Textbook: Nonlinear Differential Equations and Dynamical Systems by F. Verhulst (Second Edition, 1996. Revised 2006)

Objectives: The course aims to reinforce students' knowledge of the concepts of existence, uniqueness, continuation, asymptotic behavior and stability of solutions to ordinary differential equations.

Course

Prerequisites: MATH 435

 outcomes:Learning Upon successful completion of this course, a student should be able
Existence, uniqueness and continuity of solutions. Linear systems, solution space, linear systems with constant and periodic coefficients. Phase space, classification of critical points, PoincaréBendixson theory. Stability theory of linear and almost linear systems. Stability of periodic solutions. Lyapunov's direct method and applications. to:

- Solve $1^{\text {st }}$ order linear systems with constant coefficients.
- Prove existence, uniqueness and continuation of solutions to $1^{\text {st }}$ order linear and nonlinear systems.
- Analyze the asymptotic behavior of solutions to linear, almost linear and periodic systems.
- Obtain phase-portrait of 2 and 3-dimensional autonomous systems.
- Analyze periodic solutions by applying the PoincaréBendixson theorem.
- Prove stability of solutions to linear, almost linear and periodic systems not only by the method of linearization but also by the Lyapunov's direct method.

$\begin{array}{\|c} \hline \text { Wee } \\ \mathrm{k} \\ \hline \end{array}$	Date	Sec.	Topics	Suggested Homework Problems
1	Aug 28 Sep 1	$\begin{aligned} & 1.2 \\ & 1.3 \end{aligned}$	Existence and uniqueness Gronwall's inequality	
2	Sep 4-8	$\begin{aligned} & \hline 2.1 \\ & 2.2 \end{aligned}$	Phase space, orbits Critical points and linearization	
3-4	$\begin{gathered} \text { Sep 11- } \\ 21 \end{gathered}$	$\begin{aligned} & 2.3 \\ & 2.4 \\ & 2.5 \end{aligned}$	Periodic solutions First integrals and integral manifolds Evolution of a volume element, Liouville's theorem	2.1, 2.2, 2.3, 2.5, 2.7, 2.8
5	$\begin{aligned} & \text { Sep } 25- \\ & 29 \end{aligned}$	$\begin{aligned} & \hline 3.1 \\ & 3.2 \end{aligned}$	Two-dimensional linear systems Remarks on 3-dimensional linear systems	$\begin{aligned} & 3.1,3.3,3.5,3.6, \\ & 3.7 \end{aligned}$
6	Oct 2-6	3.3	Critical points of nonlinear equations Practice session	

7	$\begin{aligned} & \text { Oct } 9- \\ & 13 \end{aligned}$	$\begin{array}{\|c\|} \hline 4.1 \\ 4.2 \end{array}$	Bendixson's criterion Geometric auxiliaries, preparation for the Poincaré-Bendixson theorem	
8	$\begin{aligned} & \text { Oct } 17 \text { - } \\ & 20 \end{aligned}$	4.3	The Poincaré-Bendixson theorem	
9	$\begin{aligned} & \text { Oct } 23- \\ & 27 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 4.5 \end{aligned}$	Applications of the Poincaré-Bendixson theorem Periodic solutions in R^{n}	4.2, 4.4, 4.5, 4.6, 4.7, 4.8
10	Oct 30 - Nov 3	$\begin{aligned} & 5.1 \\ & 5.2 \\ & \hline \end{aligned}$	Simple examples Stability of equilibrium solutions	
11	$\begin{array}{\|l\|} \hline \text { Nov } 6- \\ 10 \\ \hline \end{array}$	$\begin{aligned} & 5.3 \\ & 5.4 \\ & \hline \end{aligned}$	Stability of periodic solutions Linearization	5.1, 5.4, 5.5
12	$\begin{array}{\|l\|} \hline \text { Nov } 13- \\ 17 \end{array}$	$\begin{aligned} & 6.1 \\ & 6.2 \\ & 6.3 \\ & \hline \end{aligned}$	Equations with constants coefficients Equations with coefficients which have a limit Equations with periodic coefficients	6.3, 6.5, 6.6, 6.7
13	$\begin{aligned} & \text { Nov } 20 \text { - } \\ & 24 \end{aligned}$	$\begin{aligned} & \hline 7.1 \\ & 7.2 \\ & 7.3 \end{aligned}$	Asymptotic stability of the trivial solution Instability of the trivial solution Stability of periodic solutions of autonomous equations	7.2, 7.3, 7.6, 7.7
14	Dec 4-8	$\begin{aligned} & 8.2 \\ & 8.3 \end{aligned}$	Lyapunov functions Hamiltonian systems and systems with first integrals	
15	$\begin{aligned} & \hline \text { Dec } 11 \text { - } \\ & 15 \\ & \hline \end{aligned}$	8.4	Applications and examples	8.1, 8.4, 8.7, 8.8, 8.9
16	Dec 18		Practice session	

Grading:

Midterm Exam [Secs. 1.2-4.5] 35\%
Homework assignments 20\%
Presentations 10%
Final Exam [Comprehensive] 35\%

