Chapter 10
Numerical Methods for Ordinary Differential Equations 

10.1 Direction Fields 
10.2 Euler Methods
10.3 Runge-Kutta Methods 

10.4 Picard's Method of Successive Approximation 

10.5 Exercises

A differential equation may or may not have a solution. Even if it has a solution, that is, by one method or the other we prove the existence of its solution but we may not be able to exhibit it in explicit or implicit form. Therefore, in such cases we have to be content with an approximate value of the solution. In this chapter we discuss the concept of direction field, which provides general pattern of the solution, Euler methods, Runge-Kutta methods, and Picard's method of successive approximation for finding approximate solution of a differential equation of order one. In Euler and Runge-Kutta methods the solution values are approximated by a table of members. In Picard's iterative methods the solution is approximated by a sequence of functions. 

10.1
Direction Fields 
Consider the first-order equation 


[image: image1.wmf]dx

dy

 = f (x,y)







(10.1)

This equation specifies the slope of the graph of any of its solutions at every point (x,y), where f(x,y) is defined. Therefore, if f(x,y) is defined at (x0,y0), the slope of the integral curve (a curve obtained by giving particular value to the constant in the general solution) through this point is f(x0,y0).

For example if we are given 
[image: image2.wmf]dx

dy

=x+2y, then the slope of the integral through (3,-5) is -7.
Figure 10.1 A lineal element

To visualize the slope of the integral curve at (3,-5) we draw a short line, called lineal element, with a slope of -7 through this point. 

Figure 10.1 shows a typical lineal element with a slope of f(x0,y0) through the point (x0,y0).

A set of lineal elements for a differential equation is called a direction field  for the differential equation. Visually the direction field suggests the appearance or shape of a family of solution curves of the differential equation, and consequently it may be possible to see at a glance certain qualitative aspects of the solutions, for example regions in which a solution exhibits an unusual behaviour. There are computer software which can sketch directional fields very efficiently. 

10.2 Euler Methods 

Given the initial-value problem 


[image: image3.wmf]dx

dy

= f(x,y), y(x0) =y0





(10.2)

Defined on the interval x0 ( x ( x0+h, then at x1=x0+h the approximate value  of y(x0+h), denoted by y1, is given by 

y1=y0 +h f(x0,y0)






(10.3)

y2=y1+hf(x1,y1)
....................

....................,

yn+1=yn+h f(xn,yn)

The recursive use of 10.3 yields the y-coordinates y1,y2,......  of points on successive tangent lines to the solution curve at x1, x2, x3..........
or xn = x0+nh, where h is a constant and is the size of the step between xn and xn+1. The values y1,y2,y3.......  approximate the values of a solution y(x) of the initial-value problem (10.2) at points x1, x2, x3,- - -.  Although (10.3)  is quite simple and one is tempted to use it but approximate solution obtained by its application gives a crude result, that is, error between the approximate solution y=(y1,y2, y3.......) and y(x) is quite large. This method of finding approximate solution is called Euler's method. 
In order to minimize the error between the solution of (10.2) and its approximate solution, the following method was developed which is known as the improved Euler's method. 

Improved Euler's method 

The approximate solution Yn = (y1, y2, y3,.........,yn) is defined by 

yn+1=yn+ h 
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(10.4)

where y*n+1 = yn +h f (xn,yn)




(10.5)

It is clear that in improved Euler's method the slope at (x0,y0) is replaced with the average of this slope and that computed at the end of the interval; that is, at (x0+h,y(x0+h)) as computed in Euler's method. Thus improved Euler's method is nothing but Euler's method with the slope replaced by an average slop.
Figure 10.2 and Figure 10.3 respectively, exhibit the components in Euler's and improved Euler's methods.
Figure 10.2
Figure 10.3
Figure 10.3 depicts the improved Euler method as it would be used to make an estimate over a single interval. Of course, a given interval can be partitioned into n subintervals and the improved Euler's method applied sequentially over each subinterval. We then state the improved Euler's method in terms of an iterative process.
For a better understanding of Euler's method, let us consider the solution curve given in Figure 10.2. Let the dashed line AB denote the solution curve through the point (x0,y0). Line segment AC, which is tangent to the solution curve at (x0,y0) has a slope equal to f (x0,y0). The exact value of y at x0+h is represented by BE, and the value of y1 by CE. From the figure
y1 = CE = DE + CD = y0 + h f (x0,y0)

