King Fahd University of Petroleum & Minerals Department of Mathematics and Statistics

Math 101
Exam 2
Term 102
Monday, April 25, 2011
Net Time Allowed: 120 minutes

MASTER VERSION

- 1. The slope of the tangent line to the curve $y = 4 \sec x + \tan x$ at $x = \frac{\pi}{4}$ is equal to
 - (a) $2 + 4\sqrt{2}$
 - (b) 2
 - (c) $1 + \sqrt{2}$
 - (d) $-4\sqrt{2}$
 - (e) -6

- 2. The equation of the **normal line** to the curve $y = 4x^3 6\sqrt{x}$ at the point (1, -2) is
 - (a) 9y + x + 17 = 0
 - (b) y = 9x + 11
 - (c) y + 9x 11 = 0
 - (d) y = 17x 9
 - (e) y + 9x 17 = 0

- 3. If $f(x) = \sqrt[3]{x^2} + \frac{1}{\sqrt[4]{x}}$, then f''(1) =
 - (a) $\frac{13}{144}$
 - (b) $\frac{-3}{56}$
 - (c) $\frac{77}{144}$
 - (d) $\frac{13}{56}$
 - (e) $\frac{101}{144}$

- 4. If $x^3 + x^2y 4y^2 = 6$, then y' =
 - $(a) \quad \frac{2xy + 3x^2}{8y x^2}$
 - (b) $\frac{-3x^2}{x^2 8y}$
 - (c) $\frac{3x^2 + xy}{8y}$
 - $(d) \quad \frac{xy 3x^2}{4y 2x}$
 - (e) $\frac{x + 3xy}{4y^2 + 4x}$

- 5. The x-coordinates of the points on the curve $y = 3x \sin x$ at which the tangent line has slope 4 are
 - (a) $(2n+1)\pi$, n is integer
 - (b) $n\pi$, n is integer
 - (c) $\frac{2n+1}{2}\pi$, n is integer
 - (d) $2n\pi$, n is integer
 - (e) $\frac{n\pi}{3}$, n is integer

- 6. The equation of the tangent line to the curve $x^2 + (y x)^3 = 9$ at x = 1 is
 - (a) $y = \frac{5}{6}x + \frac{13}{6}$
 - (b) $y = \frac{5}{3}x + \frac{4}{3}$
 - (c) $y = \frac{3}{6}x \frac{17}{6}$
 - (d) $y = \frac{7}{6}x + \frac{11}{6}$
 - (e) $y = \frac{1}{6}x + \frac{17}{6}$

7. If
$$f(x) = \frac{2x-1}{(x+3)^3}$$
, then $f'(x) =$

- (a) $\frac{9-4x}{(x+3)^4}$
- (b) $\frac{3x+2}{(x+3)^6}$
- (c) $\frac{7-4x}{(x+3)^5}$
- (d) $\frac{3+2x}{(x+3)^4}$
- (e) $\frac{5+4x}{(x+3)^5}$

8. If
$$y = \sqrt[5]{u^2 - 3}$$
 and $u = \sqrt[3]{x^2 - 1}$, then $\frac{dy}{dx}\Big|_{x=3} =$

- (a) $\frac{2}{5}$
- (b) $\frac{8}{15}$
- (c) $\frac{8}{\sqrt[3]{2}}$
- (d) $\frac{3}{\sqrt[5]{4}}$
- (e) $\frac{1}{5}$

- 9. $\lim_{t \to 0} \frac{\sin^2(3t)}{t^3 3t^2} =$
 - (a) -3
 - (b) 3
 - (c) $\frac{1}{9}$
 - (d) $\frac{2}{3}$
 - (e) $\frac{4}{27}$

- 10. Let f be a differentiable function such that f(2) = 2, f(4) = 1, f'(2) = 3, and f'(4) = -1. If $G(x) = f(2x) \cdot f(x)$, then G'(2) =
 - (a) -1
 - (b) 1
 - (c) 0
 - (d) 5
 - (e) 3

