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ABSTRACT  A remainder representation of the sample size n = 4m + r (r = 0, 1, 2, 3) 
is exploited to write out the ranks of quartiles exhaustively which in turn help compare 
ranks for quartiles provided by different methods available in the literature. The criterion 
of the equisegmentation property that the number of  integer ranks below the first 
quartile, that between the consecutive quartiles, and that above the third quartile are the 
same, has been used to compare and contrast different methods. Four segmentation 
identities can be obtained for each method of quartiles which show clearly the number of 
observations in each of the four quarters if the observations are distinct. The Halving 
Method and the Remainder Method have been proposed for the calculation of sample 
quartiles. The quartiles provided by each of these two methods satisfy the equi- 
segmentation property if the observations are distinct. More interestingly, in these two 
methods r  also represents the number of quartiles having integer ranks. 
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1. Introduction 

Quartiles, deciles, percentiles or more generally fractiles are uniquely determined for 
continuous random variables. A pth quantile of a random variable X  (continuous or discrete) 
is a value px  such that pxXP p ≤< )(  and  pxXP p ≥≤ )( .  Let X be a continuous or 
discrete random variable with probability function )(xf  and the cumulative distribution 
function ( ) ( ).F x P X x= ≤   If the distribution is continuous, then pxXP p =< )( and 

pxXP p =≤ )(  since 0)( == pxXP .  Therefore, for the continuous case, pxF p =)( . 
 
The quartiles    , 50.0225.01 xQxQ == and 75.03 xQ =  for a continuous random variable with 

cumulative distribution function )(xF  are defined by  ,25.0)( 25.0 =xF    50.0)( 50.0 =xF and  
F( 75.0x ) = 0.75 respectively.  Let X follow an exponential distribution with the probability 
density function  
 

1 /( )   ,        0 xf x e xββ − −= >  
 
with the cumulative distribution function β/1)( xexF −−= .  Then 
 

4/11 /1 =− − βQe ,  4/21 /2 =− − βQe  and 4/31 /3 =− − βQe  



 

  

so that 

4ln  ,2ln  ),3/4ln( 321 βββ === QQQ . 
 
However, for the discrete distribution, one has to use the basic definition.  Consider the 
binomial distribution )2/1,4( == πnB .  The probability mass function is given by  
 

( )
⎩
⎨
⎧ =

=
elsewhere.                   0

;4, ,1 ,0  ,)2/1( 
)(

44 Lx
xf x  

 
Then 125.0 =x , is the first quartile of the distribution since 
 

.25.03125.0)1()0()1(
,25.00625.0)0()1(

≥==+==≤
≤===<

XPXPXP
XPXP

 

 
Similarly 250.0 =x , is the second quartile of the distribution since 
 

( 2) 0.3125 0.50,    
( 2) 0.6825 0.50

P X
P X

< = ≤
≤ = ≥

. 

 
Note that the median is the same as 0.5-quantile or the 50th percentile, or the 5th decile.  It is 
not surprising that the 60th percentile, 26.0 =x , since 60.03125.0)2( ≤=<XP  and P( 2≤X ) 
= 0.6825 60.0≥ .  Similarly it can be checked that the third quartile is given by 375.0 =x . 

 
In case we have a sample (discrete in nature), it is, however, difficult to define quartiles. 

One method, called the Hinge Method, is based on finding the median first and then finding 
the medians of the upper and lower halves (including original median in both halves) of the 
data.  Done so, roughly 25% observations remain below the lower quartile and 25% above 
the upper quartile.  A sample quantile is a point below which some specified proportion of 
the values of a data set lies.  The median is the 0.50 quantile because approximately half of 
all the observations lie below this value.  The name fractile for quantile is used by some 
authors (see Lapin [6], p. 52).  

 
A remainder representation of the sample size 4  ( 0,1,2,3)n m r r= + =  is exploited to 

write out the ranks of quartiles exhaustively which in turn help compare ranks for quartiles 
provided by different methods available in the literature.  Some of them differ only by 
various rounding notions of the corresponding ranks for quartiles.   

