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Abstract

We investigate the notion of hyperimmunity with respect to how
it can be applied to Π0

1 classes and their Muchnik degrees. We show
that hyperimmunity is a strong enough concept to prove the existence
of Π0

1 classes with intermediate Muchnik degree - in contrast to Post’s
attempts to construct intermediate c.e. degrees.

1 Introduction

1.1 Motivation

This work is an attempt to develop and explore a computability theory
on Π0

1 classes of 2N in direct analogy to the study of c.e. Turing degrees.
The two primary concepts of that study are c.e. subsets of N and
Turing reducibility — both of which we assume the reader is very
familiar with.

The analogous concepts in 2N that we deal with are Π0
1 subclasses

of of 2N and Muchnik reducibility. We ask ourselves how concepts
developed in the study of c.e. Turing degrees can be profitably applied
to our developing understanding of Π0

1 Muchnik degrees. This paper
is meant to be read as much as a suggestion of a course of study as a
record of results.
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It could of course be argued that c.e. subsets of N are more properly
analogous to Σ0

1 rather than Π0
1 subclasses of 2N. One response to this

is that it is really an historical artefact that c.e. (i.e. Σ0
1) subsets

of N rather than co-c.e. (i.e. Π0
1) were studied. Indeed most of the

properties of c.e. sets that we are concerned with are usually defined
explicitly in terms of their complements. But really the analogy that
we draw here is not meant to be exact but rather a guide to research,
and often it is where the analogy fails that the real research interest
lies.

Π0
1 subclasses of 2N are already an established and ongoing area

of research in computability theory (see for example [5]). One fruitful
way to conceive of a Π0

1 is of the set of paths through some com-
putable binary tree. Muchnik reducibility is less-studied but a com-
pletely natural concept. Just as Turing reducibility is an idea that
applies to arbitrary subsets of N, Muchnik reducibility can be applied
to arbitrary subsets of NN. A ⊆ NN is Muchnik reducible to B ⊆ NN

(written A 6w B) if for all f ∈ B there is a g ∈ A such that f >T g.
The idea is that A and B are the respective sets of solutions to two
mathematical (mass) problems and every solution to the problem rep-
resented by B computes a solution to the problem represented by
A. In our case the problems involved will simply be those of finding
paths through given computable trees. Two problems are Muchnik
equivalent if any solution to either computes a solution to the other.
The resulting structure of Π0

1 classes modulo Muchnik equivalence is
called the Muchnik lattice and is denoted Pw. A Muchnik degree is
the equivalence class of some subset of 2N.

Our basic program is to study properties of Π0
1 classes and see

how this influences their Muchnik degrees. However we will not be
concerned with arbitrary properties of Π0

1 classes but only those prop-
erties that have a strong computability theoretic character. Namely
those properties that are preserved by computable permutations of 2N

(any such property we refer to as being a computably topological prop-
erty because any computable permutation automatically respects the
topology on 2N). This is the same criterion we use when we define a
computability theoretic property of subsets of N. According to Rogers
charaterisation of Klein’s program in [15] Chapter 4, this specification
of the class of objects studied and the characterisation of the type of
properties studied specifies a mathematical subject.

In this paper we look at the analogy of Post’s problem in Pw. Post
was the first to ask if there existed a c.e. set of intermediate Turing
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degree. He tried to create such a set by describing various properties
that he hoped would guarantee incompleteness while not requiring
computability. Such properties as immunity or hyperimmunity were
tried. None of these properties succeeded in describing an intermediate
Turing degree and Post’s problem was solved later by other methods.

Here we revive Post’s method in another context — that of the
Muchnik lattice, and here his ideas are a lot more fruitful. We use
Post’s idea of hyperimmunity and use it to define computable topo-
logical properties of Π0

1 classes. This we do this in 5 different ways to
get 5 distinct properties. Each the property determines the nature of
the set of branching nodes of P . That is the set of binary strings σ
with the property that σa〈0〉 and σa〈1〉 have extensions in P . The
nature of this set (and other similar sets) has implications for the
Muchnik degree of a Π0

1 class P . The most straightforward result is
that if P has no computable element and the set of branching nodes
of P is hyperimmune then P is of intermediate Muchnik degree.

Of the five properties defined, three imply Muchnik incompleteness
and the other two imply (at least) another type of incompleteness -
Medvedev incompleteness.

We also apply the stronger property of dense immunity to Π0
1

classes and try to show where measure and the well-known property
of thinness fit into the scheme of things.

These ideas create a panoply of open questions - some of which
should be reasonably easy to answer and some of which will probably
require significantly different methods to those used here. We end
with a section on some directions for further research.

1.2 Basics

Most of the notation we use is standard. Novel notation specially for
this paper is introduced in this section. The other material in this
section can be found in more detail in [5], [4], [2] or [18].

2N is the class of infinite binary sequences equipped with the nat-
ural product topology making it a totally disconnected Polish space.
2<N denotes the set of all finite binary strings. If σ ∈ 2<N, we denote
by Uσ the set {f ∈ 2N : f ⊃ σ}. The collection {Uσ : σ ∈ 2<N} forms
a basis for the topology on 2N. Any finite union of basis elements is
clopen. Elements of 2<N will usually be denoted by σ, or τ and infinite
binary sequences by f or g, or X or Y . Subsets of N will be identified
with their characteristic function without further mention. σaτ and
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σaf will denote the concatenation of σ with τ or f .
All unexplained computability theory terminology and notation is

standard and can be found in [19] or [15]. We review the concepts
that will be particularly important here.

If X = {x0 < x1 < x2 . . . } ⊆ N then the map i 7→ xi is called the
principal function of X and is denoted pX .

If f and g are two functions from N to N and for all n, f(n) >
g(n) then f is said to dominate g. We say f dominates X ⊆ N if f
dominates the principal function of X.

If X ⊆ N is infinite and pX is not dominated by any computable
function then X is called hyperimmune.

There is another useful characterisation of hyperimmunity. Every
finite subset F = {x0 < x1 < x2 < · · · < xn} of N can be indexed
canonically by

∏n
i=0 pxi

i , where pi is the ith prime number. Dn will
denote the finite set canonically indexed by n. A strong array is a se-
quence of finite sets whose canonical indices are given by a computable
function. A disjoint strong array is a strong array whose elements are
pairwise disjoint. 〈Df(n)〉 will denote a strong array will computable
indexing function f .

A well-known theorem (Kuznecov, Medvedev, Uspenski [19] V.2.3)
states that X ⊆ N is hyperimmune if and only if there is no disjoint
strong array 〈Df(n)〉 such that for all n Df(n)∩X 6= ∅. This is actually
used as the definition of hyperimmunity and the equivalence to our
text definition is the theorem.

A tree is a subset of 2<N that is closed under taking initial segments.
The elements of a tree are called nodes. A tree is computable precisely
when its set of nodes is. A path through a tree T is an element f of 2N

such that for all n, f |n ∈ T . A Π0
1 class is the set of paths through

some infinite computable tree. We will thus always assume that Π0
1

classes are non-empty. If T is a computable tree the associated Π0
1

class will be denoted [T ]. If T is a tree and σ ∈ T has the property
that there exists f ∈ [T ] such that f ⊃ σ then σ is called extendible.
The set of extendible nodes of T is denoted Ext(T ). Similarly, if P is
a Π0

1 class and T any tree such that P = [T ] then by Ext(P ) we mean
Ext(T ) (it is not hard to check that this is well-defined).