The error in using y1 to approximate y (x0+h) is represented by BC.
For a proper understanding of improved Euler's method let us consider Figure 10.3 depicting the components on the interval [x0, x0 +h]. Let y denote the exact value of the solution at x0+h. Let yt denote the estimate of y  obtained by the Euler's method along the tangent line through (x0,y0). Let y1 be the estimate of y obtained by proceeding along the line through (x0,y0) with slope M = 
[image: image5.wmf]2
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 [f (x0,y0) + f(x1, yt)]
The Improved Euler's Method can be elaborated as:

Given the initial-value problem


[image: image6.wmf]dx

dy

 = f(x,y), y (x0)=y0
for a fixed constant value h the value of y(xn + h) can be approximated by the formula








 yn+1 = yn + h M






(10.6)

where

M = 
[image: image7.wmf]2

1

 [f(xn, yn) + f (xn+1, yt)]




(10.7)

and

yt = yn + h f(xn,yn)






(10.8)
The formula for percentage error is

% Error = 
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Remark 10.1
 For (10.2) the question of how close the Euler approximation yi is to the exact solution y(xt) can be answered if f(x,y) is continuously differentiable in a rectangular region Q in the plane. Then, if the solution curve y(x) of the initial value problem lies in Q over the interval [x0,xt] it can be shown that there exists a positive constant M such that the error is lass than or equal to Mh; that is,
error = | y(xt)-yi | ( Mh, i = 1,2,3,........, n

where h = (xt-x0)/n, y (xt) is the value of the true solution at xt = x0+n h, and yi is the corresponding Euler approximation.

Truncation Errors for Euler's Method
Let y1,y2, ...... be values of sequences as generated in (10.3). In general the value y1 will be different with the exact solution evaluated at x1, namely y(x1) because the algorithm gives only a straight line approximation to the solution, see Figure 10.4

Figure 10.4

The error between y1 and y(x1) say | y1-y(x1) | (distance between y1 and y(x1)) is called the local truncated error, formula error or descritization error. It occurs at each step; that is, if we assume that yn is accurate, then yn+1 will contain local truncation error.
For derivation of a formula for the local truncation error for Euler's method we use Taylor's remainder formula. This states that for a function y(x) having (k+1) derivatives that are continuous on an open interval containing a and x,
 y(x) = y(a)+y'(a) 
[image: image9.wmf]!
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where c is some point between a and x.

Setting k = 1, a = xn, and x=xn+1 = xn+h, we get 
y(xn+1)=y(xn)+y'(xn) 
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or y(xn+1)= 
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(10.9)

By Euler's method (10.3), (10.9) is nothing but with an additional term y"(c) 
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The value of c is unknown (it exists theoretically) and so exact error cannot be calculated, but an upper bound on the absolute value of the error is
K
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Remark 10.2  While discussing errors arising in numerical methods notation o(hn) is used. Let E(h) denote the error in a numerical calculation  depending on h. E(h) is said to be or order hn, denoted by o(hn), if there exists a constant K and positive integer n such that E(h)|(Khn for h sufficiently small. 

Thus the local truncation error for Euler's method is o(h2). We observe that, in general, if E(h) in a numerical method is of order hn and h is halved, then error is approximately K
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; that is, the error is reduced by a factor of 
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Example 10.1

Approximate the solution of the n.nn

initial-value problem 
y'=2x + y, y(0) = 1

on the interval 0(x( 0.4 by using four equal subintervals. Calculate the percentage error in the approximation for y(0.4).