 
We compare and contrast different methods of quartiles in the light of equisegmentation 

property that the number of integer ranks below the first quartile, that between the 



 

consecutive quartiles, and that above the third quartile are the same.  For each method of 
quartiles, four segmentation identities are obtained which clearly show the number of 
observations in each of the four quarters if the observations are distinct.  The Halving 
Method and the Remainder Method have been proposed for the calculation of sample 
quartiles.  The quartiles provided by each of these two methods divide the ordered sample 
observations in four quarters with the same number of observations in each segment and 
provide the number of quartiles having integer ranks if the observations are distinct.  
 
2. The Popular Method  

 
There are many methods available for calculating sample quartiles in different 

elementary text books on statistics without any explanation. The most popular one, called the 
Popular Method hereinafter, is described below. The rank of the i(i = 1, 2, 3)th quartile is 
given by  
                        3 ,2 ,1   ,1)/4(  =+=+ idlni                         (2.1) 

 
where l  is the largest integer not exceeding 4/)1( +ni .  Then the Popular Method uses the 
following linear interpolation formula for the calculation of sample quartiles 
 

)1()()()1()(   )1()( ++ +−=−+= llllli xdxdxxdxQ ,  (i = 1, 2, 3),         (2.2) 

 
where )(lx  is the lth ordered observation (Ostle et al. [12], p. 38).  To write out the ranks 
exhaustively let us denote the sample size ( 4)n ≥  by the following remainder-modulus 
representation 

 

 4  ( mod  4),  ( 0,  1,  2,  3)n m r r r= + = = ,                     (2.3) 
 
so that the number of observations in each of the four segments is given by  ( ) / 4.m n r= −   
With this representation of the sample size, the ranks and the quartiles of a sample will be 
denoted respectively by 3 ,2 ,1 ,0  ;3 ,2 ,1   ;   and == riQR irir .  Though quartiles 

3 ,2 ,1 ,0  ;3 ,2 ,1   ;  == riQir  are usually denoted by 3 ,2 ,1   ;  =iQi , we will not suppress r  
as it plays an important role in comparing the ranks of quarters given by different methods.  

 
Let the number of observations in each segment be im (i = 1, 2, 3, 4).  Then the equi- 

segmentation property guarantees that 4321 mmmm ===  if the observations are distinct.  
In case, 31 ≤≤ n , the above formulae can also be used to calculate quartiles with 0=m . 

 
It is interesting to note that though the Popular Method is not based on good 

mathematical reasoning, the equisegmentation property is satisfied by the quartiles provided 
by this method for all sample sizes 4   ( 1;  0,1,3)n m r m r= + ≥ = if the observations are 
distinct.  For 4 2  ( 1),n m m= + ≥  the number of observations in four segments are given by 



 

  

 )1( ),1( , ++ mmm and m respectively if the observations are distinct. 
 
Thus it is essential to modify the formulae of ranks so that the equisegmentation property 

is satisfied by quartiles provided by the Popular Method for any sample size.  It is observed 
that whenever 24 += mn , simple arithmetic rounding of ranks provided by this method 
would satisfy the equisegmentation property.  

 
Example 2.1  The sizes of the police forces in the ten largest cities in the United States in 
1993 (the numbers represent hundreds) are given below: 

1.7   1.9   2.0   2.8   3.9   4.7   6.2   7.6   12.1   29.3 

(Bluman [1], p.137).  We now calculate quartiles by the Popular Method. Here the sample 
size is 2)2(410 +==n  so that 2=m  and 2=r . For 2=r  we will denote the ranks of 
quartiles by )3 ,2 ,1( 2 =iRi . The ranks of the quartiles provided by the Popular Method are 
(see equation 2.1) given by 

25.84/)1(3  ,5.52/)1(  ,75.24/)1( 322212 =+==+==+= nRnRnR  
 

so that by linear interpolation (see equation 2.2) the quartiles are given by  

12 (2.75) (2) (3)

22 (5.5) (5) (6)

32 (8.25) (8) (9)

(1 0.75) 0.75 0.25(1.9) 0.75(2.0) 1.975

(1 0.5) 0.5 0.5(3.9) 0.5(4.7) 4.3  

(1 0.25) 0.25 0.75(7.6) 0.25(12.1) 8.725

Q x x x

Q x x x

Q x x x

= = − + = + =

= = − + = + =

= = − + = + =

 

To check the equisegmentation property, we show the position of the quartiles by downward 
arrows in the sample:   

⇓                  ⇓                 ⇓  
1.7    1.9    2.0    2.8    3.9    4.7    6.2    7.6    12.1    29.3 

We observe that there are 2 )( m= , )1(3 += m , )1(3 += m  and )(2 m=  observations in the 
four segments, i.e. the quartiles do not satisfy the equisegmentation property for 24 += mn .  
 