In general, computable trees will have non-extendible nodes but
in constructing a Π0

1 class we can view it as a nested computable
intersection of trees with no non-extendible nodes. In other words
a Π0

1 class is the set of paths through some co-c.e. tree that has no
non-extendible nodes.
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It is also very useful to view Π0
1 classes syntactically. P ⊆ 2N is a

Π0
1 class if and only if for some computable predicate R ⊆ N× 2N

P = {f : ∀nR(n, f)}.

The equivalence of these different ideas is set out in detail in [5].
We introduce some notation and definitions that will be useful.

Throughout, P is a Π0
1 class, σ an element of 2<N, X an element of

2N and T a tree.

Notation:

• P (σ) = {f ∈ P : f ⊃ σ}.

• f [n] = f |n = 〈f(0), f(1), . . . f(n− 1)〉 (with f [0] = ∅),
P [n] = {f [n] : f ∈ P} = {σ ∈ Ext(P ) : |σ| = n}.

• {e}X [n] is the partial sequence 〈xi〉n−1
i=0 where xi = {e}X(i) when-

ever it is defined and undefined otherwise. In particular, {e}X [n] ∈ T
implies {e}X(m)↓ for all m 6 n− 1 . As above, {e}X [0] = ∅.

• We will be particularly concerned with a subset of the extendible
nodes of P - namely the branching nodes of P . σ is a branching node
if σa〈0〉 and σa〈1〉 are both in Ext(P ). The set of branching nodes
of P is denoted Br(P ). If X ∈ P then by BrX(P ) we mean the set
{n ∈ N : X|n ∈ Br(P )}. The concept of a branching node can also be
applied to any subset of 2N.

• An important type of Π0
1 class is a separating class. If A,B ⊆ N

are disjoint c.e. sets, then the separating class of A and B, denoted
S(A,B), is the set

{f ∈ 2N : ∀n[(n ∈ A ⇒ f(n) = 1) and (n ∈ B =⇒ f(n) = 0)]}.

It is straightforward to show using the syntactical viewpoint above
that S(A,B) is a Π0

1 class.

1.3 The Muchnik Lattice of Π0
1 classes

If A,B ⊆ 2N then A is Muchnik reducible to B, written A 6w B if

∀y ∈ B∃x ∈ A y >T x.
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If A 6w B and B 6w A then we write A ≡w B and say A and B
are Muchnik equivalent. The relation 6w is a pre-order on 2N and it
can be made into a partial order in the familiar way.

The Muchnik degree of A ⊆ 2N is the set

degw(A) = {B ⊆ 2N : B ≡w A}.

degw(A) 6 degw(B) if A 6w B. This relation is now a partial order
on the collection of Muchnik degrees.

If P is the collection of non-empty Π0
1 subclasses of 2N then the

structure
Pw = 〈{degw(P ) : P ∈ P},6〉

we call the Muchnik lattice. To show it is in fact a lattice it is necessary
to demonstrate that every two Muchnik degrees have an infimum and
supremum. They are as follows.

If P,Q ∈ P then define

P ∨Q = {f ⊕ g : f ∈ P and g ∈ Q},

P ∧Q = {〈0〉af : f ∈ P} ∪ {〈1〉ag : g ∈ Q},

and then
degw(P ) ∨ degw(Q) = degw(P ∨Q),

degw(P ) ∧ degw(Q) = degw(P ∧Q).

These operations in Pw are distributive over each other as can
be easily confirmed. Futhermore Pw has maximum and minimum
elements denoted 1w and 0w respectively. Any Π0

1 class with a com-
putable element is a representative of 0w. One representative of the
maximum Muchnik degree is

DNR2 = {f ∈ 2N : ∀n{n}(n) 6= f(n)}.

This is not immediately obvious but it is proved in [18].
A similar reducibility relation on P is called Medvedev reducibil-

ity (sometimes strong reducibility). If P,Q ∈ P and if there is a
computable functional Φ : P −→ Q then Q is said to be Medvedev
reducible to P , written P >M Q. This gives rise in the same man-
ner as above to the Medvedev lattice PM which is also distributive. If
P,Q ∈ P then P ∨Q and P ∧Q are also representatives of the supre-
mum and infimum of their Medvedev degrees. Futhermore, DNR2 is
a representative of 1M .
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2 Five computably topological prop-

erties

We now define the five properties mentioned in the introduction and
prove that they are invariant under computable homeomorphisms.

Definition 2.1. A Π0
1 P class is small if Br(P ) is hyperimmune.

Definition 2.2. A Π0
1 class P is pathwise hyperimmune (p.h.i.) if,

for some X ∈ P , BrX(P ) is hyperimmune.

Definition 2.3. A Π0
1 class is everywhere pathwise hyperimmune

(e.p.h.i.) if, for all X ∈ P , BrX(P ) is hyperimmune.

Definition 2.4. A Π0
1 class is uniformly pathwise hyperimmune (u.p.h.i.)

if there is no computable function φ such that for all X ∈ P , φ domi-
nates BrX(P ).

There is a direct counterpart in 2N to the notion of disjoint strong
array. If Dn is a finite set of (the Gödel numbers of) finite binary
strings then we define

D∗
n = {g ∈ 2N : ∃σ ∈ Dn g ⊃ σ}

=
⋃
{Uσ : σ ∈ Dn}.

n is then the canonical index of the clopen set D∗
n.

We now define a property most directly analogous to the property
of hyperimmunity of susets of N.

Definition 2.5. A Π0
1 class P is hyperimmune (h.i.) if there is no

disjoint strong array 〈D∗
f(n)〉 such that for all n, P ∩D∗

f(n) 6= ∅.

To further emphasise the relatedness of hyperimmunity in 2N and
hyperimmunity in N we make the following observation. If f is a com-
putable function, then we call 〈Df(n)〉 an incomparable strong array if
for all n Df(n) ⊆ 2<N and for all σ, τ ∈

⋃
n Df(n), if σ 6= τ , then σ and

τ are incomparable.
We make the following definition now which will be useful later on.

Definition 2.6. If C ⊆ 2N is clopen then the root set of C, rt(C),
is the unique finite subset of Br(C) of smallest cardinality such that
C = {f ∈ 2N : ∃σ ∈ rt(C) f ⊃ σ} =

⋃
{Uσ : σ ∈ rt(C)}.
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Theorem 2.7. P is an h.i. Π0
1 class if and only if there is no incom-

parable strong array 〈Df(n)〉 such that for all n

Ext(P ) ∩Df(n) 6= ∅.

Proof. This is straightforward using the fact that two clopen subsets
of 2N are disjoint if and only if their two root sets are pairwise incom-
parable.

The property of smallness has other quite natural characterisations
as shown in the next theorem. The two following definitions will be
useful.

Definition 2.8. If P is a perfect closed subset of 2N then let ΦP be
the canonical, order-preserving map from 2<N onto Br(P ). That is,

ΦP (∅) = the unique element of Br(P ) of minimum length
ΦP (σa〈0〉) = the unique element of Br(P ) of minimum length ex-

tending ΦP (σ)a〈0〉
ΦP (σa〈1〉) = the unique element of Br(P ) of minimum length ex-

tending ΦP (σ)a〈1〉

Definition 2.9. The set of branching levels of a Π0
1 class P is the set

Brl(P ) = {n : ∃σ ∈ Br(P ), |σ| = n}.