Solution: Dividing the interval [0,0.4] into four equal parts, we get 
h=
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Using f(x,y) =2x+y and x0 =0, y0 =1, the required computation is conveniently arranged in Table 10.1

Table 10.1 Euler's Method for y'=2x+y,y(0)=1

	xn
	yn
	yn+0.1(2xn+yn) = yn+1

	0
	1.0
	1.0+0.1[2(0)+1.0]=1.1

	0.1
	1.1
	1.1+0.1[2(0.1)+1.1]=1.23

	0.2
	1.23
	1.23+0.1[2(0.2)+1.23]=1.39

	0.3
	1.39
	1.39+0.1[2(0.3)+1.39]=1.59

	0.4
	1.59
	


It is not difficult to check that the exact solution of the given equations is y = 3ex -2x -2. The solution curve is shown in Figure 10.5 along with its approximation by straight-line segments. 

The approximate value of y(0.4), obtained from Table 10.1 is 1.59. 

Figure 

Figure 10.5

Example 10.2 Use the improved Euler method with h=0.4 to estimate y(0.4) if 

y'=2x+y,y(0)=1

Solution: By the Euler method with h=0.4 we obtain an estimate for y(0.4) of 1.4. 
By equation y1=y0 +h f (x0, y0) for x0=0,y0=1, and h=-0.4

we get 

y1= 1.0+0.4 [2(0)+1.0]=1.4

Thus 


y1=1.4 is the approximate value.

This corresponds to yt in the improved Euler method. Therefore 

M= 
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[f(0,1)+f(0.4,1.4)] = 
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1

[2(0)+1)+(2(0.4)+1.4)]=1.6

The value of M is now used in y1=y0+hM. Thus 

y1=1+0.4(1.6) = 1.64

is the estimate of y(0.4). The percentage error is about 2.1%. The percentage error for the Euler method is 16.4%.

Example 10.3 shows that the improved Euler method can be applied to a number of subintervals to reduce the error. 

Example 10.3

Use the improved Euler method with h=0.1 to estimate y(0.4), if y'=2x+y, y(0)=1. Compare the result with y(0.4)=1.6755.

Solution: The computations are shown in Table 10.2

Table 10.2 The Improved Euler Method 

	xn
	yn
	y​t =yn +0.1(2xn+yn)
	M=
[image: image25.wmf]2
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[(2xn+yn) +(2xn+1+yt)]
	yn+1=yn +0.1M

	0
	1
	1.1
	1.15
	1.115

	0.1
	1.115
	1.247
	1.481
	1.263

	0.2
	1.263
	1.429
	1.846
	1.448

	0.3
	1.448
	1.653
	2.250
	1.673

	0.4
	1.673
	
	
	


Compared to the exact value of 1.6755, the percentage error is about 0.1% that the percentage error using the Euler method with h=0.1 is 5.4%.

10.3 The Runge-Kutta Method 

 The improved Euler method can be further refined by replacing the average slope at two points with a slope that is the weighted average of f(x,y) at four points within the interval. This refinement in the improved Euler method improves the order of approximation from h2 to h4. This refinement was carried out by two German mathematicians C.D.T. Runge (1856-1927) and M.W.Kutta (1867-1944) using the Taylor series  expansion with remainder of function y(x).
The method developed by these two mathematicians presented below and its components shown in figure 10.6 is known as the Runge-Kutta Method. 
Figure 10.6  The Runge-Kutta Method

The four slopes indicated in the figure are 

m1=f(x0,y0) [This is the slope at (x0,y0)]

m2=f(x0+
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h,y0 +
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 hm1) [The slope at the midpoint of the interval along the line connecting (x0,y0) and (x0+h,y0+hm2)]
m3=f(x0+
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h, y0 +
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h m2) [the slope at the midpoint of the interval along the line connecting (x0,y0) and (x0+h,y0 +h m2)]

m4 =f(x0+h,y0+m3) [The slope at (x0+h,y0+h m3)]

Runge-Kutta Method: 

Given the initial-value problem 


[image: image30.wmf]dy

dx

=f(x,y), y(x0)=y0

for a fixed, constant value of h; y(xn+h) can be approximated by 

yn+1=yn+
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where

m1 = f(xn,yn)

m2 = f(xn+ 
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m3 = f(xn+ 
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The Range-Kutta method is very accurate for values of h<1.