 
3. A Review of the Well-known Formulae of Sample Quartiles 

 
In this section we survey the formulae for quartiles available in the literature.  We pro- 

vide algebraic expressions for quartiles by all existing methods in the literature.  The use of 
remainder allows us to figure out the decimal part of the formulae of ranks for quartiles for a 
particular sample of size n .  Let 44  ,4/)( ≥+=−= rmnrnm , and irR  be the rank of i th 
quartile with m observations in each segment.  Then the rank of the i th quartile is given by 

  

4/][4/)1(   
4

1)4(  iririr duimriimrmiR ++=++=
++

=             (3.1) 



 

where i and r are integers with 31 ≤≤ i , 30 ≤≤ r , ][ iru  is the largest integer less than or 
equal to 4/)1( +== riuu ir  and )4(mod)1( irdri =+ .  The quartiles can then be cal- 
culated by the simple linear interpolation as   

)1][(])[(  )4/(  )4/ 1( +++ +−= uimuimir xdxdQ                   (3.2) 

where )(ix  is the ith ordered observation, 4/)1(),( +== ririuu , ][u  is the greatest integer 
not exceeding u  and ])[(4 uudd ir −== .  The above method will be called the Popular 
Method.  

 
Method 1 (Popular Method)  The ranks for sample quartiles provided by the Popular 
Method can be written out exhaustively as (see 3.1): 

 
4/33  ,4/22  ,4/1 302010 +=+=+= mRmRmR , 
4/213  ,12  ,4/2 312111 ++=+=+= mRmRmR , 

      4/123  ,4/212  ,4/3 322212 ++=++=+= mRmRmR , 
 33  ,22  ,1 332313 +=+=+= mRmRmR . 

The ranks for different sample sizes provided by this method are tabulated below: 
 

 mn 4=  14 += mn  24 += mn  34 += mn  

irR  0=r  1=r  2=r  3=r  

rR1  4/1+m  4/2+m  4/3+m  1+m  

rR2  4/22 +m  12 +m  4/212 ++m  22 +m  

rR3  4/33 +m  4/213 ++m  4/123 ++m  33 +m  
 

Segmentation identities are given by 

.34
,240)1(0)1(0

,1400 
,4000 

0
33

0
23

0
13

322212

31
0
2111

302010

+=++++++

+=++++++++
+=++++++

=++++++

mmRmRmRm
mmRmRmRm

mmRmRmRm
mmRmRmRm

 

A rank irR  appearing as 10 =irR  in the segmentation identity implies that the rank is an 
integer, and a rank irR  appearing as 00 =irR  implies that the corresponding rank is not an 
integer.  It is seen that the equisegmentation property is satisfied by the Popular Method for r 
= 0, 1, 3 but not for 2=r . Note that the Lapin Method (Lapin [7], 45-46) is a representation 
of  the Popular Method accommodating simple linear interpolation. 

 
 
 
 



 

  

Method 2 (Popular Method with Arithmetic Rounding)  This method is based on 
arithmetic rounding applied to the ranks offered by the Popular Method.  The ranks for 
different sample sizes provided by this method are tabulated below: 
 

 mn 4=  14 += mn  24 += mn  34 += mn  
irR  0=r  1=r  2=r  3=r  

rR1  m  1+m  1+m  1+m  

rR2  12 +m  12 +m  22 +m  22 +m  

rR3  13 +m  23 +m  23 +m  33 +m  
 

Segmentation identities are given by 

34

24)1(

14)1()1( 

4)1()1()1( 

0
33

0
23

0
13

0
32

0
22

0
12

0
31

0
21

0
11

0
30

0
20

0
10

+=++++++

+=++−++++

+=++−++−++

=−++−++++−

mmRmRmRm

mmRmRmRm

mmRmRmRm

mmRmRmRm

 

It is seen that the equisegmentation property is satisfied by the Popular Method only for r = 3.  
 