Theorem 2.10. The following are equivalent:

1. P is small,
2. the function from N to N given by

n 7→ min{|ΦP (σ)| : |σ| = n}

is not dominated by any computable function,
3. Brl(P ) is hyperimmune,
4. there is no computable function f such that ∀n ‖P [f(n)]‖ > n,
5. there is no computable function f such that

∀n∃σ ∈ Br(P ) f(n) 6 |σ| < f(n + 1).

Proof. The proofs of most of the above can be found in [3]. The
remaining part is straightforward.

Uniform pathwise hyperimmunity also has the following alternative
characterisations which emphasise its relationship to smallness.
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Theorem 2.11. The following are equivalent:

1. P is u.p.h.i,
2. the function from N to N given by

n 7→ max({|ΦP (σ)| : |σ| = n})

is not dominated by any computable function (compare 2.10 2.),
3. There is no computable function f such that

∀n∀σ ∈ P [f(n)]∃τ ∈ Br(P ) τ ⊇ σ and |τ | < f(n + 1)

(compare 2.10 5.).

Proof. The proofs are similar to the proofs of Theorem 2.10.

It will also be useful to note the following characterisation of
e.p.h.i. and p.h.i. analogous to 2.10 5.

Theorem 2.12. A Π0
1 class P is p.h.i. (e.p.h.i.) if and only if for

some (all) X ∈ P there is no strictly increasing computable function
f such that for all n there is a m such that f(n) 6 m < f(n + 1) and
X|m ∈ Br(P ).

Proof. See [3] Theorem 2.27 (⇐).

2.1 Invariance under computable homeomor-
phisms

Now that these properties are defined, we will prove that they are all
computable topological properties.

Theorem 2.13. Smallness is a computably topological property.

This was proved in [4]. In fact the stronger result was proved
that if P and Q are Π0

1 classes and {e} : P −→ Q is surjective, then
if P is small so is Q. This stronger property is shared by h.i. Π0

1

classes but for p.h.i., e.p.h.i. and u.p.h.i. Π0
1 classes injectivity seems

to be needed. The necessity of injectivity in these cases has yet to be
established however.

Theorem 2.14. Hyperimmunity is a computably topological property.
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Proof. Suppose P,Q ⊆ 2N are Π0
1, {e} : P −→ Q is a computable

surjection and Q is not hyperimmune. Let 〈D∗
f(n)〉 witness this last

fact. We will find a computable function g so that 〈D∗
g(n)〉 witnesses

the fact that P is not hyperimmune.
We first define two functions that will be useful later. Let n ∈ N

and n 7→ ln = l and n 7→ tn = t be two functions with the property
that ∀τ ∈ Pt[l] {e}τ

t [n] ∈ Qt[n]. Such numbers l and t exist because P
is compact. Thus l and t can be found by a computable search, and
the functions n 7→ ln and n 7→ tn can be taken to be computable. We
also assume for later purposes that ln is strictly increasing.

Now let m = m(n) = max{|σ| : σ ∈ Df(n)}; l = lm, t = tm, and
let Dg(n) = {τ ∈ Pt[l] : ∃σ ∈ Df(n) {e}τ

t ⊇ σ}. g is computable and
〈D∗

g(n)〉 is pairwise disjoint because 〈D∗
f(n)〉 is.

This next lemma is key to a lot of what follows.

Lemma 2.15. Suppose P and Q are Π0
1 classes and {e} : P −→ Q

is a computable homeomorphism. For all strictly increasing f ∈ NN,
there exists a strictly increasing g 6T f with the property: for all
X ∈ P and Y ∈ Q such that Y = {e}X , and for all n ∈ N

BrY (Q) ∩ [f(n), f(n + 1)) 6= ∅ =⇒ BrX(P ) ∩ [g(n), g(n + 1)) 6= ∅.

Proof. Let n ∈ N and Y = {e}X be arbitrary. Let ln and tn be as
in Theorem 2.14. n is understood when we drop the subscripts. We
describe a quotient-like structure by pulling back {e}. If σ ∈ Pt[l],
then denote by [σ]n the set

{τ ∈ Pt[l] : {e}τ
t [n] = {e}σ

t [n]}.

We write [σ]n � [τ ]m if n > m and, for some γ ∈ [τ ]n, σ ) γ.
Suppose now that f ∈ NN is strictly increasing. We will construct

the required g computable in f .
First let g(0) = lf(0).
Now suppose g(m) is known. Let n be the least number such

that lf(n) > g(m). n exists as f and l are strictly increasing. Let
σ = X[lf(n)] and consider [σ]f(n). There are three cases in total. It will
be in general impossible to effectively decide which case pertains but
it also will become clear that an f -computable choice for g(m+1) will
be sufficient for all three cases. Suppose BrY (Q)∩ [f(n), f(n+1)) 6= ∅.

Case 1. [σ]f(n) ∩ Ext(P ) = {σ}. Because BrY (Q) ∩ [f(n), f(n +
1)) 6= ∅, we know that there is a γ ∈ Q[f(n+1)] such that γ ) Y [f(n)]
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and γ 6= Y [f(n+1)]. Therefore we know that there is a τ ∈ P [lf(n+1)]
such that [τ ]f(n+1) � [σ]f(n) and τ 6∈

[
X[lf(n+1)]

]
f(n+1)

. We must
have τ ) σ (as [σ]f(n) ∩Ext(P ) is a singleton) and τ 6= X[lf(n+1)]. So
there is a branching node on X between lf(n) and lf(n+1).

For this case the choice g(m + 1) = lf(n+1) clearly suffices.
Case 2. The class [σ]f(n)∩Ext(P ) contains more than one element.

As {e} is one-to-one, and P is compact, we can effectively find natural
numbers u, v > max{lf(n), tf(n)} such that for every τ, τ ′ ∈ Pu[v],

τ [lf(n)] 6= τ ′[lf(n)] ⇒ ∃a 6 u {e}τ
u(a)↓6= {e}τ ′

u (a)↓ .

Both f and ln are strictly increasing in n so we can effectively find
a k that will make lf(k), tf(k) > max{u, v}. We will then have, for all
τ ∈ Ptf(k)

[lf(k)],
τ 6⊇ σ ⇒ τ 6∈

[
X[lf(k)]

]
f(k)

.

This leads to two sub-cases:
Case 2a.

[
X[lf(k)]

]
f(k)

∩ Ext(P ) is a singleton. This situation is
similar to case 1 and g(m + 1) = lf(k+1) will suffice.

Case 2b
[
X[lf(k)]

]
f(k)

∩ Ext(P ) has at least two elements. Ev-
ery element of

[
X[lf(k)]

]
f(k)

extends σ so there must be at least
two incompatible extendible nodes of P [lf(k)] extending σ and hence
BrX(P )∩[lf(n), lf(k)) 6= ∅. The choice g(m+1) = lf(k) will then suffice.

In all three cases the choice g(m + 1) = lf(k+1) suffices and we can
find k by an effective search. Thus g is an f -computable fuction with
the required property.

We are particularly interested in the situation when f in the pre-
vious lemma is computable. This gives immediately the following.

Theorem 2.16. E.p.h.i, p.h.i, and u.p.h.i. are all computably topo-
logical properties.

Proof. Suppose P and Q are computably homeomorphic Π0
1 classes.

If Y ∈ Q and f a computable function such that

∀n BrY (Q) ∩ [f(n), f(n + 1)) 6= ∅.

