Chapter 7
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7.1 Series Electrical circuit

7.2 Falling Bodies

7.3 The shape of a Hanging cable. The power line problem

7.4 Diabetes and glucose Tolerance Test

7.5 Rocket Motion

7.6 Undamped and Damped motion
7.7 Exercises


In this chapter we discuss solutions of second order linear differential equations representing LCR series electrical circuit, falling bodies with or without resistance, the shape of a hanging cable, diabetes and glucose tolerance test, curve of pursuit, rocket motion, damped and free damped motion.
7.1
Series Electrical Circuit
Every electrical circuit has three passive elements, called inductor, resistor, and capacitor that behave to impede the flow of current,  the change in current, or the change in voltage. These three constants are denoted respectively by L,R and C.
If i(t) denotes current in the LRC series electrical circuit shown in Figure 7.1 then the voltage drops across the inductor, resistor, and capacitor are 
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 By Kirchhoff’s second law, the sum of these voltages equals the voltage E (t) impressed on the circuit; that is,
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(7.1)
But the charge q(t) on the capacitor is related to the current i(t) by i = 
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, and so (7.1) becomes the linear second-order differential equation
L
[image: image5.wmf]2

2

dt

q

d

+ R
[image: image6.wmf]dt

dq

 + 
[image: image7.wmf]C

l

q (t) = E (t) 



(7.2)
Figure 7.1             LCR Series Circuit
If E (t) = 0, the electrical vibrations of the circuit are said to be free. Since the auxiliary equation (7.2) is Lm2+ Rm + 
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(7.3) 
there will be three forms of the solution with R(0, depending on the value of the discriminant R2- 
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 The circuit is called
(i) Overdamped  if R2  - 
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(ii) Critically damped if R2-
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(iii) Underdamped if R2-
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It may be observed that in each of these three cases the general solution of (7.2) contains the factor e-Rt/2L, and so q(t)(0 as t((. In the underdamped case q(0)=q0, the charge on the capacitor oscillates as it decays; in other words, the capacitor is charging and discharging as t((.
When E(t) = 0 and R=0, the circuit is called the undamped and the electrical vibrations do not approach zero as t increases without bound; the response of the circuit is simple harmonic. 

It is clear that roots of the auxiliary equation (7.3) are 
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Case (i) If R2- 
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>0 then the general solution of (7.2) is of the form 

y(x)=c1em1x+c2em2x (See equation (5.16)).
Case (ii) 
If R2- 
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 then m1=m2 and the general solution is of the form  y(x)=c1em1x+c2xem1x (See equation (5.17)).
Case (iii) If R2-
[image: image17.wmf]C

L

4

 <0 then (7.3) has complex roots of the form m1=(+i( and m2=(-i( , (= 
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and the general solution is of the form
y(x) = e(x (c1cos ( x +c2 sin (x)    (See
(5.18))
Example 7.1  Find the charge q(t) on the capacitor, and the current i(t), for any t>0 if inductance L=1, Resistance R=300, capacitance C=5x10-5 and at t=0 the switch is closed to a 40-volt battery.  Furthermore it is assumed that q(0) = i(0)=0.

Solution :  This LRC electrical circuit is represented by (7.2) 

where L=1, R=300, C=5x10-5, E(t)=40

and so q(t) is the general solution of the nonhomogeneous linear differential equation with constant coefficients. 
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q= 40

subject to q(0)= i(0)=0

The auxiliary equation is 

m2+300m+20000=0

having roots 

m1= - 100, m2 = - 200

Since g(t) is constant, a particular solution is of the form qp = A so 
20000 A=40   or A=2x10-3=0.002 
(Apply the method of undetermined coefficients for finding a particular solution). 

q(t) = c1 e -100t+c2e-200t+0.002

q(0)=c1e-100x0 +c2e-200x0+0.002

0= c1+c2+0.002

i(t) = 
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= - 100c1e-100t-200c2e-200t
0=i(0)= -100c1-200c2 or c1+2c2=0

Therefore c1=  - 0.004 and c2 = 0.002.

This gives q(t) = 0.002(-2e-100t+e-200t+1)

i(t) = 0.4 (e-100t-e-200t). 