Method 3 (Mendenhall and Sincich Method)  This method suggests to round up the rank 
of the first quartile provided by the Popular Method if the rank is halfway between two 
integers.  It also suggests rounding down the rank of the third quartile if the rank is halfway 
between two integers.  It is easy to see that the suggestion by Mendenhall and Sincich ([9], p. 
54) only applies to samples with size 14 += mn .  For other sample sizes ranks offered by 
the Popular Method do not lie exactly in the halfway between two integers, and as such those 
ranks are the same in both the Popular Method and the Mendenhall and Sincich Method.  
The ranks for different sample sizes provided by this method are tabulated below: 

 
 mn 4=  14 += mn  24 += mn  34 += mn  

irR  0=r  1=r  2=r  3=r  

rR1  4/1+m  1+m  4/3+m  1m +  

rR2  2 2 / 4m +  2 1m+  4/212 ++m  2 2m+  

rR3  4/33 +m  13 +m  4/123 ++m  3 3m +  

Segmentation identities are given by 

34

240)1(0)1(0
14)1()1( 

4000 

0
33

0
23

0
13

322212

0
31

0
21

0
11

302010

+=++++++

+=++++++++
+=++−++−++

=++++++

mmRmRmRm

mmRmRmRm
mmRmRmRm

mmRmRmRm

 



 

It is seen that the equisegmentation property is satisfied by the Mendenhall and Sincich 
Method for r = 0, 3 but not for r = 1, 2. 

 

Method 4  By this method, the ranks of quartiles are given by /4,      1,  2,  3R nα α α= = . 
Separate the largest integer  )  ( i  not exceeding αR , and decimal part )  ( d  of αR  and 
write diR +=α .  The α th )3 ,2 ,1  ( =α  quartile is finally given by 
 

)1()()()1()(   )1()( ++ +−=−+= iiiii xdxdxxdxQα , )3 ,2 ,1  ( =α  
 

where )(ix  is the ith observation.  This method is a slight variation of the Popular Method 
discussed in Section 2. The ranks for different sample sizes provided by this method are 
tabulated below: 
 

 mn 4=  14 += mn  24 += mn  34 += mn  

irR  0=r  1=r  2=r  3=r  

rR1  m  4/1+m  2/1+m  4/3+m  

rR2  m2  2/12 +m  12 +m  2/112 ++m  

rR3  m3  4/33 +m  2/113 ++m  4/123 ++m  
 

Segmentation identities are given by 

.34)1(0)1(0)1(0
,24)1(00
,14)1(000 

,4)1()1()1( 

332313

32
0
2212

312111

0
30

0
20

0
10

+=+++++++++
+=+++++++

+=+++++++
=++−++−++−

mmRmRmRm
mmRmRmRm

mmRmRmRm
mmRmRmRm

 

It is seen that the equisegmentation property is not satisfied for any 3,2,1,0=r . 
 

Method 5 (Hines and Montgomery [2], p. 18)  Ranks of quartiles are given by 
 /4 0.5,    1,  2,  3R nα α α= + = .  Separate the largest integer (i) not exceeding αR , and 

decimal part )  ( d  of αR  and write diR +=α .  The α th )3 ,2 ,1  ( =α  quartile is finally 
given by  

)1()()()1()(   )1()( ++ +−=−+= iiiii xdxdxxdxQα ,  )3 ,2 ,1  ( =α  
 

where )(ix  is the ith observation. This method is a slight variation of Method 4.  The ranks 
for different sample sizes provided by this method are tabulated below: 
 
 



 

  

 mn 4=  14 += mn  24 += mn  34 += mn  

irR  0=r  1=r  2=r  3=r  

rR1  2/1+m  4/3+m  1+m  4/11++m  

rR2  2/12 +m  12 +m  2/112 ++m  22 +m  

rR3  2/13 +m  4/113 ++m  23 +m  4/323 ++m  

Segmentation identities are given by 

34)1(00)1(

240

1400 

4000 

33
0
2313

0
3222

0
12

31
0
2111

302010

+=++++++++

+=++++++

+=++++++

=++++++

mmRmRmRm

mmRmRmRm

mmRmRmRm

mmRmRmRm

 

It is seen that the equisegmentation property is satisfied by this method for r = 0, 1, 2 but not 
for r = 3. 

