SOLUTIONS

King Fahd University of Petroleum & Minerals Department of Mathematics & Statistics STAT-212-Lab-Exam

Name:				ID:	Serial:				
An economist from a major east coast bank has collected on major cities in the US. You are to develop an estimate of a multiple regression model that would allow you to predict the Labor Market Stress Index (Y), based on the other variables X1: 1995 populations X2: Growth 1990-1995 X3: 1998 unemployed X4: SAT City X5: SAT suburb X6: 1998 incomes X7: 998 White-collar Use the following correlation matrix, answer 1 and 2:									
001		, , , , , , , ,	~J, ~ 4 , ~J	, , , , , , , , , , , , , , , , , , , ,					
X1	Y 0.099 0.582	Xl	X2	Х3	X4	X5	X6		
X2	-0.133 0.462	0.072 0.692							
Х3	-0.528 0.002	0.228 0.201	-0.098 0.588						
X4	-0.022 0.905	0.011 0.954	0.395 0.023	-0.142 0.429					
X5	-0.065 0.721	0.003 0.986	0.231 0.197	-0.085 0.639	0.903 0.000				
Хб	0.188 0.295	0.272 0.125	-0.353 0.044	0.116 0.520	-0.026 0.884	0.053 0.768			
X7	0.193 0.282	0.643 0.000	0.080 0.659	0.082 0.650	0.030 0.870	0.055 0.760	0.191 0.288		

1. The number of independent variables that are significantly correlated with Y = 1

(Which is x3)

2. The number of independent variables that are significantly correlated with X5 = 1

(Which is x4)

2

Using the best subset regression, answer questions 3 and 4: Best Subsets Regression: Y versus X1, X2, X3, X4, X5, X6, X7

Response is Y

			Mallows		Х	Х	Х	Х	Х	Х	Х
Vars	R-Sq	R-Sq(adj)	Cp	S	1	2	3	4	5	б	7
1	27.9	25.6	2.3	9.7577			Х				
1	3.7	0.6	12.8	11.277							Х
2	34.2	29.8	1.6	9.4762			Х			Х	
2	33.5	29.1	1.9	9.5250			Х				Х
3	38.0	31.6	1.9	9.3575			Х			Χ	Х
3	37.8	31.4	2.0	9.3700		Х	Х				Х
4	39.9	31.3	3.1	9.3737		Х	Х			Х	Х
4	39.8	31.2	3.1	9.3792			Х		Х	Х	Х
5	41.0	30.1	4.6	9.4594		Х	Х		Х	Х	Х
5	40.5	29.5	4.8	9.4978	Х	Х	Х			Х	Х
б	42.0	28.6	6.2	9.5549		Х	Х	Х	Х	Х	Х
б	41.5	28.0	6.4	9.5988	Х	Х	Х		Х	Х	Х
7	42.4	26.3	8.0	9.7111	Х	Х	Х	Х	Х	Х	Х

3. Find the number of independent variables in the best model.3

(Which are: X₃, X₆, and X₇)

Justify your answer: Because it has the highest R²- adjusted and smallest Standard error S ϵ

4. the coefficient of determination for the best model

R²**= 38.0%**

3

Using the multiple regression model with all the independent variables and answer 5 to 14

Regression Analysis: Y versus X1, X2, X3, X4, X5, X6, X7

Predictor	Coef	SE Coef	Т	P	VIF
Constant	104.74	25.58	4.10	0.000	
X1	0.0000056	0.0000137	0.41	0.684	1.915
X2	-0.4360	0.4539	-0.96	0.346	1.556
Х3	-7.088	1.915	-3.70	0.001	1.103
X4	0.00687	0.01084	0.63	0.532	7.022
Х5	-0.008158	0.009617	-0.85	0.404	6.244
Х6	0.0005357	0.0005879	0.91	0.371	1.308
Х7	0.0007415	0.0008266	0.90	0.378	1.750

S = 9.71114 R-Sq = 42.4% R-Sq(adj) = 26.3%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	7	1736.40	248.06	2.63	0.035
Residual Error	25	2357.66	94.31		
Total	32				

- 5. The intercept of the model = 104.74
- 6. The slope of $X_3 = -7.088$
- 7. $S_{b5} = 0.009617$
- 8. The test statistic for testing the significance of $X_3 = -3.70$

9. The p-value for the significance test of X₇ = 0.378

- **10.** The variance inflation factor for $X_4 = 7.022$
- 11. $S_e = 9.71114$
- **12.** $R^2 = 42.4\%$
- 13. SST = SSR+SSE=1736.40+2357.66=4094.06
- 14. The p-value for the significance test of the overall model : 0.035
- **15.** Do you think that there is any colinearity between any of the independent variables? Explain.

Yes, because the VIF value for X_4 and X_5 is more than 5