Example 7.2 Find the charge on the capacitor in an LRC series circuit at t=0.01s when L=0.05 henry , R=2(, C=0.01F, E(t)=0 V, q(0)=5 coulomb,  and i(0)=0. Determine the first time at which the charge on the capacitor is equal to zero. 
Solution: The model for LRC series circuit is 
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q(t) = E(t)
where L= .05, R=2, C=.01, E(t)= 0, 

and i(0)=0. The auxiliary equation is 
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m2+40m+2000=0

Roots are m = 
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m1= -20+i40, that is, (= - 20, (= 40

m2= -20-i40

In view of equation (5.18)

q(t)=e-20t (c1 cos 40t +c2 sin 40 t)

The initial conditions q(0)=5 and q'(0)=0

imply 5=e-0(c1cos 0 +c2 sin 0)

or 
c1= 5 and 

q'(t) = - 20e-20t(c1cos 40t +c2 sin 40t)+e-20t(-40c1 sin 40t + 40c2 cos 40t) 

q'(0)=0= -20(c1)+1 (40c2)=0 
or -c1+2c2=0. Since c1=5 we have
2c2=5  or  c2= 
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 Thus q(t)=e-20t(5 cos 40t + 
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and q (0.01) ( 4.5676 Columbus. 
The charge is zero for the first time when 

40t+1.1071 = ( or t ( 0.0509 seconds. 

7.2 Falling Bodies 

The motion of a falling body (say, a rock) without any resistance except the force of gravity is described by the equation 
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(7.4)

where s(t) denotes the position of the rock relative to the ground at time t, and g is the acceleration due to gravity. The minus sign is used in (7.4) as the weight of the rock is a force directed downwards, which is opposite to the positive direction. If the height of the place from where rock is tossed is s0 and the initial velocity of the rock is  vo, then s is determined from the second order initial-value problem
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Integrating twice (7.4) and using the initial condition of (7.5) we get

s(t) = -
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(7.6)

In model (7.4) we have ignored air resistance, However, in many cases it is quite significant such as a feather with low density and irregular shape encounters air resistance proportional to its instantaneous velocity v. It we take, in this circumstance, the positive direction to be oriented downwards, then the net force acting on the object is given by mg-kv. In this case motion of the falling body is modelled by
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where v=
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ds

, m is the mass of the falling body and g is the acceleration due to gravity.
Example 7.3


Suppose a Cannon ball weighing 16 pounds is shot vertically upwards with an initial velocity v0 = 300 ft/s. Find a) the velocity at any time t. b) the maximum height attained by the cannon ball. (ignore air resistance)

Solution: a) Taking the positive direction as upwards, the required equation is 
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Integrating, we get   
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From v(0) = 300, we find c = 300, so the velocity is   v(t) = -32t + 300.

b)
Integrating again and using s(0) = 0, we get 

s(t) = - 16 t2 + 300t.

The maximum height is attained when v=0 that is at t=9.375.

The maximum height is s (9.375) = 1406.25 ft
7.3 The shape a Hanging Cable. The power line problem 

Figure 7.2(a)






Figure 7.2(b)

Suppose a flexible cable is hung from two points A and B as shown in Figure 7.2(a) & 7.2(b). Assume that the vertical loading (its weight and any external forces) cause the cable to take the shape shown in the figure 7.2b with its lowest point P1 and any arbitrary point P2. Three forces are acting on the wire namely, weight of the segment P1P2 and tension T1 andT2 in the wire at P1 and P2, respectively. If w is the linear density of the wire (measured, say, in kg/meter) and s is the length of the segment P1P2 then its weight is ws. We resolve T2 into vertical and horizontal components; T2 sin ( and T2 cos (  are respectively vertical and horizontal components. Thus 
T2cos (=T1 and T2 sin ( = ws

These two equations imply that 

tan ( = 
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Differentiating this equation with respect to x we get
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Since the arc length between P1 and P2 is given by

s = 
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 EMBED Equation.3  [image: image50.wmf]dx

dx

dy

1

2

÷

ø

ö

ç

è

æ

+



[image: image51.wmf]dx

ds

 = 
[image: image52.wmf]2

1

2

dx

dy

1

÷

÷

ø

ö

ç

ç

è

æ

÷

ø

ö

ç

è

æ

+


Therefore
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(7.8)
The solution of (7.8) will provide the shape of a hanging cable.
Example 7.4
Find the solution of the initial-value problem
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y(0)= 
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, y'(0)=0
Solution: If we substitute u=y' then the given differential equation takes the form 
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Separating variables, we get


[image: image63.wmf]2

1

2

)

u

1

(

du

+

 = 
[image: image64.wmf]1

T

w

dx
By integrating both sides we obtain


[image: image65.wmf]ò
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y’ (0) = 0 is equivalent to u(0) = 0.

