SOLIUTIONS

King Fahd University of Petroleum & Minerals Department of Mathematical Science

STAT-211-Term042-II

	Qu1z #5	Section:
Name:	ID:	Serial:
•		

Question One (5-Points)

Write <u>True</u> if the statement is true or <u>False</u> if not:

- 1. The probability of success in the binomial distribution may change during trails: False
- 2. The mean and the standard deviation of a Poisson random variable are equal: False
- 3. Trails in the hyper geometric distribution are dependent: True
- 4. The values of any normal distribution extends from $-\infty$ to ∞ : True
- 5. In the uniform distribution all intervals of equal length have the same probability: **True**

Question Two (5-Points)

- 1. If the ratio of defective items in a shipment is 20%, a sample of size five is taken randomly with replacement, then the probability of at least one defective item is:
 - a. 0.32768
- b. 0.67232
- 0.5904
- d. 0.4096
- 2. The number of a customers in a certain bank follow a Poisson distribution with an average of five customers per hour, then the probability of three customers in 30 minutes is:
 - a. 0.8596
- b. 0.1404
- c. 0.2138
- d. 0.7862
- 3. In a certain group there are 5 management, 4 finance, and 3 economic students, if a sample of size 3 is randomly taken without replacement, then the probability that there are one from each topic is:
- b. $\frac{1}{22}$ c. $\frac{2}{11}$ d. $\frac{3}{11}$

- 4. The yearly incomes for a group of 20,000 professional people is normally distributed with mean $\mu = $60,000$ and standard deviation $\sigma = 5000 . Then the number of these people have a yearly income over \$70,000 is:
 - a. 912
- h 10228

c. 228

- d. 456
- 5. If X is uniformly distributed over the interval [-2, 3], the $P(X \le 0)$ is:
 - a. 0.6

d. 0

NOTE: you may use One of the following areas, where

z ₀	0.2	0.5	1.5	2.0	2.2	2.25
$P(0 < Z < z_0)$	0.0793	0.1915	0.4332	0.4772	0.4861	0.4878