Example 10.4
Use the Runge-Kutta method to estimate y(0.4) if

y' = 2x + y, y(0) = 1

Solution     In using the Runge - Kutta formulas, we note that f(x,y) = 2x + y, x0 = 0, and y0 = 1. Choosing h = 0.4, we have

m1 = [2(0) + 1] = 1.0
m2 = [2(0 + 0.4/2) + (1 + 0.4(1.0)/2)] = 1.6

m3 = [2(0 + 0.4/2) + (1 + 0.4(1.6)/2)] = 1.72
m4 = [2(0 + 0.4) + (1 + 0.4(1.72))] = 2.488

Hence

y(0.4) = 1 + 
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(0.4)[1.0 + 2(1.6) +2(1.72) + 2.488]


= 1.675

Example 10.5

A certain chemical reaction takes place such that the time-rate of change of the amount of the unconverted substance q is equal to -2q. If the initial mass is 50 grams, use the Runge-Kutta method to estimate the amount of unconverted substance at t = 0.8 sec.

Solution
The initial-value problem is


[image: image38.wmf]dt

dq

 = -2q,q(0) = 50

Using h = 0.8 in the Runge-Kutta formulas, 
m1 = -2(50) = -100
m2 = -2[50 + 0.8(-100)/2] = -20

m3 = -2[50 + 0.8(-20)/2] = -84

m4 = -2[50 + 0.8(-84)] = 34.4

Therefore our estimate of the mass of unconverted substance at t = 0.8 is q(0.8) = 50 + 
[image: image39.wmf]6

1

(0.8) [-100 + 2(-20) + 2(-84) + 34.4] = 13.5 g

Remark 10.3 (i) Since the first equation in the Runge-Kutta method is nothing but a Taylor polynomial of degree 4, the local truncation error for this method is
y(5)(c) 
[image: image40.wmf]!
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and the global truncation error is thus 0(h4). In view of this Runge-Kutta method is often called fourth-order Runge-Kutta Method. In this analogy Euler's method is called the first order Runge-Kutta method and improved Euler's method is called the second-order Runge-Kutta method.
(ii)
As we have observed the accuracy of a numerical method can be improved by decreasing the step size h. Of course, this enhanced accuracy is usually obtained at a cost-namely, increased computation time and greater possibility of round of error. In general, over the interval of approximation there may be subintervals where a relatively large step size suffices and other subintervals where a smaller step size is necessary in order to keep the truncation error within a desired limit. Numerical methods that use a variable step size are called adaptive methods.
10.4 Picard's Method of Successive Approximation

Let us consider the initial-value problem(10.2):

y'=f(x,y), y(x0)=y0 

We can show that finding solution of (10.2) is equivalent to finding the solution of the integral equation: 

y=y0+ 
[image: image41.wmf]ò

x

0

x

dt

))

t

(

y

,

t

(

f







(10.10)

To show that (10.2) and (10.10) are equivalent, let y=( (x) be a solution of (10.2); that is, 
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(10.11)

and ((x0)=y0
Since ((x) is a differentiable function in some neighborhood of x0,
 f(x, ((x)) is a continuous function of x in some neighborhood of x0. Thus it is integrable in this neighborhood of x0. Now, if we integrate (10.11) between xo and x, we get 
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( (x) =( (x0)+ 
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or ( (x) = y0 + 
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which shows that ( (x) is a solution of (10.10)
Conversely let ( (x) be a continuous solution of (10.10), then 

( (x) = y0 +
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(10.12)

(10.12) implies that 

( (x0) = y0 +
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j

0

x

0

x

dt

))

t

(

,

t

(

f

= y0
Differentiating (10.12) with respect to x we get 
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by the fundamental theorem of calculus, since f(t,( (t)) is a continuous function of t due to continuity of f and ( in some domain. Thus ( (x) satisfies initial value problem (10.2).
Picard's Method of Successive Approximation 

y1(x)= y0 + 
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y2(x)=y0 +
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yn+1(x)= y0 + 
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Example 10.6

Find the Picard approximations y1,y2, y3 to the solution of the initial value problem y'=y, y(0) =2

Use y3 to estimate the value of y (0.8) and compare it with the exact solution. 