Thus

sin h-10 = 
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or 
c1 = sinh-10 = 0.

This implies that
u = sinh 
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Integrating both sides we get

y = 
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By initial condition 

y(0) = 
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(7.9)

The curve given by (7.9) is called a catenary.  The shape of a cable is a catenary under appropriate initial conditions. The word catenary has been derived from Latin word catena meaning chain. Shape of transmission lines, telegraph cables and cables of suspension bridges are of the catenary form. 

7.4 Diabetes and Glucose Tolerance Test 

Percentage of sugar in the blood is an important factor in the metabolism of human body. Excessive deviation of percentage of sugar from normal concentration leads to severe dysfunction and causes deadly diseases leading to death. Diabetes mellitus is a disease which is characterized by percentage of sugar deviating from the normal value. Diabetes is diagonized by means of a glucose tolerance test (GTT). The following differential equation of order 2 in quite relevant in this problem.
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(7.10)
where g = G – Go, H=H-Ho,
G and H denote respectively the sugar concentration and the net effective hormonal concentration. Go and Ho denote respectively the equilibrium values of G and H at the beginning of the GTT. ( and w0 are appropriate constants.
Studies of normal and mildly diabetic persons showed that (2- wo2 <0. Therefore, the sugar concentration in normal or mildly diabetic persons during GTT will be given by the solution of (7.10) which can be computed as
g(t) = c e-(t cos (wt-()




(7.11)
where
w2 = wo2 – (2
[The auxiliary equation is

m2 + 2(m + wo2 = 0
The roots are m1= -(+
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. The general solution is of the form 
g(t)=ce-(tcos (wt-().] Constants (, wo, and ( are  experimentally determined.

7.5 Rocket Motion 

We have seen in Section 7.2 that the differential equation of a free-falling body of mass m near the surface of the earth is given by 

m 
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where s represents the distance from the surface of the earth to the object and the positive direction is considered to be upward. In other words, the underlying assumption here is that the distance s to the object is small when compared with radius R of the earth; stated differently, the distance y from the centre of the earth to the object is approximately the same as R. If, on the other hand, the distance y to an object-such as a rocket or a space probe- is large compared to R, then we can derive a differential equation in the variable y by using Newton’s second law of motion and his universal law of gravitation. 

Suppose a rocket is launched vertically upward from the ground. If the positive direction is upward and air resistance is ignored, then the differential equation of motion after fuel burnout is 

m
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(7.12)

where k is a  constant of proportionality, y is the distance from the centre of  the earth to the rocket, M is the mass of the earth, and m is the mass of the rocket. 
To determine k we use the fact that when y=R, kMm/R2=mg or k=gR2/M. Thus (7.12) becomes 
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Example 7.5 Solve equation (7.12). Find the approximate value of the constant of integration if the velocity of the rocket at burnout is v=vo (vo is often called escape velocity) and y is approximately equal to radius of the earth at that instant. 

Solution:  We are required to solve 
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Separating variables and integrating we get
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Setting v=v0 and  y=R we find 
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7.6 Undamped and Damped Motion
Figure 7.3
Let us consider a spring of natural (outstretched) length L and spring constant k. The constant quantifies the stiffness of the spring. The spring is suspended vertically. An object of mass m is attached at the lower end, stretching the spring d units past its rest length. The object comes to rest in its equilibrium position. It is then displaced vertically a distance yo units (up or down), and released, possibly with an initial velocity (see Figure 7.3). We are interested in having a mathematical model (second-order linear differential equation) enabling us to analyze this physical phenomenon. Let y(t) be the displacement of the object from the equilibrium position at time t. For the sake of convenience choose y = 0 in the equilibrium position. Choose down as the positive direction. It may be noted both choices are arbitrary. Let us consider forces acting on the object. Gravity pulls it down with a force of magnitude mg. By Hooke's law, the force the spring exerts on the object has magnitude -ky. At the equilibrium position, the force of the spring is -kd, negative as it works upward. If the object is pulled downward a distance y from this position, an additional force -ky is exerted on it. Thus the total force on the object due to the spring is -kd-ky.
The total force due to gravity and the spring is mg-kd-ky.

Since at the equilibrium point (y=0) total force is zero, mg=kd. The net force acting on the object due to gravity and the spring is -ky

By Newton’s second law of motion

m
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where w2=
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Equation (7.14) is said to describe free undamped motion or simple harmonic motion.