Then Lemma 2.15 constructs a g, also computable, such that

∀n BrX(P ) ∩ [g(n), g(n + 1)) 6= ∅,
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where X is the preimage of Y under the homeomorphism. This proves
(using Theorem 2.12) that if Q is not e.p.h.i, (p.h.i, u.p.h.i) then
neither is P .

2.2 Lattice Operations

The final lemmas in this section will be useful later on for constructing
Π0

1 classes with required properties.

Theorem 2.17. If P,Q ⊆ 2ω are Π0
1, then P ∨Q is small if and only

if P ∧Q is small if and only if both P and Q are small.

Proof. The proof of this is in [3].

Lemma 2.18. If X ⊆ ω and Y ⊆ ω are co-c.e. then X ⊕ Y = {2x :
x ∈ X} ∪ {2x + 1 : x ∈ Y } is hyperimmune if and only if both X and
Y are.

Proof. If X or Y were not h.i, it would be straightforward to con-
struct a disjoint strong array witnessing the fact that X ⊕ Y were
not h.i. So suppose that X ⊕ Y was not h.i. Let f be a computable
function such that for all n Df(n) ∩ X ⊕ Y 6= ∅. Let

(
Df(n)

)
0

=
{m/2 : m is even and m ∈ Df(n)}, and let

(
Df(n)

)
1

= {(m − 1)/2 :
m is odd and m ∈ Df(n)}. For every n either

(
Df(n)

)
0
∩ X 6= ∅ or(

Df(n)

)
1
∩Y 6= ∅. Therefore, if for infinitely many n

(
Df(n)

)
0
∩X = ∅,

then for infinitely many n
(
Df(n)

)
1
∩ Y 6= ∅ and an infinite sequence

of such n’s could be computed (because X is co-c.e.), contradict-
ing the hyperimmunity of Y . So for some N , and for all n > N ,(
Df(n)

)
0
∩X 6= ∅ contradicting the hyperimmunity of X.

Theorem 2.19. If P and Q are Π0
1 classes and both are e.p.h.i. (p.h.i,

u.p.h.i, h.i.), then so is P ∧Q.

Proof. The proofs for e.p.h.i, p.h.i, and u.p.h.i. are very straightfor-
ward. The proof for h.i. is analogous to the proof of Lemma 2.18.

Theorem 2.20. If P ∧Q is e.p.h.i. (h.i.), then so are P and Q. This
is not the case for u.p.h.i. and p.h.i.

Proof. The first part is immediate. The second is done by noticing
that S ∧ 2N is both u.p.h.i and p.h.i. if S is small.
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Theorem 2.21. If S is a small Π0
1 class and P a u.p.h.i. Π0

1 class,
then S ∨ P is u.p.h.i.

Proof. We show the contrapositive. Let f be a computable even-
valued function witnessing the fact that S ∨P is not u.p.h.i. Then for
all n and σ⊕ τ ∈ S ∨P [f(n)] and for all X ⊕ Y ∈ S ∨P (σ⊕ τ) either
BrX(S)∩

[
f(n)/2, f(n+1)/2

)
6= ∅ or BrY (P )∩

[
f(n)/2, f(n+1)/2

)
6=

∅. As S is a small Π0
1 class, there must be a infinite computable set

{ni : i ∈ N} such that for all i Brl(S) ∩
[
f(n)/2, f(n + 1)/2

)
= ∅.

Therefore for all i and for all σ ∈ P [f(ni)] there is a τ ⊇ σ such that
τ ∈ Br(P ) and |τ | 6 f(n + 1)/2. Hence f(ni)/2 witnesses the fact
that P is not u.p.h.i. Contradictiction.

Theorem 2.22. If P and Q are Π0
1, then P and Q are (e.)p.h.i. if

and only if P ∨Q is.

Proof. Straightforward using Lemma 2.18.

Theorem 2.23. If P ∨Q is h.i, then both P and Q are.

Proof. Without losing generality assume that P is not h.i. If f is
computable and if ∀n D∗

f(n) ∩ P 6= ∅, then ∀n (D∗
f(n) ∨ 2N) ∩ P ∨Q 6=

∅.

The converse to the previous theorem has not been proved. It is
analogous to the theorem that the disjoint union of two co-c.e. and
hyperimmune subsets of N is hyperimmune. We conjecture that it is
false in this context. We also conjecture that the join of two u.p.h.i.
Π0

1 classes is not necessarily u.p.h.i.

2.3 Comparisons to measure and each other

In [4] it is shown that all small Π0
1 classes have measure zero. Here we

improve this result to that it holds for all e.p.h.i. classes.

Theorem 2.24. If P is an e.p.h.i. Π0
1 class then µ(P ) = 0

Proof. Suppose P is a Π0
1 class and µ(P ) > 0. We will describe an

X ∈ P and a computable function f with f dominating BrX(P ). Let
k be the least positive integer such that 1/2k < µ(P ). There must be
at least two extendible nodes on P [k] (or else 1/2k > µ(P )) and so
there must be a branching node of length strictly less than k. There
also must exist a σ ∈ P [k] such that 2k · µ(P (σ)) > µ(P ). Let this
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σ be σ1. Iterating the process, there is a σ ∈ P [(n + 1)k] extending
σn such that 2k · µ(P (σ)) > µ(P (σn)). Let this σ be σn+1. As above,
there must be a branching between σn and σn+1.

Then X =
⋃∞

n=1 σn and f(n) = nk are as required.

However u.p.h.i. Π0
1 classes need not have measure zero. For exam-

ple, if S is small and µ(Q) > 0, then S∧Q is u.p.h.i. and µ(S∧Q) > 0.
H.i. Π0

1 classes are also not necessarily of measure zero as the following
shows.

Theorem 2.25 (Simpson). Every Π0
1 class of positive measure con-

tains an h.i. Π0
1 class of positive measure.

Proof. Suppose P ⊆ 2N is Π0
1 and µ(P ) > m > 0 for some computable

real m. We will diagonalise against the class of disjoint strong arrays
to create an h.i. subclass. Let d be a partial computable function such
that , for a given e ∈ N, µ(D∗

{e}(d(e))) < m/2e+1. d(e) is defined if (but
not only if) the range of {e} is infinite. Let P ′ = P r

⋃
e∈N D∗

{e}(d(e)).
P ′ is Π0

1 as
⋃

e∈N D∗
{e}(d(e)) is Σ0

1 and it has positive measure because

µ(
⋃
e∈N

D∗
{e}(d(e))) 6

∑
e∈N

m/2e+1 6 m/2 < m.

It is h.i. because for all e, D∗
{e}(d(e)) ∩ P ′ = ∅.

Theorem 2.26. Small ⇒ e.p.h.i. ⇒ p.h.i. ⇒ u.p.h.i.

Proof. From the definitions it is clear that e.p.h.i. ⇒ p.h.i. ⇒ u.p.h.i.
For the first implication suppose P were Π0

1 and not e.p.h.i. — wit-
nessed by X ∈ P and computable function f dominating BrX(P ).
BrX(P ) ⊆ Brl(P ) and so f also dominates Brl(P ). Therefore P is not
small.

Theorem 2.27. U.p.h.i. 6⇒ p.h.i.

