KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS DEPARTMENT OF MATHEMATICAL SCIENCES
 DHAHRAN, SAUDI ARABIA

STAT 319: PROBABILITY \& STATISTICS FOR ENGINEERS \& SCIENTISTS

Major Exam No. II, Fall Semester (042)
Time: 0730-0900 pm, Tuesday $5^{\text {th }}$ April, 2005
Instructors: Anwar Joarder, Musawar Malik, Mohammad Omar, Ibrahim Rahimov, Essam AlSawie

Serial \#
Surname:
ID\#
Section \#

You are allowed to use electronic calculators and other reasonable accessories that help write the exam. Try to define events, formulate problem and solve.

1. Do not keep your mobile with you during the exam, turn off and leave it aside.
2. Write your name, ID number, Section, and serial number (optional) on the cover page.
3. Check that the exam paper has $\underline{8} q u e s t i o n s ~ a n d ~ 6 ~ p a g e s . ~$
4. You can only ask questions if you feel there is any mistake in the exam needing announcement for correction.

Q	Full Marks	Marks Obtained	Strengths/ Weakness
1	7		
2	7		
3	9		
4	4		
5	5		
6	4		
7	4		
Total	40		

1. Suppose that the lifetime of a certain kind of emergency backup battery (in hours) is a random variable with mean 300 hours. Assume that the lifetime of a battery follows exponential distribution.
(a) What is the probability that such a battery will last more than 300 hours?
(b) What lifetime is exceeded by 5% of the batteries? [$4+3=7$ Marks]
2. If 5% of the memory chips made in a certain plant are defective, what is the probability that
(a) in a lot of 10 randomly chosen chips for inspection exactly 5 will be defective?
(b) the first defective chip will be inspected in the $4^{\text {th }}$ trial?
(c) the first defective chip will be inspected on or before the $3^{\text {rd }}$ trial? $[3+2+2=7$ Marks $]$
3. If a 1 -gallon can of paint covers on the average 513.3 square feet with a standard deviation of 31.5 square feet, what is the probability that
(a) a 1-gallon can of paint will cover more than 565.1175 feet assuming that the coverage area by a 1 -gallon can of paint follows a normal distribution?
(b) the mean area covered by a sample of 36 of these 1 -gallon cans will be more than 521.93625 square feet? [$4+5=9$ Marks]
4. The number of errors per 1000 lines of computer code is described by a Poisson distribution with a mean of five errors per 1000 lines of code. What is the probability of eight errors in 2000 lines of computer code? [4 Marks]
5. Suppose that the silicon wafers used in making a particular microcircuit have a final chip that contains 95% non-defectives. A sample of 36 chips is taken. What is the probability that at most 6 of them are defectives? [5 Marks]
6. The number of trucks arriving to be unloaded at a receiving dock is a Poisson Process with average number of trucks arrived per hour is 3 . What is the probability that time between arrivals of successive trucks will be at least $\mathbf{0 . 8}$ hour? [4 Marks]
7. A quality control inspector accepts shipments whenever a sample without replacement of size 5 contains no defectives and he rejects otherwise.
(a) What is the probability that he will accept a ("bad") shipment of 50 items containing 20% defectives? [2 Marks]
(b) What is the probability that he will reject a ("good") shipment of 100 items in which only 2% are defective? [2 Marks]

FORMULAE FOR STAT 319

C. Discrete Probability Distributions

C.0a $\quad \mu=E(Y)=\sum y p(y), \quad(p 89)$
C.0b $E\left(Y^{2}\right)=\sum y^{2} p(y), \sigma^{2}=E(Y-\mu)^{2}=E\left(Y^{2}\right)-\mu^{2},(p 96)$

	Probability Density function $p(x)$	Mean (μ) and Variance (σ^{2})
C. 1	The Binomial Distribution: $B(n, p)$ (p119) $\begin{aligned} & f(y)=\binom{n}{y} p^{y}(1-p)^{n-y}, \quad y=0,1, \ldots, n, \\ & \text { where }\binom{n}{y}=\frac{n(n-1) \ldots(n-y+1)}{y!} \end{aligned}$	$\begin{aligned} & \mu=E(Y)=n p \\ & \sigma^{2}=V(Y)=n p(1-p) . \end{aligned}$
C. 2	The Hypergeometric Distribution (p128) $f(y)=\frac{\binom{K}{y}\binom{N-K}{n-y}}{\binom{N}{n}}, y=0,1, \ldots$	$\mu=E(Y)=n(K / N)$
C. 3	The Poisson Distribution (p136) $f(y)=\frac{e^{-\lambda t}(\lambda t)^{y}}{y!}, y=0,1, \ldots$	$\begin{aligned} & \mu=E(Y)=\lambda t \\ & \sigma^{2}=V(Y)=\lambda t \end{aligned}$

D. Continuous Probability Distributions

For a continuous random variable Y with $\operatorname{pdf} f(y)$
$D .0 \quad \int_{-\infty}^{\infty} f(y) d y=1 ; P(a<Y<b)=\int_{a}^{b} f(y) d y ; P(Y \leq u)=\int_{-\infty}^{u} f(y) d y$
$D .0 a \quad \mu=E(Y)=\int_{-\infty}^{\infty} y f(y) d y, \quad(p 89)$
$D .0 b \quad E\left(Y^{2}\right)=\int_{-\infty}^{\infty} y^{2} f(y) d x, \quad \sigma^{2}=E(Y-\mu)^{2}=E\left(Y^{2}\right)-\mu^{2}, \quad(p 96)$

	Probability Density function	Mean and Variance
D. 1	The Normal Distribution: $N\left(\mu, \sigma^{2}\right)$	Mean $=E(Y)=\mu$ Variance $=V(Y)=\sigma^{2}$
D.2	The Exponential Distribution $f(y)=\frac{1}{\beta} e^{-y / \beta}, 0<y$	Mean $=E(Y)=\beta$ Variance $=V(Y)=\beta^{2}$
D.3	Waiting Time Distribution $f(t)=\lambda e^{-\lambda t}, 0<t$	Mean $=E(T)=1 / \lambda$ Variance $=V(T)=1 / \lambda^{2}$
D.4	The Gamma Distribution $f(y)=\frac{1}{\beta^{\alpha} \Gamma(\alpha)} y^{\alpha-1} e^{-y / \beta}, 0<y, 0<\alpha, 0<\beta$	Mean $=E(Y)=\alpha \beta$ Variance $=V(Y)=\alpha \beta^{2}$

E. Sampling Distributions

E. 1 Suppose that Y has a distribution with mean μ and variance σ^{2}. Additionally if the distribution is normal then $\frac{\sum Y-n \mu}{\sqrt{n \sigma^{2}}}=\frac{\bar{Y}-\mu}{\sqrt{\sigma^{2} / n}}=Z$.
E. 2 Suppose that Y has a distribution with mean μ and variance σ^{2}. However if the distribution is not normal but $n \geq 30$, then $\frac{\sum Y-n \mu}{\sqrt{n S^{2}}}=\frac{\bar{Y}-\mu}{\sqrt{S^{2} / n}} \approx Z$ (p210). This is known as Central Limit Theorem. Note that σ^{2} is estimated by s^{2} (SLLN).
E. 3 The Student t statistic is defined by $T=\frac{\bar{Y}-\mu}{S / \sqrt{n}}$, with $v=n-1$ (p220)
E. 4 The Sampling Distribution of the Proportion (p258)

$$
\frac{Y-n p}{\sqrt{n p(1-p)}}=\frac{Y / n-p}{\sqrt{p(1-p) / n}} \approx Z
$$

