statments is TRUE
(a) The left-hand derivative of f at 3 is 1
(b) The right-hand derivative of f at 5 is 0
(c) The left-hand derivative of f at 0 is -1
(d) $f^{\prime}(3)= \pm 1$
(e) $f^{\prime}(0)=f^{\prime}(5)$
18. A hot air balloon rising straight up from a level field is tracked by a boy 300 ft on the ground from the lifting point. If the balloon is rising at the constant rate of $150 \mathrm{ft} / \mathrm{min}$, then the rate of change of the boy's elevation angle θ
when $\theta=\frac{\pi}{4}$ is
(a) $0.25 \mathrm{rad} / \mathrm{min}$
(b) $0.125 \mathrm{rad} / \mathrm{min}$
(c) $0.025 \mathrm{rad} / \mathrm{min}$
(d) $0.0125 \mathrm{rad} / \mathrm{min}$
(e) $0.075 \mathrm{rad} / \mathrm{min}$
19. If $y=x^{x-\ln x}$, then $\frac{x y^{\prime}}{y}$ is equal to
(a) $x-2 \ln x+x \ln x$
(b) $x-\ln x+2 x \ln x$
(c) $2 x-\ln x+x \ln x$
(d) $x+2 \ln x-2 x \ln x$
(e) $-2 x+\ln x-x \ln x$
20. The slope of the normal line to the curve $2 x^{2} \sin ^{2} y+3 \sqrt{2} \cos y=4$ at the point $\left(1, \frac{\pi}{4}\right)$ is
(a) $-1 / 2$
(b) $2 / 3$
(c) $-1 / 3$
(d) $3 / 2$
(e) $-1 / 4$