Proof. We denote by 1n and 0n the strings of n ones and zeroes re-
spectively, with the understanding that 10 = 00 = ∅. Let f be the
principal function of some hyperimmune Π0

1 subset of N. Let T be
the tree generated by the set {0ia1f(i)+1a

γ : i ∈ N, γ ∈ 2<N} and let
P = [T ]. P is Π0

1 by inspection. For every X ∈ P , BrX(P ) is cofinite
so P is clearly not p.h.i. However if ΦP is the function from 2.8 then
for every n > 0, max{|ΦP (σ)| : |σ| = n} > f(n − 1) which is not
dominated by any computable function. So P is u.p.h.i.
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The P constructed in the previous theorem has a computable path
(namely 0∞) and so has trivial Muchnik degree. As we will be inter-
ested in the Muchnik degrees of the Π0

1 classes we create this could be
a problem, however as the next theorem shows, we needn’t worry.

Theorem 2.28. There exists a Π0
1 class with no computable path (and

hence perfect) that is u.p.h.i but not p.h.i.

Proof. Let P be as constructed in the previous theorem, and let S
be any small Π0

1 class. Then Lemma 2.21 says that P ∨ S will be
u.p.h.i. and Theorem 2.22 says that it will not be p.h.i.

Theorem 2.29. P.h.i. 6⇒ e.p.h.i. and h.i. 6⇒ e.p.h.i.

Proof. Any p.h.i. or h.i. class of positive measure illustrates this.

The following is based on a construction by Lerman.

Theorem 2.30. E.p.h.i. 6⇒ h.i.

Proof. We construct an e.p.h.i. class P which is not h.i. by describing
a computable sequence Ts of nested computable trees such that T =⋂

s Ts and P = [T ]. P will be countable with exactly one non-isolated
path X. We will find a perfect Π0

1 class with the required properties
in a corollary. We adopt the 0n notation from Theorem 2.27. To build
Ts we construct a sequence of natural numbers 0 = l0 6 l1 6 l2 . . .
with lims→∞ ls = ∞. At each stage s we have

i. Ts[ls] = T [ls]
ii. ∀σ ∈ Ts[ls], [τ ⊇ σ =⇒ τ ∈ Ts].
To ensure that T has the required properties, we construct con-

currently with Ts two double sequences of non-negative integers

e0,s < e1,s < · · · < ens,s

and
u0,s, u1,s, . . . uns,s

with the following properties:

A1: lims ns = ∞.
A2: ∀i lims ui,s and lims ei,s exist and are denoted ui and ei.
A3: The unique non-isolated path of P is

X = 1e0a0u0a1e1a0u1a . . .
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A4: If we let τi,s denote the string

1e0,sa0u0,sa1e1,sa0u1,sa . . .a 0ui,s ,

then ∀s τns,s ∈ Ts[ls]. τns,s is to be considered an approximation
to the path X.

If s is a stage at which Ts+1 6= Ts then ls+1 > ls and

Ts+1[ls+1] = {σa0ls+1−ls : σ ∈ Ts[ls]} ∪
{τns,s

a1p a0ls+1−ls−p : 0 < p 6 ls+1 − ls}. (1)

Ts+1 is then any string extending or extended by an element of Ts+1[ls+1].
All that remains in the construction is to describe the sequences

〈ei,s〉, 〈ui,s〉 and 〈ls〉 and to determine the stages at which Ts+1 6= Ts.
At stage s = 0 we set ns = 0 and ens,s = uns,s = 0. This gives

l0 = 0 and τ0,0 = ∅ by definition. Now let s be arbitrary and suppose
ns and ls are defined. Also suppose that ei,s and ui,s are defined for
all i 6 ns. For convenience we begin indexing the partial computable
functions at 1. Let e be the least positive integer such that

B1: e 6= ei,s for any i 6 ns,
B2: for some 0 < k 6 s, if j is the largest integer such that ej,s < e,

then

|τj,s|+ e + k 6 {e}s(|τj,s|+ e + k)↓< {e}s(|τj,s|+ e + k + 1)↓ (2)

Then we set:

C1: ns+1 = j + 1,
C2: ens+1,s+1 = e
C3: ei,s+1 = ei,s and ui,s+1 = ui,s for all i 6 j,
C4: ls+1 = max{ls + 1, {e}(|τj,s|+ e + k + 1)},
C5: uns+1,s+1 = ls+1 − |τj,s| − e
(this to ensure that |τns+1,s+1| = ls+1).

If no such e exists then all values are unchanged. The point is that
if {e} appears at stage s to be a total increasing function, then we
ensure that

BrX(P ) ∩
[
{e}(|τj,s|+ e + k), {e}(|τj,s|+ e + k + 1)

)
= ∅.
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As X is the only element of P that has infinitely many branching
nodes on it, this ensures that P is e.p.h.i. via theorem 2.12.

It remains to show that P is e.p.h.i. and not h.i. This is done in
the next few lemmas.

Lemma 2.31. For all τ ∈ T , τa0∞ ∈ P .

Proof. If {e} is a total increasing function then there will be a stage
s for which 2 is satisfied and ls+1 > ls. Thus lims ls = ∞. Let
τ ∈ T be arbitrary and s such that ls 6 |τ | < ls+1. Then τ is of
the form σa1na0m for some 0 6 n, m < ls+1 − ls and σ ∈ P [ls]. An
inspection of Equation (1) above taking p = n (if necessary) then gives
the result.

Lemma 2.32. For all s τns,s ∈ T .

Proof. By induction. Firstly, τn0,0 = ∅ ∈ T . Now let s be arbitrary
and suppose τi,s ∈ T for all i 6 ns. We can assume Ts 6= Ts+1.There
are two cases.

Case 1. τns+1,s+1 ) τns,s. In this case j from (2) is just ns and

τns+1,s+1 = τns,s
a1ens+1,s+1a0uns+1,s+1 .

So using equation (2) and the definition of ls+1 we have

0 < ens+1,s+1 6 ls+1 − ls.

Take p = ens+1,s+1 in (1). We can do this because ls+1 − ls = ls+1 −
|τns,s| > ens+1,s+1 by A4, C4 and (2) above.

Case 2. Let j < ns be the largest integer such that τns+1,s+1 ) τj,s

and
τns+1,s+1 = τj,s

a1ens+1,s+1a0uns+1,s+1 .

By definition ens+1,s+1 < ej+1,s so

τj,s
a1ens+1,s+1 ( τj,s

a1ej+1,s ⊆ τns,s ∈ T.

Therefore τj,s
a1ens+1,s+1 ∈ T , and so by lemma 2.31 τns+1,s+1 ∈ T .

Lemma 2.33. For all s such that Ts 6= Ts+1, |τns+1,s+1| > |τns,s|.
Either τns+1,s+1 ) τns,s or τns+1,s+1 is less than τns,s lexicographically.
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Proof. |τns,s| = ls for all s and ls is increasing in s whenever Ts 6=
Ts+1. Assume that it is not the case that τns+1,s+1 ) τns,s. If j is
as (2), then τns+1,s+1 ⊇ τa

j,s1
ens+1,s+1a01 and τns,s ⊇ τa

j,s1
ej+1,s . As

ens+1,s+1 < ej+1,s, the result follows.

Lemma 2.34. P is not h.i.

Proof. For convenience we (computably) re-index the sequence 〈Ts〉
so that Ts+1 6= Ts for all s. Now consider the disjoint strong ar-
ray given by Df(s) = {τns,s

a1ls+1−ls} for each s. First notice that
τns,s

a1ls+1−ls ∈ Ts+1 for all s (take p = ls+1 − ls in (1)). We claim
that the sequence is increasing in length and strictly decreasing in
lexicographical order. Hence it is pairwise incomparable. Lemma 2.31
then guarantees that Df(s) ∩ Ext(P ) 6= ∅ for all s and therefore P is
not h.i. by Theorem 2.7.