Let us consider those forces which retard or damp out the motion such as air resistance or viscosity of the medium in which spring is suspended (say in a fluid such as oil). A standard assumption arising from experiment, is that the retarding forces have magnitude proportional to the velocity y'. Thus, for some constant c called the damping constant, the retarding forces have magnitude cy'.  The total force acting on the object due to gravity, damping, and the spring itself therefore has magnitude -ky-cy'. Therefore, by Newton's second law of motion
my"= - cy'-ky

or 
y"+
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where 2(= 
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Equation (7.15) is said to describe free damped motion  or (7.15) is called the equation of free damped motion. 

Finally, there may be a driving force of magnitude F1(t) on the object. Now the total external force acting on the object has magnitude

G(t) = - ky-cy'+F1(t)

By Newton's second law of motion 

my" = - ky-cy'+F1(t).

y"+
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(7.17)

or 
y"+2(y'+w2y=F(t)





(7.18)

where 2(= 
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Equation (7.18) is called equation of forced damping motion or simply equation of driven or forced motion

Resonance
In the absence of damping, an interesting phenomenon called resonance can occur. Suppose c=0 but there is a periodic driving force F1(t) = A coswt.  Now equation (7.17) takes the form 
y"+
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 y(t) = c1 cos(wot)+ c2 sin (wot) + 
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where wo = 
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. This number is called the natural frequency of the spring system and is a function of stiffness of the spring and mass of the object, while w is the input frequency  and is contained in the driving force. The general solution assumes that the natural and input frequencies are different. Of course, the nearer we choose the natural and input frequencies, the larger the amplitude of the cos (wt) term in the solution. 

Let us consider the case where input and natural frequencies are the same. Now the differential equation is 
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(7.21)
The function given in (7.20) is not a solution of (7.21).

The general solution yh of the homogeneous linear equation 

y"+w2y=0

is given by 

yh(t) = c1 cos(wot) +c2 sin (wot)
wo = w = 
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A particular solution of (7.21) is 

yp(t) = at cos (wot) + bt sin (wot)

where a = 0 and b = 
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The general solution of (7.21) is 

y(t) = c1 cos (wot) + c2 sin (wot)+ 
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The solution differs from that in the case w(wo in the factor of t in yp(t). In view of this, solutions increase in amplitude as t increases. This phenomenon is called resonance. 

As a special case c1 = c2 = wo=1 and 
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we have the general solution 

y(t) = cost + sint +t sin t 




(7.22)

The graph of (7.22) given in Figure 7.4 clearly shows increasing magnitude of the oscillations with time. 
Figure 7.4 
Resonance
While there is always some damping in the real world, if the damping constant is close to zero compared to other factors, such as the mass, and if the natural and input frequencies are (nearly) equal, then oscillations can build up to a sufficiently large amplitude to cause resonance – like behaviour and damage a system. This can occur with soldiers marching in step across a bridge. If the cadence of the march (input frequency ) is near enough to the natural frequency of the material of the bridge, vibrations can build up to dangerous levels. This has actually happened and has caused disaster once in England in 1831 when a bridge collapsed. More recently, the Tacoma Narrows Bridge in Washington experienced increasing oscillations and collapsed. 

Auxiliary equation of (7.15) is

m2+2(m+w2=0

The roots of this equation are 
m1 = - ( +
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,m2 = - ( -
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Case (i) Let (2-w2>0. In this case the system is said to be overdamped  since the damping coefficient c is large when compared to the spring constant k. The corresponding solution of (7.15) is 
y(t) = e-(t(c1e
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This equation represents a smooth and nonoscillatory motion. 

Case (ii) Let (2-w2=0. The system is this case is called critically damped since any slight decrease in the damping force would result in oscillatory motion. The general solution of (7.15) is y(t)=e-(t(c1+c2t).

Case (iii) (2-w2<0. In this case the system is called underdamped  since the damping coefficient c is small compared to the spring constant k. 

As in Section 5.5 specially (5.18) we have m1=- ( + 
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 i, 
m2 = -  (-
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 i and the general solution of (7.15) is 
y(t) = e-(t(c1 cos 
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The motion described by this solution is oscillatory; but because of the coefficient e-(t, the amplitudes of vibration 
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Example 7.6 Find the solution of the second order differential equation (7.14) describing free undamped motion 

Solution  The auxiliary equation of (7.14) is m2 + w2=0.

Its roots are complex m1=iw, m2 = - iw. 