Solution: Let y0 =2, the value of y1 is 

y1=2+ 
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y2 = 2+
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 EMBED Equation.3  [image: image55.wmf]3

1

x3
At x= 0.8

y3=2+2(0.8)+(0.8)2+
[image: image56.wmf]3
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(0.8)3

=4.41

The solution of the initial-value problem, found by separation of variables, is y=2ex. At x=0.8

y=2e0.8=4.45

10.5 Exercises 
Apply the Euler method to approximate the indicated value of the solution function. 

1.

y' = x+y , y(0) =1, Find  y(1) ,using  h=.1

2.

y' = 1-y,  y(0) =0, Find y(.3), using h=.1
3.

y' =  x3+y, y(0) =1.  Find y(0.02) , using h=.01

4.

y'= 
[image: image57.wmf]x
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, y(0) = 1. Find y(0.1),using h=.02

5.

y' = x2+y , y(0) = 1, Find y (0.02),using  h = .01


Apply the improved Euler method to approximate the     indicated   value of the solution function in problems 6-8.

6. y' = x2+y , y(0) =1, Find y(0.02), using h = .01

7. y' = x+y , y(0)=1, Find y(0.3), using h=.1

8. y' = x+y2 , y(0) =1, Find y(0.5), using h=.1

9. Solve y' = y -
[image: image58.wmf]y
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, y(0) =1, h=.1 for 0(x(.2 

using   (i) Euler's method 

(ii) Improved Euler's method 

10. An object that is hotter than the air around it will lose heat to its surroundings. The temperature of such an object is described by

                  

[image: image59.wmf]dt

dT

 = -0.3(T+10), T(0) = 100.

Use the improved Euler method with h = 0.1 to estimate the temperature of the object at t = 4.0 sec.

11. The electric current in a series RL circuit is described by


[image: image60.wmf]dt

di

2

 + 10i=2t,  i(0)=0

Use the improved Euler method to estimate the current at t = 0.8 sec. assuming h = .2.

12. Find a bound for the local truncation errors for the Euler method applied to 
[image: image61.wmf]dx

dy

 = 2xy,y(1)=1.

13. Apply the improved Euler method to obtain the approximate value of y(1.5) for the solution of the initial-value problem 
[image: image62.wmf]dx

dy

= 2xy,y(1)=1. Compare the results for h=0.1 and h=0.05

14. Use the Runge-Kutta method with h=0.2 to estimate the solution of y'=
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, y(0)=1 on the interval [0,0.4]

Given the initial-value problems in Problems  16-19, use the Runge Kutta method with h=0.1 to obtain four decimal-place approximation to the indicated value.
15. Use the Runge – Kutta method with h = 0.1 to obtain an   approximation to y(1.5) for the solution of y'=2xy, y(1)=1.
Given the initial-value problems in Problems  16-19, use the Runge Kutta method with h=0.1 to obtain four decimal-place approximation to the indicated value.
16.  y' = x2-y , y(0) =1; y(0.1), y(0.2)

17.  y' = x2+y2 , y(1) = 1.5 ; y(1.2)

18.  y' = x+y2 , y(0) =1; y(0.2)

19.  y'=3x+ 
[image: image64.wmf]2

y

, y(0) =1; y(0.2)

20. Use Runge Kutta method to find on approximate value of y, when x=0.2 given that y' = x+y and y(0) =1.

21. Using Picard's approximation, obtain a solution upto fifth approximation of the equation y'=y+x, y(0)=1. Compare your answer by finding exact solution. 

22. Solve y'=y, y(0)=1 by Picard's method & compare the solution with exact solution. 
23. Use Picard's method to obtain a solution upto 3rd order approximation of the equation y'=1+y2. y(0)=0.
Use Picard's approximation method to find the indicated value for the following problems:

24. y'=x-y, y(0)=1; y(0.2)  (upto 5th approximation)

25. y'=x+y2, y(0) =0; y(.1) (upto 3rd approximation)

26. y'=x+y, y(0)=1, y(0.2) ( upto 3rd approximation)
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