King Fahd University of Petroleum and Minerals

Department of Mathematics and Statistics
Math 101 - Calculus I
Exam I
Term (121)
Tuesday, October 2, 2012
Time Allowed: 2 hours

Name: \qquad ID Number: \qquad
Section Number: \qquad Serial Number: \qquad
Class Time: \qquad Instructor's Name: \qquad

Instructions:

1. Calculators and Mobiles are not allowed.
2. Write neatly and eligibly. You may lose points for messy work.
3. Show all your work. No points for answers without justification.
4. Make sure that you have 7 pages of problems (Total of 10 Problems)

	Points	Maximum Points
Page 1		20
Page 2		13
Page 3		12
Page 4		17
Page 5		22
Page 6		10
Page 7		100
Total		

1. (2 points) Find the average rate of change of the function $f(x)=x^{3}+1$ over the interval $[-1,1]$.

$$
\frac{A+1)}{\Delta x}=\frac{f(1)-f(-1)}{1-(-1)}=\frac{2-0}{2}=1
$$

2. (12 points) Sketch the graph of a function f that satisfies the following conditions:
(i) $\lim _{x \rightarrow \pm \infty} f(x)=1$,
(ii) $\lim _{x \rightarrow 3^{-}} f(x)=\infty$,
(iii) $\lim _{x \rightarrow 3^{+}} f(x)=-\infty$,
(iv) f has a removable discontinuity at 1 ,
(v) f has a jump discontinuity at 5 .

3. (6 points) Using the Sandwich Theorem, show that if $\lim _{x \rightarrow 1}|f(x)|=0$, then $\lim _{x \rightarrow 1} f(x)=0$.

$$
\text { Since } \quad-|f(x)| \leqslant f(x) \leqslant|f(x)|
$$

and $\operatorname{Lim}_{x \rightarrow 1}|f(x)|=0 \Rightarrow \operatorname{Lim}_{x \rightarrow 1}-|f(x)|=0$, pts
it follows from the Sandwich Theorem
that

$$
\operatorname{Lim}_{x \rightarrow 1} f(x)=0
$$

2 pts
4. Evaluate the limit or show that it does not exist.
i) (4 points) $\lim _{x \rightarrow 2^{-}} \frac{|x-2|(x-4)}{(x-2)}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 2^{-}} \frac{-(x-2)(x-4)}{(x-2)} \\
& =\lim _{x \rightarrow 2^{-}}-(x-4)=-(-2)=2
\end{aligned}
$$

ii) (6 points) $\lim _{\theta \rightarrow 0} \tan 3 \theta \cdot \csc \theta$

$$
\left.\begin{array}{l}
=\lim _{\theta \rightarrow 0}\left(\frac{\tan 3 \theta}{3 \theta} \cdot 3 \cdot \frac{\theta}{\sin \theta}\right) \text { (3 Ats } \\
=3 \lim _{\theta \rightarrow 0} \frac{\tan 3 \theta}{3 \theta} \cdot \lim _{\theta \rightarrow 0} \frac{\theta}{\sin \theta} \\
=3 \cdot 1 \cdot 1=3
\end{array}\right\}
$$

iii) (3 points) $\lim _{x \rightarrow 1}\left[\frac{1}{x}\right]$, where $[y]$ is the greatest integer less than or equal to y.

$$
\operatorname{since} \lim _{x \rightarrow 1^{-}}\left[\frac{1}{x}\right]=1
$$

and $\lim _{x \rightarrow 1^{+}}\left[\frac{1}{x}\right]=0$,
it follows that $\operatorname{Lim}_{x \rightarrow 1}\left[\frac{1}{x}\right]$
DIE IDE

