SOLUTIONS

King Fahd University of Petroleum & Minerals Department of Mathematics & Statistics - Math101-Term072-Quiz4-A				
Name:	ID:	Sec.:	Serial:	
Q.1 Find the point on	the curve $f(x) = \cosh(x)$ for which the	he tangent	line is parallel to the l	ine
y = x + 5				
$f'(x) = \sinh(x)$, the tangent is parallel to the line $\Rightarrow m_1 = m_2 \Rightarrow m_1 = 1$				
$\sinh(x) = 1 \Longrightarrow x = \sinh^{-1}(1) = \ln(1 + \sqrt{2})$				
$y = \cosh\left(\ln\left(1+\sqrt{2}\right)\right) = \sqrt{2}$	$\sqrt{2}$, so the point is $\left(\ln\left(1+\sqrt{2}\right),\sqrt{2}\right)$		(2-Points)	

Q2. If a snowball melts so that its surface area decreases at a rate of $1 \ cm^2 / min$. find the rate at which the diameter decreases when the diameter is $10 \ cm$ (NOTE: *Surface Area* = $4 \ \pi \ r^2$) Let S: the surface area. X: the diameter (2, radius = 2,r)

Let S: the surface area, X: the diameter (2. radius

$$\frac{dS}{dt} = -1cm^2 / \min. X = 2r \Rightarrow r = \frac{X}{2} \quad (1-\text{Point})$$

$$S = 4\pi r^2 = 4\pi \left(\frac{X}{2}\right)^2 = 4\pi \frac{X^2}{4} = \pi X^2$$

$$\frac{dS}{dt} = 2\pi X \frac{dX}{dt} \quad (1-\text{Point})$$

$$-1 = 2\pi (10) \frac{dX}{dt} \quad (1-\text{Point})$$

$$\Rightarrow \frac{dX}{dt} = \frac{-1}{20\pi} cm / \min. (1-\text{Point})$$

Q3. Find the linearization L(x) of the function $f(x) = \sqrt[3]{x}$, a = -8, and use it to approximate $\sqrt[3]{-9}$

$$f(x) = \sqrt[3]{x} \implies f(a) = f(-8) = -2$$

$$f(x) = x^{\frac{1}{3}} \implies f^{\vee}(x) = \frac{1}{3}x^{-\frac{2}{3}} \implies f^{\vee}(a) = f^{\vee}(-8) = \frac{1}{3}(-8)^{-\frac{2}{3}} = \frac{1}{3(-8)^{-\frac{2}{3}}} = \frac{1}{3\sqrt[3]{(-8)^{2}}} = \frac{1}{12}$$
 (1-Point)

$$L(x) = f(a) + f^{\vee}(a)(x-a) = -2 + \frac{1}{12}(x+8) = -\frac{4}{3} + \frac{1}{12}x$$
 (2-Point)

$$\sqrt[3]{x} \approx L(x)$$

$$\sqrt[3]{-9} \approx L(-9) = -\frac{4}{3} + \frac{1}{12}(-9) = -\frac{25}{12} = -2.083$$
 (1-Point)