 

Method 6 (Johnson [5], p. 32)  The ranks of the quartiles are given by 
 /4,   1, 2,3R nα α α= = . Separate the largest integer (i) not exceeding αR , and decimal part 

(d) of αR  and write diR +=α .  If 4/n  is not an integer, round it up to the next integer 
and find the corres- ponding ordered observation.  If 4/n  is an integer, calculate the mean 
of the )4/(n th and the next observation.  The ranks for different sample sizes provided by 
this method are tabulated below: 
 

 mn 4=  14 += mn  24 += mn  34 += mn  
irR  0=r  1=r  2=r  3=r  

rR1  2/1+m  1+m  1+m  1+m  

rR2  2/12 +m  12 +m  12 +m  22 +m  

rR3  2/13 +m  13 +m  23 +m  33 +m  
 

Segmentation identities are given by 

.34
,24)1(

,14)1()1( 
,4000 

0
33

0
23

0
13

0
32

0
22

0
12

0
31

0
21

0
11

302010

+=++++++

+=++++−++

+=++−++−++

=++++++

mmRmRmRm
mmRmRmRm

mmRmRmRm
mmRmRmRm

 

It is seen that the equisegmentation property is satisfied by this method for r = 0, 3 but not for 
r = 1, 2. 

 
 
 



 

Method 7 (Hinge Method)  An interesting method to find extreme quartiles is based on 
finding the median first, and then finding the medians of upper and lower halves of the data . 
The tradition is to count the median in both halves (Mayer and Sykes [8], p. 25).  Tukey 
([16], pp. 32-35) called them hinges.  

For 4n m= , it follows that the rank of the median is 4/222/)41(20 +=+= mmR . 
Then by the Hinge Method 4/32/)]4/22(1[10 +=++= mmR  and )4/22[(30 += mR  

4/132/]4 +=+ mm .  For 14 += mn , it follows that the rank of the median is 
122/)]14(1[21 +=++= mmR .  Then by the Hinge Method 12/)]12(1[11 +=++= mmR  

and 132/)]14()12[(31 +=+++= mmmR . 
For 24 += mn , it follows that the rank of the median is mR 4(1[22 +=  

4/2122/)]2 ++=+ m . Then by the Hinge Method 4/112/)]4/212(1[12 ++=+++= mmR  
and 4/3132/)]24()4/212[(32 ++=++++= mmmR .  For 34 += mn , it follows that the 
median is 222/)]34(1[23 +=++= mmR . Then by the Hinge Method 2/)]22(1[13 ++= mR  

4/21++= m  and 4/2232/)]34()22[(33 ++=+++= mmmR . 
The ranks for different sample sizes provided by this method are tabulated below: 

 
 mn 4=  14 += mn  24 += mn  34 += mn  

irR  0=r  1=r  2=r  3=r  

rR1  4/3+m  1+m  4/11++m  4/21++m  

rR2  4/22 +m  12 +m  4/212 ++m  22 +m  

rR3  4/13 +m  13 +m  4/313 ++m  4/223 ++m  
 

Segmentation identities are given by 

.34)1(00)1(
,24)1(000)1(

,14)1()1( 
,4000 

33
0
2313

322212

0
31

0
21

0
11

302010

+=++++++++

+=++++++++
+=++−++−++

=++++++

mmRmRmRm
mmRmRmRm

mmRmRmRm
mmRmRmRm

 

Clearly the equisegmentation property is satisfied by the Hinge Method only for 0=r . 
 

Method 8 (Vinning Method)  The formulae given by Vinning ([17], p. 44) can be 
simplified as 

                    1

( 3)/4 th observation  if  is odd
( 2)/4 th observation if  is even
n n

Q
n n
+⎧

= ⎨ +⎩
 

 

 3

(3 1) / 4 th observation if  is odd
(3 2) / 4 th observation  if  is even

n n
Q

n n
+⎧

= ⎨ +⎩
 

 
The example he provides with 35=n  divides the ordered sample observations into 

four segments with 9, 8, 8 and 9 observations among them. The median has an integer rank 



 

  

namely the 18th position. The ranks for different sample sizes provided by this method are 
tabulated below: 
 