11. If $h(x) = \ln(x + 2 \ln x)$, then h'(x) =

(a)
$$\frac{x+2}{x^2+2x\ln x}$$

(b)
$$\frac{x+2}{x+2\ln x}$$

(c)
$$\frac{x+1}{x^2+2\ln x}$$

(d)
$$\frac{1}{x + 2 \ln x}$$

(e)
$$\frac{2}{x(x+2\ln x)}$$

12. If $f(t) = 3^{\sin^2(3t)}$, then f'(t) =

(a)
$$3^{\sin^2(3t)} \cdot \ln(27) \cdot \sin(6t)$$

(b)
$$3^{\sin^2(3t)} \cdot \ln 3 \cdot 2\sin(3t)$$

(c)
$$3^{\sin^2(3t)} \cdot \ln 9 \cdot 3\cos(3t)$$

(d)
$$\sin^2(3t) \cdot 3^{\sin^2(3t)-1}$$

(e)
$$3^{\sin^2(3t)} \cdot \ln 3 \cdot 3\sin(3t) \cdot \cos(3t)$$

13. If
$$y = x^{\sin^{-1} x}$$
, then $\frac{y'}{y} =$

(a)
$$\frac{\sin^{-1} x}{x} + \frac{\ln x}{\sqrt{1 - x^2}}$$

(b)
$$\frac{1}{x\sqrt{1-x^2}}$$

(c)
$$\frac{\sin^{-1} x}{\sqrt{1-x^2}} + \frac{\ln x}{x}$$

- (d) $(\sin^{-1} x) \ln x$
- (e) $x^{\sin^{-1}x} \cdot \ln x$

$$14. \quad \lim_{x \to 0} \frac{\cos x + \sin(2x) - 1}{\tan x} =$$

- (a) 2
- (b) 1
- (c) 0
- (d) -3
- (e) Does not exist

15. If
$$f(x) = \frac{\sqrt[3]{3x-2}}{e^{x^2}(x^3+1)^{10}}$$
, then $f'(1) =$

[Hint: you may use logarithmic differentiation]

- (a) $\frac{-1}{64e}$
- (b) $\frac{32}{e}$
- (c) $\frac{e}{15}$
- (d) $\frac{-16}{5e}$
- (e) $\frac{1}{16e}$

16. If
$$y = \tan^{-1}\left(\frac{1+x}{1-x}\right)$$
, then $\frac{dy}{dx} =$

- (a) $\frac{1}{1+x^2}$
- (b) $\frac{2}{(1+x)^2}$
- (c) $\frac{(1-x)^2}{1-(1+x)^2}$
- (d) $\frac{(1+x)^2}{(1-x)^2}$
- (e) $\frac{2}{2+x^2}$

- 17. A parabola $y = ax^2 + bx + c$ passes through the point (1,7), has a tangent line at x = -1 with slope 6, and has a tangent line at x = 5 with slope -2. The value of 6a + 3b + c is equal to
 - (a) 13
 - (b) -12
 - (c) 7
 - (d) -8
 - (e) 0

- 18. If y = mx + k is the equation of a line parallel to the line y = x and tangent to the graph of $y = e^{x+2}$, then m + k = x
 - (a) 4
 - (b) -2
 - (c) 2
 - (d) 3
 - (e) 5

19. A particle moves according to the law of motion

$$f(t) = 9te^{-t/3}, \quad 0 \le t \le 8.$$

The time interval(s) on which the particle is slowing down is (are) $\frac{1}{2}$

- (a) (0,3) and (6,8)
- (b) (3,6)
- (c) (0,2) and (3,6)
- (d) (2,6)
- (e) (0,3) and (4,8)

- 20. The volume of a cube is increasing at a rate of 10 cm³/min. When the length of an edge is 30 cm, the **surface area** of the cube is increasing at a rate of
 - (a) $\frac{4}{3}$ cm²/min
 - (b) $\frac{5}{9} \text{ cm}^2/\text{min}$
 - (c) $6 \text{ cm}^2/\text{min}$
 - (d) $\frac{5}{3}$ cm²/min
 - (e) $5 \text{ cm}^2/\text{min}$