SOLUTIONS

King Fahd University of Petroleum & Minerals

Department of Mathematics & Statistics

Math101-Term072-Quiz-One

Name:

Q.1. Find a number δ such that |f(x)-3| < 0.02 whenever $0 < |x+2| < \delta$, where f(x) = 2x + 7

$$|2x + 7 - 3| < 0.02$$
 whenever $0 < |x + 2| < \delta$

$$|2x + 4| < 0.02$$
 whenever $0 < |x + 2| < \delta$

$$2 | x + 2 | < 0.02$$
 whenever $0 < | x + 2 | < \delta$

$$|x + 2| < \frac{0.02}{2} = 0.01$$
 whenever $0 < |x + 2| < \delta$

Choose δ =0.01 (4-Points)

Q2.Let $f(x) = \begin{cases} a+bx, & \text{if } x > 2 \\ 3, & \text{, if } x = 2 \end{cases}$ Determine the values of constants a and b so that f(x) is $b-ax^2$, if x < 2

continuous at x = 2

$$f(x)$$
 is continuous at $x = 2 \Rightarrow \lim_{x \to 2^{-}} f(x)$ exist $\Rightarrow \lim_{x \to 2^{-}} f(x) = f(2)$ and $\lim_{x \to 2^{+}} f(x) = f(2)$

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} (b - a x^{2}) = b - 4a = 3 \cdot \cdot \cdot \cdot \cdot (1)$$

$$\lim_{x \to a^{-1}} f(x) = \lim_{x \to a^{+}} (a + b \ x) = a - 2b = 3 \cdot \dots \cdot \cdot \cdot (2)$$

From equation (1)b = 3 + 4a and substitute it in equation (2) to get

$$a+2(3+4a)=3 \Rightarrow a+6+8a=3 \Rightarrow 9a=-3 \Rightarrow a=-\frac{1}{3}$$

$$b = 3 + 4\left(-\frac{1}{3}\right) = 3 - \frac{4}{3} = \frac{5}{3}$$
 (6-Points)

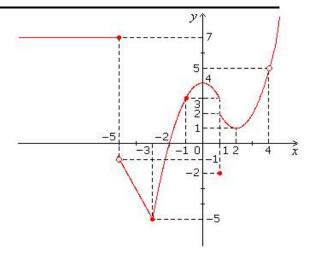
Q.3consider the following graph of the function y = f(x).

Answer the following: (5+3+2=10-Points)

a.
$$\lim_{x \to 0} f(x) = 7$$

b.
$$\lim_{x \to 0} f(x) = -1$$

b. c.
$$\lim_{x \to 0} f(x) = 3$$


$$\lim_{x \to -5^{-}} f(x) = 7$$
b.
$$\lim_{x \to -5^{+}} f(x) = -1$$
c.
$$\lim_{x \to 1^{-}} f(x) = 3$$
d.
$$f(1) = -2$$
e.
$$f(4)$$
 undefined

f. The discontinuity points are:

When
$$x = -5$$
, $x = 1$ and $x = 4$

g. Which one of the discontinuity points is **removable**? Why?

$$x = 4$$
, because $\lim_{x \to 4} f(x) = 5$ exist