To prove the claim consider two cases.
Case 1. τns+1,s+1 ) τns,s. Then |τns+1,s+1| = ls+1 = |τns,s

a1ls+1−ls |
and τns+1,s+1 = τns,s

a1ens+1,s+1a0uns+1,s+1 . But

uns+1,s+1 = ls+1 − |τj,s| − ens+1,s+1

> |τj,s|+ ens+1,s+1 + k − |τj,s| − ens+1,s+1

from (2) and the definition of ls+1

> 0.

Therefore τns+1,s+1 is lexicographically less than τns,s
a1ls+1−ls .

Case 2. If it is not the case that τns+1,s+1 ) τns,s, then by Lemma
2.33 τns+1,s+1 is lexicographically less than τns,s. As |τns+1,s+1| >
|τns,s|, the two strings must be incomparable. Therefore any extension
of τns+1,s+1 must be lexicographically less than any extension of τns,s.
The result follows a fortiori.

Lemma 2.35. X is the only non-isolated path in P .

Proof. It is immediate from the construction that ei,s+1 6 ei,s for all i
and s. So ei exists for all i. ui,s 6= ui,s+1 only when ei,s 6= ei,s+1 so ui

exists as well. And for all i, τi = lims τi,s = 1e0a0u0a1e1a0u1a . . .a 0ui

exists. But for each s τi,s ∈ T and so τi ∈ T . X =
⋃

i τi and so X ∈ P .
Furthermore, τi is a branching node for all i (as τa

i 01 ∈ T by Lemma
2.31 and τa

i 11 ∈ T as it is extended by τi+1). So there are infinitely
many branching nodes along X and X is not isolated.
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Let i > 0 be arbitrary and let s be such that τi,s = τi and nt > i for
all t > s. Then if Y ∈ P such that Y 6⊃ τi then Y 6⊃ τnt,t for all t > s.
An inspection of (1) shows that for all σ ) Y [ls], σ = Y [ls]a0|σ|−ls

and hence Y is isolated.

Lemma 2.36. If σ ∈ T and σ is of the form

1e0a0u0a . . .1e1a0q

where 0 < q < ui, then σ 6∈ Br(P ).

Proof. By (1) above, if σ ∈ T then σa〈1〉 ∈ T only if σ is of the form
τa
ns,s1q for some s and 0 6 q < ls+1 − ls. This is inconsistent with

being of the above form.

Lemma 2.37. P is e.p.h.i.

Proof. Let {e} be any strictly increasing total computable function -
a candidate for witnessing the fact that P is not e.p.h.i. Let s be a
stage such that

i. for all ei < e, ei,s = ei.
For all stages t > s and for all ei < e, τi,t = τi. In particular if j

is as in (2) then ej < e and |τj,t| is constant for all t > s. We can also
assume that s is so large that it also satisfies:

ii. there exists a 0 < k 6 s such that

|τj,s|+ e + k 6 {e}s(|τj,s|+ e + k)↓< {e}s(|τj,s|+ e + k + 1)↓ .

The construction then ensures that X ⊃ τj and the choice of uns+1,s+1

guarantees that

BrX(P ) ∩
[
{e}(|τi,s|+ e + k), {e}(|τi,s|+ e + k + 1)

)
= ∅,

and so {e} does not witness the fact that P is not e.p.h.i. As e was
arbitrary, P is e.p.h.i.

Theorem 2.38. Small ⇒ h.i.
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Proof. If we assume that a Π0
1 class P is not h.i. witnessed by 〈D∗

f(n)〉n,
then the computable function

n 7→ max{|σ| : σ ∈ Df(n)}

witnesses the fact that P is not small via the characterisation 2.10
4.

Corollary 2.39. There is a Π0
1 class with no computable elements

that is e.p.h.i. but not h.i.

Proof. Let S be any small Π0
1 class with no computable path and P

as in Theorem 2.30. By Lemma 2.22 P ∨S is e.p.h.i. But P ∨S is not
h.i. by Lemma 2.23, and it does not have a computable elements.

Corollary 2.40. There is a Π0
1 class with no computable elements

that is e.p.h.i. but not small.

Proof. P ∨S from Corollary 2.39 is e.p.h.i. but not h.i. By the above
theorem it cannot be small.

Theorem 2.41. h.i. 6⇒ u.p.h.i. In fact any Π0
1 class of positive mea-

sure contains an h.i. Π0
1 class of positive measure that is not u.p.h.i.

Proof. Let P be any Π0
1 class of measure m > 0. We will create the

required Q ⊆ P by adapting the construction of Theorem 2.25. Let
k ∈ N be such that m > 2−k. We will ensure that for all σ ∈ Ext(Q),
µ(Q(σ)) > 2−2|σ|−k−2. The function defined recursively by

f(0) = 0

f(n + 1) = 2f(n) + k + 3

will then witness the fact that Q is not u.p.h.i. via the characterisation
2.11 3. This is straightforward to see because for any n and any
σ ∈ Q[f(n)], the measure of Q(σ) is no less than 2−2f(n)−k−2. So there
must be a branching node above σ of length less than 2f(n)+k+3 —
if there were not, then the measure of Q(σ) could be no greater than
2−2f(n)−k−3.

Now to construct Q. As usual Q =
⋂

s Qs — a computable inter-
section of clopen sets. Let P ′ be the Π0

1 class from Theorem 2.25 and
suppose P ′ =

⋂∞
s=0 P ′

s — a computable intersection of clopen sets.
Let Q0 = 2N. Suppose Qs is defined, let

Qs+1 = (P ′
s ∩Qs) r

⋃
{Qs(σ) : µ(Qs(σ)) < 2−2|σ|−k−2}.
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Then Q is equal to

P ′ r
∞⋃

s=0

⋃
{Qs(σ) : µ(Qs(σ)) < 2−2|σ|−k−2}

and it is h.i. as it is a subset of P ′. To prove that µ(Q) > 0 first notice
that

µ
( ∞⋃
s=0

⋃
{Qs(σ) : µ(Qs(σ)) < 2−2|σ|−k−2} 6

∞∑
n=0

∑
|σ|=n

2−2|σ|−k−2

=
∞∑

n=0

2n2−2n−k−2

< m

∞∑
n=0

2−n−2

= m/2.

But µ(P ′) > m/2 from Theorem 2.25, so µ(Q) > m/2−m/2 = 0.
Finally, assume for a contradiction that τ ∈ Ext(Q) and µ(Q(τ)) <

2−2|τ |−k−2. Then there must exist a t such that µ(Qt(τ)) < 2−2|τ |−k−2.
But then Qt(τ) ∩Qt+1 = ∅ and τ 6∈ Ext(Qt+1) ⊇ Ext(Q). Contradic-
tion.

It will be useful later to note the following.

Theorem 2.42. If S = S(A,B) is a separating Π0
1 class then S is

u.p.h.i. if and only if it is small. That is, small, e.p.h.i, p.h.i, and
u.p.h.i. are equivalent in the case of separating classes.

Proof. All separating Π0
1 classes S have the property ∀n ∈ Brl(S)∀σ ∈

S[n] σ ∈ Br(S). By an easy induction argument it can be seen that
for all n ∈ N

min{|ΨP (σ)| : |σ| = n} = max{|ΨP (σ)| : |σ| = n}.