$$
\text { iv) } \begin{aligned}
& \left(6 \text { points) } \lim _{x \rightarrow 3} \frac{x^{2}-9}{\sqrt{x^{2}+7}-4}\right. \\
& =\operatorname{Lim}_{x \rightarrow 3} \frac{\left(x^{2}-9\right)\left(\sqrt{x^{2}+7}+4\right)}{\left(\sqrt{x^{2}+7}-4\right)\left(\sqrt{x^{2}+7}+4\right)} \\
& =\operatorname{Lim}_{x \rightarrow 3} \frac{\left(x^{2}-9\right)\left(\sqrt{x^{2}+7}+4\right)}{\left(x^{2}+7\right)-16}=\operatorname{Lim}_{x \rightarrow 3} \frac{\left(x^{2}-9\right)\left(\sqrt{x^{2}+7}+4\right)}{x^{2}-9} \\
& =\operatorname{Lim}_{x \rightarrow 3}\left(\sqrt{x^{2}+7}+4\right)=\sqrt{16}+4=8
\end{aligned}
$$

v) (6 points) $\lim _{x \rightarrow 0} \frac{x-x \cos x}{\sin ^{2} x}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{x(1-\cos x)}{\sin ^{2} x} \\
& =\lim _{x \rightarrow 0} \frac{x \frac{(1-\cos x)}{x^{2}}}{\lim ^{2} x} \\
& =\lim _{x \rightarrow 0} \\
& =\frac{x^{2}}{x}=\frac{1-\cos x}{x}
\end{aligned}
$$

5. (9 points) Use the graph of $f(x)=\sqrt{x-2}$ to find $\delta>0$ such that if $0<|x-6|<\delta$, then $|f(x)-2|<1$

$$
|f(x)-2|<1 \Rightarrow \varepsilon=1 \text { (INt) }
$$

From the graph:

- $f\left(x_{1}\right)=1 \Rightarrow x_{1}=3$
- $f\left(x_{2}\right)=3 \Rightarrow x_{2}=11$
(2ptss

-6- $x_{1}=6-3=3$ and $x_{2}-6=11-6=5$
$\Rightarrow \delta=3$ (or $0<\delta \leqslant 3$) 2pts

6. (8 points) Use the Intermediate Value Theorem to prove that the equation $x^{3}-3 x-1=0$ has a solution.
Let $f(x)=x^{3}-3 x-1$ pts
$\Rightarrow f$ is continuous everywhere because it is a polynomial. $2 p t s$
If $x=-1$, then $f(-1)=1$, 1pt $\} \begin{aligned} & \text { other values } \\ & x \text { are also }\end{aligned}$ if $x=0$, then $f(0)=-1$ (1PE possible Then $x^{3}-3 x-1=0$ for some x between -1 and 0 according to the Intermediate Value Theorem 2bts
7. (12 points) Use limits to find the values of a and b for which the function

$$
g(x)= \begin{cases}a x+5 b, & x \leq 0 \\ x^{2}+a-3 b, & 0<x \leq 2 \\ 5 x-3, & x>2\end{cases}
$$

is continuous at every x.
9 in contimuans everywhere except possibly at 0 and 2 (PE
g is contimuaws at 0 and 2 if:

$$
\begin{align*}
& \operatorname{Lim}_{x \rightarrow 0^{-}} g(x)=\operatorname{Lim}_{x \rightarrow 0^{+}} g(x)=g(0) \text { pt } \\
\Rightarrow & \lim _{x \rightarrow 0^{-}}(a x+5 b)=\operatorname{Lim}_{x \rightarrow 0^{+}}\left(x^{2}+a-3 b\right)=5 b \text { 2pts } \\
\Rightarrow & 5 b=a-3 b \Rightarrow a=8 b \text {. AA 2pts } \tag{A}
\end{align*}
$$

and $\lim _{x \rightarrow 2^{-}} g(x)=\operatorname{Lim}_{x \rightarrow 2^{+}} g(x)=g(2)$ (1pt

$$
\Rightarrow \quad \begin{array}{ll}
x \rightarrow 2^{-} & x \rightarrow 2^{+} \\
& 4+a-3 b=10-3 \Rightarrow a=3 b+3 \text { (B) }
\end{array}
$$

$$
\begin{align*}
&(B) \Rightarrow 8 b=3 b+3 \Rightarrow 5 b=3 \Rightarrow b=\frac{3}{5} \tag{A}\\
& \Rightarrow 1 a=24 / 5 \\
& \hline 1 p t
\end{align*}
$$