As in (5.18) the general solution is y(t) = c1 cos wt+c2 sinwt 
  (7.22)
The period  of free vibrations described by (7.22) is T= 
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, and the frequency is f = l/T = 
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. (7.22) can be converted to a simpler form
y(t) = A sin(wt+()





(7.23)
where A = 
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 and ( is a phase angle defined by
sin ( = 
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implying tan ( = 
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RHS of (7.23) can be written as

A sin wt cos ( + A cos wt sin (
= (A sin () cos wt + (A cos () sin wt


(7.24)
If ( is defined by
sin ( = 
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then (7.24) becomes

A
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 cos wt + A
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  sin wt = c1 coswt +c2 sinwt
=y(t)

Example 7.7  An 8lb weight stretches a spring 2 feet. Assuming that a damping force numerically equally to 2 times the instantaneous velocity acts on the system, determine the equation of motion if the weight is released from the equilibrium position with an upward velocity of 3 ft/s.

Solution:  By Hooke's law 8=2k or k=4lb/ft 

and W=mg gives m=
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=
[image: image157.wmf]4

1

. The differential equation of motion is 
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or 
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The auxiliary equation is 

m2+8m+16=0

or 
(m+4)2=0, so 

m1=m2= - 4. Hence the system is critically damped and 

x(t)=c1e-4t+c2te-4t, (see Section 5.5).

Applying the initial conditions 

x(0) = 0 and x'(0)= - 3, we find that 

c1=0 and c2= -3. Thus the equation of motion is x(t)= - 3te-4t.

Example 7.8 A 4lb weight is attached to a spring whose spring constant is 16lb/ft. What is the period of simple harmonic motion?
Solution: 
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Here k=16,m=
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The differential equation of motion is 
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The auxiliary equation is 

m2+128=0

m=
[image: image169.wmf]±
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x=c1 cos 
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t+c2 sin 
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Example 7.9 A 4lb weight stretches a spring .5 ft.An external force equal to 
[image: image174.wmf]2

1

 cos 8t is acting on the spring. Solve the equation of motion of the weight is started from its equilibrium position with an upward velocity of 4 feet/s.
Solution: The spring constant is k=
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=8 and the mass is m=
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=
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. Therefore the differential equation of the system is 
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 x" +8x=
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cos 8t.

or 
x"+64x=4cos 8t

The complementary solution is 

xc=c1 cos 8t+c2 sin 8t:

(Auxiliary equation is m2+64=0; roots are m1=8i and m2= - 8i, (=0, (=8. By equation (5.18) we have the complementary solution). By the method of undetermined coefficients.

We write a particular solution xp as 

xp=t (A cos 8t+B sin 8t) so that 

x'p= A cos 8t+B sin 8t+t(-8A sin 8t+8B cos 8t)

and 

x"p = -16A sin 8t+16B cos 8t-t(64 Acos8t +64B sin 8t).

Substituting these values in the differential equation obtained in the beginning and equating coefficients of like terms we get 

A=0, B=
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, so 

xp=
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t sin 8t.

Hence 

x=c1 cos 8t+c2 sin 8t+
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 t sin 8t

and
x' = - 8c1 sin 8t+8c2 cos 8t+
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 sin 8t+
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 t. 8cos 8t

By using initial conditions

x(0)=0 and x'(0)=-4, we get 

0=c1 and -4=8c2 or c2 = - 
[image: image185.wmf]2
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.

Therefore 

x=
[image: image186.wmf]4

1

(t-2) sin 8t  is the desired solution.

7.7 Exercises 
Series Electrical Circuit 

1. Find the charge on the capacitor in an LRC series circuit when L=
[image: image187.wmf]4

1

H, R=20 ( , C=
[image: image188.wmf]300

1

F, E(t)=0V, q(0)=4c, and i(0)=0A. Is the charge on the capacitor ever equal to zero?

Find the ​charge q(t) and the current i(t) for series electrical circuits indicated below. 
Assume q(0)=i(0)=0 and consistent units. 

2. R=200, L=1, C=10-4, E(t)=3, t ( 0

3. R= 17,000. L=6, C=
[image: image189.wmf]12

1

x10-6, E(t)=96(3-t); 0 ( t ( 36.
4. If the resistance in an electrical circuit is close to zero, the term for resistance is ignored and the circuit is named LC circuit.  Find  the expression for q(t) and i(t) in an LC circuit if L=1, C = 
[image: image190.wmf]9

1

 and E (t) = 10 sin t. Assume q (0) = i(0)=0.
In each problem 5 through 7, use the information to find the current in the LRC electric circuit, assuming initial current and capacitor charge as zero.