Then the characterisations 2.10 2. and 2.11 2. show that any separating
u.p.h.i. class is small.

The following diagram sums up the results in this section. The lack
of an arrow between two properties indicates that a Π0

1 counterexample
with no computable paths is known.
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Figure 1:

zero measure
↗

small −→ e.p.h.i. −→ p.h.i. −→ u.p.h.i.
↘

h.i.

3 Thinness and other strengthenings

A similar analysis can be carried out using stronger notions than that
of hyperimmunity. In this section we briefly consider the notions of
dense immunity and (co-)maximality. For convenience I give their
definitions here, but also see [19].

Definition 3.1. X ⊆ N is dense immune if pX dominates every com-
putable function.

Theorem 3.2. X ⊆ N is dense immune if and only if for all strong
arrays 〈Df(n)〉 there are at most finitely many n such that

∥∥ n⋃
i=0

Df(i) ∩X
∥∥ > n.

Notice that there is no requirement of disjointness in Theorem 3.2.

Definition 3.3. X ⊆ N is maximal if it is coinfinite and for every
c.e. set Y ⊇ X either Y is co-finite or Y r X is finite.

We use these well-established ideas to define analogous properties
in 2N in the fashion of Section 2. Dense immunity turns out to be
the most similar. We define a Π0

1 class to be very small (v.small) in
the same way as we defined smallness — but with “dense immunity”
replacing “hyperimmunity”. This was done in [3] in detail. We shall
also define everywhere pathwise dense immunity (e.p.d.i.), pathwise
dense immunity (p.d.i.), uniform pathwise dense immunity (u.p.d.i.)
in the obvious way. In order to define dense immunity (d.i.) for
subsets of 2N we will use the alternative characterisation in Theorem
3.2 and follow Theorem 2.7. That is, recalling Definition 2.6,
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Definition 3.4. A Π0
1 class P is dense immune (d.i.) if it is infinite

and there is no strong array 〈D∗
f(n)〉 such that for infinitely many n

‖rt
( n⋃

i=0

D∗
f(i)

)
∩ Ext(P )‖ > n. (3)

It is necessary to establish that these are all invariant under com-
putable homeomorphisms. This is straightforward. The proof for
d.i. Π0

1 classes is similar to 2.14, the proof for v.small is in [3] and the
rest of the proofs follow from Lemma 2.15.

To see how these new properties compare to the ones defined using
hyperimmunity we first notice that every dense immune subset of N
is hyperimmune so the following table is evident.
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Figure 2:

small −→ e.p.h.i. −→ p.h.i. −→ u.p.h.i.
↑ ↑ ↑ ↑

v.small −→ e.p.d.i. −→ p.d.i. −→ u.p.d.i.

It will be shown now that no diagonal arrows exist on the dia-
gram (apart from the immediately necessary ones) and hence that
the arrows on the bottom row are non-reversible. To see there are
no unnecessary diagonal implications it is sufficient to establish the
following four lemmas.

Theorem 3.5. There is a small Π0
1 class with no computable path

that is not u.p.d.i.

Proof. Let S be a small separating Π0
1 class that is not v.small. Such

an S exists by Theorem 3.16 of [3]. If S were u.p.d.i. then it would be
v.small (using an analogous result to Theorem 2.42 and the fact that
S is separating).

Lemma 3.6. E.p.d.i.6⇒ small.

Proof. (Sketch.)
The proof is similar to the proof of Theorem 2.30. A Π0

1 class is
constructed with exactly one non-isolated path X which has a dense-
immune set of branching nodes on it. As before, every level of P is a
branching level.

Lemma 3.7. P.d.i. 6⇒ e.p.h.i.

Proof. Take a v.small Π0
1 class P . P ∧2N will be p.d.i. but not e.p.h.i.

Lemma 3.8. U.p.d.i.6⇒ p.h.i.

Proof. This is the same as Theorem 2.27 with f taken as the charac-
teristic function of a dense immune Π0

1 subset of N.

Of course other concepts of diminutiveness such as hyperhyperim-
munity, r-maximality and so on (see [19] §X for example) could be
studied in a similar way. We do not do this here and questions re-
main about whether the analogous properties would be computably
topological in 2N.
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The collections of canonically indexed sets Dn and D∗
n form bases

for the respective topologies on N and 2N. But whereas 2N is compact
in this topology, N is not. So some array definitions are possible in
2N that have no analogy (or rather no interesting analogy) in N. For
example we can require of a Π0

1 class that for any disjoint strong array
〈D∗

f(n)〉 there are at most finitely many n such that 〈D∗
f(n)〉 ∩ P 6= ∅.

The analogous property for subsets of N is equivalent to a set’s being
finite. However for subsets of 2N this property is equivalent to being
thin in the sense of [6], [9], [10] and elsewhere. This is interesting to
note because the usual definition of thinness (to follow) suggests that
the correct analogy in N is maximality.

Definition 3.9. A Π0
1 class P is thin if its only Π0

1 subclasses are its
clopen subclasses (in the relative topology).

It is not straightforward to see relationship between the previously
defined properties and thinness but some have been established.

Theorem 3.10. Thin =⇒ d.i.

Proof. Suppose P is not d.i. witnessed by the strong array D∗
f(n). Let

D∗
g(0) = D∗

f(0) and

D∗
g(n+1) =

n+1⋃
i=0

D∗
f(i) r

n+1⋃
i=0

D∗
f(i).

It is easy to see that 〈D∗
g(n)〉 is a disjoint strong array that also wit-

nesses the fact that P is not d.i. As ‖rt
(⋃n

i=0 D∗
g(i)

)
∩ Ext(P )‖ > n

for infinitely many n, it must be the case that D∗
g(n) ∩ P 6= ∅ for

infinitely many n. As 〈D∗
g(n)〉 is disjoint, P cannot be thin.

Lemma 3.11. v.small =⇒ d.i.

Proof. If 〈Df(n)〉 witnesses the fact that P is not d.i. then the function

m(n) = max{|σ| : σ ∈ rt
( n⋃

i=0

Df(i)

)
}

witnesses the fact that Br(P ) is not d.i. and hence that P is not
v.small.

Theorem 3.12. D.i. 6=⇒ thin.
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Proof. If P is v.small then so is P ∨ P (see [3]), and by Lemma 3.11
P ∨ P is d.i. But P ∨ P is not thin as {f ⊕ f : f ∈ P} is a Π0

1,
non-clopen, proper subset of P ∨ P .

Theorem 3.13. Thin 6=⇒ v.small.

Proof. This is Theorem 4.3 in [3] and is a consequence of results in
[9].

Theorem 3.14. Thin =⇒ u.p.h.i.

Proof. The proof is very similar to Simpson’s proof that all thin Π0
1

classes have zero measure. We prove the contrapositive. Suppose a
Π0

1 class P were not u.p.h.i. and this witnessed by the computable
function f . That is,

∀n∀τ ∈ P [f(n)]∃σ ⊇ τ f(n) 6 |σ| < f(n + 1) and σ ∈ Br(P ).

Define a sequence of elements of Ext(P ) as follows (“left” and
“right” here refer to the lexicographical ordering on 2N):

σ1 = the rightmost string on P [f(1)]

σn+1 = the rightmost string on P [f(n + 1)] to the left of σn.

To prove that σn exists for all n, we use induction to prove that
for all n > 0 there is a τ ∈ P [f(n)] such that τ is strictly to the left
of σn. If τ is the rightmost such string in P [f(n)], then σn+1 will be
the rightmost element of P [f(n + 1)] extending τ .