 4n m=  4 1n m= +  4 2n m= +  4 3n m= +  
irR  0r =  1r =  2r =  3r =  

1rR  2 / 4m +  1m +  1m +  1 2 / 4m + +  

2rR  2 2 / 4m +  2 1m +  2 1 2 / 4m + +  2 2m +  

3rR  3 2 / 4m +  3 1m +  3 2m+  3 2 2 / 4m + +  

Segmentation identities are given by 

34)1(00)1(

240

14)1()1( 

4000 

33
0
2313

0
3222

0
12

0
31

0
21

0
11

302010

+=++++++++

+=++++++

+=++−++−++

=++++++

mmRmRmRm

mmRmRmRm

mmRmRmRm

mmRmRmRm

 

Clearly the equisegmentation property is satisfied by the Vinning Method only for 
0=r  and 2=r .  Milton and Arnold Method ([11], pp. 207-208) suggested the ranks of 

extreme quartiles to be 2/)1]2/)1([(1 ++= nR r  and 113 RnR r −+=  but it turns out that 
they are exactly the same as the ranks of extreme quartiles given by the Vinning Method. 

 
Method 9 (Siegel Method)  Siegel ([14], p. 117) suggests the ranks of extreme quartiles to 
be 2/)1]2/)1([(1 ++= nR r  and 113 RnR r −+=  while, unlike any other method, he suggests 
the rank of the median to be 2 [( 1) / 2]rR n= +  where [ a ] is the largest integer not exceeding  
a .  The ranks for different sample sizes provided by this method are tabulated below: 
 

 4n m=  4 1n m= +  4 2n m= +  4 3n m= +  
irR  0r =  1r =  2r =  3r =  

1rR  2 / 4m +  1m +  1m +  1 2 / 4m + +  

2rR  2m  2 1m +  2 1m +  2 2m +  

3rR  3 2 / 4m +  3 1m +  3 2m +  3 2 2 / 4m + +  
 

Segmentation identities are given by 
0

10 20 30
0 0 0

11 21 31
0 0 0

12 22 32
0

13 23 33

 0 ( 1) 0 4

( 1) ( 1) 4 1

( 1) 4 2

( 1) 0 0 ( 1) 4 3

m R m R m R m m

m R m R m R m m

m R m R m R m m

m R m R m R m m

+ + − + + + + =

+ + − + + − + + = +

+ + − + + + + = +

+ + + + + + + + = +

 

Clearly the equisegmentation property is not satisfied for any value of r  . 

 



 

Method 10 (Smith Method)  The formulae provided for percentiles by Smith ([15], pp. 
36-38) can be specialized to quartiles as 
 

1

2  th observation if / 4 is not an integer
4

1 4th th   observation   if / 4 is  an integer 
2 4 4

n n
Q

n n n

+⎧
⎪⎪= ⎨ +⎛ ⎞⎪ +⎜ ⎟⎪ ⎝ ⎠⎩

 

3

3 2  th observation if 3 / 4 is not an integer
4

1 3 3 4th th  observation   if / 4 is  an integer 
2 4 4

n n
Q

n n n

+⎧
⎪⎪= ⎨ +⎛ ⎞⎪ +⎜ ⎟⎪ ⎝ ⎠⎩

 

He suggests rounding the ranks to the nearest integer.  The example he provides for 12=n  
does satisfy the equisegmentation property with 3=m .  The ranks for different sample 
sizes provided by this method are tabulated below: 
 

 4n m=  4 1n m= +  4 2n m= +  4 3n m= +  
irR  0r =  1r =  2r =  3r =  

1rR  1/ 2m +  3 / 4m +  1m +  1 1/ 4m + +  

2rR  2 2 / 4m +  2 1m +  2 1 2 / 4m + +  2 2m +  

3rR  3 2 / 4m +  3 1 1/ 4m + +  3 2m +  3 2 3 / 4m + +  
 

Segmentation identities are given by 

.34)1(00)1(
,240
,1400 

,4000 

33
0
2313

0
3222

0
12

31
0
2111

302010

+=++++++++

+=++++++

+=++++++

=++++++

mmRmRmRm
mmRmRmRm

mmRmRmRm
mmRmRmRm

 

Clearly the equisegmentation property is satisfied by the Vinning Method for r = 0, 1, 2 but 
not for 3=r . 