5. R = 200 (, L=0.1 H, C=0.006F, E(t) = te-tV
6. R = 150 (, L=0.2 H, C=0.05F, E(t) =1-e-tV

7. R = 450 (, L=0.95H, C=0.007F, E(t) = e-t sin2 (3t)V

Falling bodies
8.
Solve the initial-value problem  
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= -g, s(0) =100, s'(0) = 800.


Give physical interpretation of the solution. 

9.
Solve the differential equation 


m 
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 + k 
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= mg.

where m is the mass of the falling body, g is the acceleration due to gravity and k is a constant of proportionality related to the instantaneous velocity v= 
[image: image194.wmf]dt

ds

. Explain the physical meaning of the general solution. 
State of Hanging cable 

10.

Figure 7.5
Show that the cables of the suspension bridge shown in Figure 7.5 hang in the shape of a parabola if they support a flat roadway of constant linear density: that is, 
[image: image195.wmf]dx

dw

=k. Assume the weight of cables is negligible. 

11.
Solve the initial-value problem 
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y(0)=5 and y'(0)=0

Diabetes and Glucose Tolerance Test

12. Show that all solutions of equation (7.10) tend to zero as t increases without bound.

13. Find the response of GTT model (equation 7.10) if (=wo, g(0)=1, and g'(0)=0.
Rocket Motion 
14. Use the solution of Example 7.5 to show that the escape velocity of the rocket is given by vo = 
[image: image200.wmf]gR

2


15. In the situation of Exercise 14 find the approximate escape velocity vo.

(Use the values g=32 ft/s2 and R=4000 miles).
Undamped and Damped Motion

16. When an 8-pound weight is suspended from a spring it stretches the spring 2 inches. Determine the equation of motion when an object with a mass of 7 lb is suspended from this spring and the system is set in motion by striking the object an upward blow, imparting a velocity of 4 ft per second.
17. In underdamped motion, what effect does the damping constant c have on the frequency of the oscillations of motion ?

18. A 16-lb weight is suspended from a spring having a spring constant of 50. A force of 9 cos 8t is applied to the spring. If the weight starts from rest in its equilibrium position, find the solution of the equation describing the  motion

19. Describe the output vibration of an undamped mechanical system with k = 4, m = 1, if the external excitation is sin 2t. Assume x(0) = x'(0)=0.
20. A weight of 6 lb is attached to a spring having k = 12. Suppose a force equal to 3cos8t is applied to the spring. Describe the motion if the weight starts from rest at the equilibrium point.

21. A 32 -lb weight is suspended from a spring having k = 9. The applied force varies with time in accordance with 12 cos 3t. If the weight is pulled down 4ft and released describe the ensuing motion.
22. A 16-pound weight stretches a spring 
[image: image201.wmf]3

8

feet. Initially the weight starts from rest 2 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force numerically equal to 
[image: image202.wmf]2

1

 the instantaneous velocity. Find the equation of motion if the weight is driven by an external force equal to f(t) = 10cos3t.

23. A mass of 1 slug is attached to a spring whose constant is 5 Ib/ft. Initially the mass is released 1 foot below the equilibrium position with a downward velocity of 5ft/s, and the subsequent motion takes place in a medium that offers a damping force numerically equal to 2 times the instantaneous velocity.
(a) Find the equation of motion if the mass is driven by an external force equal to f(t) = 12 cos 2t + 3 sin 2t.
(b) Graph the transient and steady-state solutions on the same coordinate axes.
(c) Graph the equation of motion.

24. A mass of 1 slug, when attached to a spring, stretches it 2 feet and then comes to rest in the equilibrium position. Starting at t = 0, an external force equal to f (t) = 8 sin 4t is applied to the system. Find the equation of motion if the surrounding medium offers a damping force numerically equal to 8 times the instantaneous velocity.
25. In Problem 24 determine the equation of motion if the external force is f(t) = e-t sin 4t. Analyze the displacement for t ( (.
26. When a mass of 2 kilograms is attached to a spring whose constant is 32 N/m, it comes to rest in the equilibrium position. Starting at t = 0, a force equal to f(t) = 68e-2t cos 4t is applied to the system. Find the equation of motion in the absence of damping.
27. In Problem 26 write the equation of motion in the form x(t) = A sin (wt +() + Be-2t sin (4t +(). What is the amplitude of vibrations after a very long time?
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