A Simple Mathematica Session
------------------------------------------------------------------------------------
Mathematica understands the usual operators + - * and ^.
The following session illustrates some of these features:
------------------------------------------------------------------------------------
![[Graphics:Images/htmlquickstart_gr_1.gif]](Images/htmlquickstart_gr_1.gif)
------------------------------------------------------------------------------------------
It also understands basic constants Pi and E. It also knows
about a large number of mathematical functions such as Exp[x],
Sin[x], Cos[x], ArcSin[x], Log[x]
Note: ( all Mathematica Commands start with capital letter
and use only square brackets [ ] )
The following session illustrates some of these features:
---------------------------------------------------------------------------------------------
![[Graphics:Images/htmlquickstart_gr_7.gif]](Images/htmlquickstart_gr_7.gif)
![[Graphics:Images/htmlquickstart_gr_9.gif]](Images/htmlquickstart_gr_9.gif)
![[Graphics:Images/htmlquickstart_gr_11.gif]](Images/htmlquickstart_gr_11.gif)
--------------------------------------------------------------------------------------
The basic plotting command is Plot[f, {x, xmin, xmax}]
which plots the function f(x) from xmin to xmax
For example,
--------------------------------------------------------------------------------------
![[Graphics:Images/htmlquickstart_gr_13.gif]](Images/htmlquickstart_gr_13.gif)
![[Graphics:Images/htmlquickstart_gr_16.gif]](Images/htmlquickstart_gr_16.gif)
![[Graphics:Images/htmlquickstart_gr_19.gif]](Images/htmlquickstart_gr_19.gif)
--------------------------------------------------------------------------------------
Here we find the derivative of some functions
--------------------------------------------------------------------------------------
![[Graphics:Images/htmlquickstart_gr_22.gif]](Images/htmlquickstart_gr_22.gif)
--------------------------------------------------------------------------------------
Here we find the derivative with respect to y
--------------------------------------------------------------------------------------
![[Graphics:Images/htmlquickstart_gr_24.gif]](Images/htmlquickstart_gr_24.gif)
--------------------------------------------------------------------------------------
Here we find the second derivative
--------------------------------------------------------------------------------------
![[Graphics:Images/htmlquickstart_gr_26.gif]](Images/htmlquickstart_gr_26.gif)
--------------------------------------------------------------------------------------
Here we find the Limit
--------------------------------------------------------------------------------------
![[Graphics:Images/htmlquickstart_gr_28.gif]](Images/htmlquickstart_gr_28.gif)
![[Graphics:Images/htmlquickstart_gr_30.gif]](Images/htmlquickstart_gr_30.gif)
--------------------------------------------------------------------------------------
This gives the limit of the tangent function at Pi/2 approaching
from the right.
--------------------------------------------------------------------------------------
![[Graphics:Images/htmlquickstart_gr_32.gif]](Images/htmlquickstart_gr_32.gif)
--------------------------------------------------------------------------------------
This gives the limit of the tangent function at Pi/2 approaching
from the left.
--------------------------------------------------------------------------------------
![[Graphics:Images/htmlquickstart_gr_34.gif]](Images/htmlquickstart_gr_34.gif)
--------------------------------------------------------------------------------------
We do some factorizations
--------------------------------------------------------------------------------------
![[Graphics:Images/htmlquickstart_gr_36.gif]](Images/htmlquickstart_gr_36.gif)
--------------------------------------------------------------------------------------
We solve an equation
--------------------------------------------------------------------------------------
![[Graphics:Images/htmlquickstart_gr_38.gif]](Images/htmlquickstart_gr_38.gif)
--------------------------------------------------------------------------------------
We find the inverse function
--------------------------------------------------------------------------------------
![[Graphics:Images/htmlquickstart_gr_40.gif]](Images/htmlquickstart_gr_40.gif)
--------------------------------------------------------------------------------------
There are many functions in Mathematica but it is often very
useful to be able to define functions oneself. This is illustrated
by the following example, which defines the function .
f(x) = x + x^2
--------------------------------------------------------------------------------------
![[Graphics:Images/htmlquickstart_gr_42.gif]](Images/htmlquickstart_gr_42.gif)
![[Graphics:Images/htmlquickstart_gr_44.gif]](Images/htmlquickstart_gr_44.gif)
![[Graphics:Images/htmlquickstart_gr_46.gif]](Images/htmlquickstart_gr_46.gif)
![[Graphics:Images/htmlquickstart_gr_48.gif]](Images/htmlquickstart_gr_48.gif)
![[Graphics:Images/htmlquickstart_gr_50.gif]](Images/htmlquickstart_gr_50.gif)
![[Graphics:Images/htmlquickstart_gr_52.gif]](Images/htmlquickstart_gr_52.gif)
--------------------------------------------------------------------------------------
For more help and more Mathematica commands
go to Help in the bar menue and select
kernel Help ( Mathematica ver 2)
Help Browser ( Mathematica Ver 3 and Ver 4 )
--------------------------------------------------------------------------------------