 
Method 11 (Shao Method)  It is surprising that the method proposed by Shao ([13], 1976, 
pp.174-175) is the only method in the literature that enjoys the equisegmentation property.  
 
a) If the sample size is divisible by 4, the quartiles can be easily determined.  When a 

quartile is located between two values, the mid point of these two values is considered to 
be the quartile. 

b) If the sample size is not divisible by 4, the quartiles can easily be determined in three 
steps: 
(1) If the sample size is even, 1Q  is the median obtained from the lower 50% values of 

the sample. 



 

  

(2) If the sample size is odd, 1Q  is the median obtained from the lower 50% values of the 
sample after having discarded the median of the complete sample. 

(3) Locate 3Q  by the methods stated in (1) and (2) except that the upper 50% of the 
values of the sample are used in the process. 

 
The ranks for different sample sizes provided by this method are tabulated below: 

 
 mn 4=  14 += mn  24 += mn  34 += mn  

irR  0=r  1=r  2=r  3=r  

rR1  4/2+m  4/2+m  1m +  1m +  

rR2  2 2 / 4m +  2 1m+  4/212 ++m 2 2m+  

rR3  4/23 +m  4/213 ++m  3 2m+  3 3m +  

Segmentation identities are given by 
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Observe that the equisegmentation property is satisfied by this method for any value of r . 
 
4. Suggested Methods 
 

We discuss below two methods namely the Halving Method and the Remainder Method 
each of which satisfies the equisegmentation property.  

 

4.1 The Halving Method 
 
We observe that Method 7 guarantees the equisegmentation property if the median of the 

whole data set is always ignored in the calculation of the lower and upper quartiles.  Method 
1 with this kind of adjustment will hereinafter be called the Halving Method (Joarder [3]).  

 
Example 4.1  We calculate below the quartiles of the data in Example 2.1 by the Halving 
Method. The rank of the median is 5.52/)1(22 =+= nR  so that 

22 (5.5) (5) (6)(1 0.5) 0.5 0.5(3.9) 0.5(4.7) 4.3 Q x x x= = − + = + = . 
 

The first quartile is the median of the observations below the median of the whole sample, i.e. 
32/)51(12 =+=R  so that 12 (3) 2.Q x= =   The third quartile is the median of the 

observations above the median of the whole sample i.e. 82/)106(32 =+=R  so that 

32 (8) 7.6Q x= = .   
 
 



 

To check the equisegmentation property, we show the position of the quartiles by downward 
arrows in the sample:  
 
               ⇓           ⇓          ⇓      

1.7    1.9    2.0    2.8    3.9    4.7    6.2    7.6    12.1    29.3 
 

We observe that there are )(2 m=  observations in each of the four segments, i.e. the 
quartiles do satisfy the equisegmentation property.  The ranks for different sample sizes 
provided by this method are tabulated below: 
 

 4n m=  4 1n m= +  4 2n m= +  4 3n m= +  
irR  0r =  1r =  2r =  3r =  

1rR  2 / 4m +  2 / 4m +  1m +  1m +  

2rR  2 2 / 4m +  2 1m +  2 1 2 / 4m + +  2 2m +  

3rR  3 2 / 4m +  3 1 2 / 4m + +  3 2m +  3 3m +  

 
It may be remarked here that the first quartile is the median of the smallest n/2 observations if 
n is even, and that of the smallest ( 1) / 2n −  observations if n is odd.  Similarly the third 
quartile is the median of the largest n/2 observations if n is even, and that of the largest 
( 1) / 2n −  observations if n is odd.  
 
4.2 The Remainder Method  
 

We observe that each of the ranks 10R  and 30R  given by the Halving Method is 
smaller than that given by the Remainder Method by 4/1 .  We also observe that the ranks 
of the quartiles given by the Popular Method satisfy the equisegmentation property if the rank 
is rounded down for )1,2( == dr  and rounded up for )3,2( == dr .  A special kind of 
rounding applied to the ranks provided by the Popular Method for quantiles of even order has 
been discussed by Joarder [4].  The ranks obtained this way, called the Remainder Method, 
satisfy the equisegmentation property. 

 
Let ][u  be the largest integer not exceeding u , and u⎡ ⎤⎢ ⎥  the smallest integer 

exceeding u .  Again let ( 1) / 4iru u i r= = +  and ( 1) (mod 4)iri r d+ = .  Then we have the 
following theorem. 