8. (10 points) Use limits to find the horizontal asymptotes of the curve $y=\frac{4-3 x^{3}}{\sqrt{x^{6}+9}}$

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow-\infty} \frac{4-3 x^{3}}{\sqrt{x^{6}+9}}=\lim _{x \rightarrow-\infty} \frac{x^{3}\left(\frac{4}{x^{3}}-3\right)}{\left|x^{3}\right| \sqrt{1+\frac{9}{x 6}}}=\lim _{x \rightarrow-\infty} \frac{-\left(\frac{4}{x^{3}}-3\right)}{\sqrt{1+9}} \\
& \quad=\frac{-(-3)}{1}=3 \quad 1 p t \\
& \lim _{x \rightarrow \infty} \frac{4-4 x^{3}}{\sqrt{x^{6}+9}}=\lim _{x \rightarrow \infty} \frac{x^{3}\left(\frac{4}{x^{3}}-3\right)}{\left|x^{3}\right| \sqrt{1+\frac{9}{x 6}}}=\lim _{x \rightarrow \infty} \frac{\left(\frac{4}{x^{3}}-3\right)}{\sqrt{1+9} x^{6}} \\
& =\frac{-3}{1}=-3 \text { (PDt }
\end{aligned}
$$

$\Rightarrow y=3$ and $y=-3$ are the horizontal asymptotes pts
9. (10 points) Use limits to find all asymptotes of the curve $y=\frac{x^{2}+1}{x-1}$.

- $\operatorname{Lim}_{x \rightarrow 1^{-}} y=-\infty \quad\left(\right.$ or $\left.\operatorname{Lim}_{x \rightarrow 1^{+}} y=\infty\right)$
$\Rightarrow x=1$ is a vertical asymptote $1 p t$
- $y=\frac{x^{2}+1}{x-1}=\frac{x^{2}\left(1+\frac{1}{x^{2}}\right)}{x\left(1-\frac{1}{x}\right)}=\frac{x\left(1+\frac{1}{x}\right)}{(1-1 / x)}$
$\Rightarrow \operatorname{Lim}_{x \rightarrow \infty} y=\infty$ and $\operatorname{Lim}_{x \rightarrow-\infty} y=-\infty$ 2pts
\Rightarrow No horizontal asymptotes (pt

$$
\begin{aligned}
\Rightarrow & y=x+1+\frac{2}{x-1} \\
\Rightarrow \mathcal{L i m}_{x \rightarrow \pm \infty}(y-(x+1)) & =\operatorname{Lim}_{x \rightarrow \pm \infty} \frac{2}{x-1} \\
& =0 \text { hots }
\end{aligned}
$$

$\Rightarrow y=x+1$ in an oblique (slant) asymptote I pt
10. To each of the following statements, give an example to show that the statement is False:
(a) (3 points) If $\lim _{x \rightarrow 1}(f(x) \cdot g(x))$ exists, then the limit must be $f(1) \cdot g(1)$

$$
\begin{aligned}
& \text { Let } f(x)=x-1 \text { and } g(x)=\frac{1}{x-1} \\
& \Rightarrow \operatorname{Lim}_{x \rightarrow 1}(f(x) \cdot g(x))=\operatorname{Lim}_{x \rightarrow 1} 1=1 \\
& \neq f(1) \cdot g(1)
\end{aligned}
$$

(b) (3 points) If f has domain $(0, \infty)$ and has no horizontal asymptotes, then $\lim _{x \rightarrow \infty} f(x)=\infty$ or $\lim _{x \rightarrow \infty} f(x)=-\infty$

$$
f(x)=\sin x, \quad x \geqslant 0
$$

has no horizontal asymptotes
with $\mathcal{L}, ~ f(x) \neq \infty$ and $\mathcal{L}: f(x) \neq-\infty$

$$
x \rightarrow \infty \quad x \rightarrow \infty
$$

other examples are also possible