Base case: There is a branching node on P before level f(1) so
there must be a τ ∈ P [f(1)] strictly to the left of σ1.

Induction: Suppose that τ is the rightmost element of P [f(n)]
strictly to the left of σn. There must be a branching node above τ
before level f(n + 1) as P is u.p.h.i. Therefore there must be a τ ′

strictly to the left of σn+1 defined as above.
The set S =

⋃
n Uσn ∩P is open in the relative topology of P , but

it is not closed, as the set {Uσn : n ∈ N} is pairwise disjoint and P
is compact. Furthermore,

⋃
n Uσn is Σ0

1 so P r S is a non-clopen Π0
1

subclass of P , and P is not thin.
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4 Muchnik and Medvedev Degrees

As we do for Turing degrees, if C is any property of Π0
1 classes and d is a

Muchnik degree then we say d has property C if d has a representative
with property C.

The questions arise now whether the properties defined in this pa-
per describe different classes of Muchnik degrees. Also it can be asked
where these classes of Muchnik degrees fit into the known structure
of the Muchnik lattice. An analogous type of theorem in the Turing
degrees is one of Dekker’s that states that every c.e. Turing degree has
a hyperimmune representative [8].

Here not as much is known as would be liked, but we present some
basic results. Some conjectures and open questions are discussed in
the following section.

The next two Lemmas are very useful in this area.

Lemma 4.1 (Simpson). For all Π0
1 classes P and Q if P >w Q, then

there exists a Π0
1 subclass P ′ ⊆ P such that P >M Q.

Proof. See [17] or [3]

Lemma 4.2 (Simpson). If P and Q are Medvedev complete Π0
1 classes,

then P is recursively homeomorphic to Q.

Proof. See [18]

Lemma 4.3. DNR2 is neither h.i. nor u.p.h.i.

Proof. Let e0 < e1 < e2 . . . be a computable sequence of indices for
the empty function. For every i define

Ei = {f ∈ 2N : ∀j < i f(ej) = 0 and f(ei) = 1}.

Each Ei intersects DNR2 as 0 6= {ei}(ei) 6= 1 for all i. They are also
pairwise disjoint and so form a disjoint strong array. So DNR2 is not
h.i.

To see it is not u.p.h.i. first notice that DNR2 = S(A,B) where
A = {e : {e}(e) ↓= 0} and B = {e : {e}(e) ↓= 1}. It is therefore a
separating class and if it were u.p.h.i. it would be small by 2.42. It is
not small, however, because e0, e1, e2, . . . is a computable sequence of
branching levels of DNR2 (Theorem 2.10 3.)
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Theorem 4.4. If P is an h.i. or e.p.h.i. Π0
1 class, then it is Muchnik

incomplete.

Proof. Suppose P were an h.i. Π0
1 class and that P >w DNR2. Then

by Lemma 4.1 there would be a Π0
1 P ′ ⊆ P such that P ′ >M DNR2.

So P ′ is Medvedev complete. Hyperimmunity is closed under taking
subsets so P ′ is also h.i. But DNR2 is not h.i. by Lemma 4.3 and
so no other Medvedev complete Π0

1 class can be by Lemma 4.2 and
Theorem 2.14.

The proof is identical for the e.p.h.i. case.

Theorem 4.5. If P is u.p.h.i, then it is Medvedev incomplete.

Proof. If it were Medvedev complete then DNR2 would be u.p.h.i. by
Lemma 4.2 and Theorem 2.14

It is currently an open question whether every u.p.h.i. or p.h.i. Π0
1

class is Muchnik incomplete. We conjecture that it is so.

Theorem 4.6. There is an h.i. Muchnik degree that is not less that
any small Muchnik degree.

Proof. There is a Π0
1 class R consisting entirely of 1-random reals with

the property that any Π0
1 subclass of R has positive measure [14]. R

also has the property that if M is any Π0
1 class of positive measure

then R >w M (see [17] for an exposition).
Lemma 2.25 implies that R must have an h.i. Π0

1 subclass R′ and
the above implies that R′ ≡w R. So R has h.i. Muchnik degree. But if
S were any small Π0

1 class such that S >w R then by Lemma 4.1 there
would be a Π0

1 S′ ⊆ S such that S′ >M R. That is, there would be a
computable functional Φ : S′ −→ R. S′ is small as it is a subclass of
S and its image under Φ is also small by Theoerem 2.13. But every
subset of R is of positive measure so the image of Φ must be small
and of positve measure — contradicting Theorem 2.24.

Corollary 4.7. The class of small Muchnik degrees is strictly con-
tained in the class of h.i. Muchnik degrees.
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The problem of the density of the Muchnik lattice is still the out-
standing problem in the area. Partial results have been obtained for
example Corollary 3.17 in [3]. The next lemma by Simpson in [17]
(Corollary 7.5) gives upward density for a large class of Muchnik de-
grees.

Lemma 4.8. [Simpson] Let P , Q and S be Π0
1 classes such that P is

of positive measure and S is a separating class. Then

P ∨Q >w S =⇒ Q >w S.

Proof. See [17]. Note that P 6>w S by Theorem 5.3 in [13]. The proof
is a relativisation and generalisation of Theorem 5.3.

Which gives the following theorem as a corollary.

Theorem 4.9. If P is a small Π0
1 class, then there is a Π0

1 class Q
such that

P <w Q <w DNR2.

Proof. By Lemma 2.38 P must be h.i. and therefore P <w DNR2

by Theorem 4.4. In the proof of Theorem 4.6 R 66w P . Therefore
R ∨ P >w P . But Lemma 4.8 also implies that R ∨ P <w DNR2 as
DNR2 is a separating class.

5 Open Questions and Further Direc-

tions

• Does there exist a u.p.h.i. (e.p.h.i, p.h.i.) Muchnik degree that is
not small (h.i)?

These problems can be solved by constructing a u.p.h.i. (e.p.h.i,
p.h.i.) Π0

1 class that has no small (h.i.) subclass. And then use an
argument like the proof of Theorem 4.6.

It is not clear how to proceed in other questions of this type — for
example does there exist a u.p.h.i. Muchnik degree that is not p.h.i?

• Is every u.p.h.i. (p.h.i.) Muchnik degree Muchnik incomplete?
An essential property in showing that every small Π0

1 class (for
example) is Muchnik incomplete is the property that every Π0

1 subclass
of a small Π0

1 class is small. This property is not shared by u.p.h.i. or
p.h.i. classes. Another method of showing incompleteness needs to be
found.
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There are many easily describable intermediate Muchnik degrees.
For example in [17] Simpson defines a transfinite sequence of such de-
grees related to the diagonally non-recursive functions. It is unknown
how the properties described in this paper relate to such degrees. For
example the obvious question:

• Is DNR a small degree?
has not been answered. Here DNR is the Muchnik degree of the set
D = {f ∈ NN : ∀ef(e) 6= {e}(e)}. This set is a Π0

1 subclass of NN

rather that 2N and is in fact not even computably bounded - however
there is a Π0

1 class subclass of 2N whose elements have the same Turing
degrees as those in D

• Is every small (thin) Muchnik degree thin (small)?
It is known that not every small Π0

1 class is thin (see [3]) but is is
not known if every thin class is small. Whether or not their Muchnik
degrees coincide could be answered negatively if one were to construct
a small (thin) Π0

1 class with no thin (small) subclass.
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