 
Theorem 4.1  Let 44  ,4/)( ≥+=−= rmnrnm , and irR  be the rank of the i th quartile 
with m  observations in each segment.  Then the ranks given by  
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⎪
⎩

⎪
⎨

⎧

∉+
>∈+
≤∈+

=
)c1.4(                                                  ),( if           
)b1.4(                                 ,2 and ),( if        
)a1.4(                                 ,2 and ),( if         ][

Adruim
dAdruim
dAdruim

R
ir

ir

ir

ir  



 

  

where   and ri are integers with 31 ≤≤ i  and 30 ≤≤ r , and {( , ) : 2,  1,3}A r d r d= = = , 
satisfy the equisegmentation property.  Adr ∉),(  If , then the quartiles can be calculated by 
the simple linear interpolation as   

)1][(])[(  )4/( )4/1( +++ +−= uimuimir xdxdQ , 

where )(ix  is the ith ordered observation.  
 
Example 4.2  Let us now calculate the quartiles for the sample in Example 2.1 by the 
Remainder Method. Here 2)2(410 +==n  i.e. 2,  2m r= = . Since 4/34/)12(112 =+=u  
(i.e. 2,  3 2)r d= = > , the rank of the first quartile is 12 121( ) 2 3/ 4 3R m u= + = + =⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥  (see 
4.1b).  Again since 4/214/)12(222 +=+=u  (i.e. 2,  2 2)r d= = ≤ , the rank of the second 
quartile is 5.54/21)2(2)(2 2222 =++=+= umR  (see 4.1 c).  Finally since 4/)12(332 +=u  

4/12 += (i.e. 2,  1 2)r d= = ≤ , the rank of the third quartile is ][)(3 1232 umR +=  
8]4/1[26 =++=  (See 4.1a). So the quartiles are 12 (3) 2.0Q x= = ,  

22 (5) (6)(1 0.5) 0.5 (3.9 4.7) / 2 4.3R x x= − + = + = , and 32 (8) 7.6R x= = . 
 
To check the equisegmentation property, we show the position of the quartiles by downward 
arrows in the sample:  

1.7    1.9    2.0     2.8    3.9    4.7   6.2    7.6    12.1    29.3
⇓ ⇓ ⇓

             

We observe that the equisegmentation property is satisfied here with 2=m .  The ranks of 
the quartiles for different sample sizes given by the Remainder Method are tabulated below: 
 

 4n m=  4 1n m= +  4 2n m= +  4 3n m= +  
irR  0r =  1r =  2r =  3r =  

1rR  1/ 4m +  2 / 4m +  1m +  1m +  

2rR  2 2 / 4m +  2 1m +  2 1 2 / 4m + +  2 2m +  

3rR  3 3 / 4m +  3 1 2 / 4m + +  3 2m+  3 3m +  

 
The Halving Method as well as the Remainder Method satisfies the equisegmentation 

property.  It is worth noting that in each of the two methods the value of )4( rmnr +=  is 
the number of quartiles with integer ranks.  The Shao Method, however, doesn’t have 
algebraic expression for the ranks and hence may not be suitable for using it or generalizing it 
to other quantiles.  Though the Halving Method is the simplest one and satisfies the 
equisegmentation property, it seems to be difficult to generalize the notion to quantiles in 
general.  Note that the Remainder Method for quartiles happens to be the Popular Method 
with arithmetic rounding for outer quartiles when 2=r .  The Remainder Method is 
generalized to quantiles of even order by Joarder [4].  



 

It remains open to check the equisegmentation property for samples with ties.  Finally it 
is worth remarking that for a sample of large size, the empirical cumulative distribution 
function may be used to calculate sample quartiles (Mendenhall et al. [10], Section 15.1.1) or 
Ross, S. (1987, Section 4). 
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A Comparison and Contrast of 
Some Methods for Sample Quartiles 

 
Anwar H. Joarder and Raja M. Latif 

King Fahd University of Petroleum & Minerals 
 
There are about a dozen methods to find sample quartiles. The emergence of so many 
methods is due to non-rigorous definition of quartiles. In this talk we probe the issue, and 
suggest a new criterion of equisegmentation to determine quartiles. The existing methods 
have then been checked in the light of this criterion and found that only Shao Method satisfies 
it. Two new methods have been proposed and illustrated.  


