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1. INTRODUCTION

There has been rapid growth in the theory and applications of wavelets
[2, 6] in recent years. An interesting introduction of the wavelets is given by

Daubechies [3]. Kelly et al [4, 5] and Walter [7] have studied the convergence
of wavelet expansions. A comprehensive discussion on two-dimensional
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wavelet expansions incorporating rotation can be found in Antoine et al.
[1]. A detailed account of multidimensional multiresolution analysis is pre-
sented by Wojtaszczyk [8]. In this paper we study the convergence of multi-
wavelet expansion associated with the multiresolution analysis with dilation
matrix. Our theorem is a generalization of Walter’s results. However anal-
ogous results to Theorems 3.4 and 3.7 [4] require further investigation and
will be presented separately. The main theorem of Kelly et al. is analogous
to the famous Carleson result of Fourier series; Fourier series was shown to
converge almost everywhere, but not for all Lebesgue points. In their the-
orcm, pointwise convergence results state that, with few conditions on the
wavelets, a wavelet expansion for a function [ € L,(R?), d = 1, converges
on the Lebesgue set of f. This result is a general form of Walter’s result,
(Theorem 1 and Corollary 1 [7]).

2. MULTIDIMENSIONAL MULTIRESOLUTION ANALYSIS

Let A be any real expansive n x n matrix (equivalently, all eigenvalues
of A are required to have absolute value > 1). A wavelet set associ-
ated with the matrix A, called dilation matrix, is a finite set of functions
Y(z) € Ly(RY), r=1,2,3,...,s such that the system

{Idet AP/2yr(Aiz ~ )} (2.1)

with 7 = 1,2,...,s, j € Z and v € Z? (Z denotes a set of positive
integers) is an orthonormal basis in Ly(R?}. It is a generalization of the
notion of wavelet. By analogy with the one-dimensional case, we may use

the notation: for a function F{yp, ¢, etc.) on R, by F;,, we mean

Fi(z) = [det AP/*F{A’z —~), where j€ Z, and ve Z% -

We shall omit r as there is no ambiguity.
A multiresolution associated with dilation matrix A is a sequence of

closed subspaces {V;};ez of Ly(R?) satisfying
(i -cVyacWcvc--,
(iiy |J V; is dense in L{RY),

j€Z

(i) [ V; = {0}

JEZ
(iv} f € V;if and only if f(Az) € Vjgy, that is, ¥, = U3V,
(v} feVyifand only if f{z —-~) € V; for ally € Z% and
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(vi) there exists a function ¢ € V; called a scaling function such that the
system {@(t —7)}yeze is an orthonormal basis in Vo.

The foliowing results are relevant to our discussion:
THEQOREM A [8, p. 116]. For every multiresolution on R associated with
o dilation matriz A, there ezists an associated wavelet set (consisting of g—1
Junctions, where g = |det A|).

A function F on RY is called r-regular if F is of class o, r=-10,1,...
and
<G
~ (14 el
for each k = 0,1,2,... and each multi-inder o with le| < max(r,0) and
some constant C. As usual, C~! means a measurable function and class
C° means a function,

A multiresolution analysis on R® is culled r-regular if it has an r-reguiar
sealing function.
THEOREM B [8, p. 118]. For every r-regular multiresolution analysis on
R associated with a dilation matriz A, |det A| = g, such that 2 — 1 > d,
there erists an associated wavelel set consisting of g—1 r-regular funclions.
COROLLARY A [8, p- 120]. Assume that we have o multiresolution on Re
associated with a dilation matriz A, |det Al = q. Assume further that this
multiresolution analysis has an 7-regular scaling function p(x} such that its
Fourier transform ¢(s) is real. Then there ezists @ wavelet set associated
with this multiresolution analysis consisting of g — 1 v-regular functions.
THEOREM C [8, p. 136). Supposc A is a dilation matriz such that for
some set of digits S = {k1, ka,. .., k;} a subset of R, Q defined by

aﬂ
BFF(z) (2.2)

o0

Q={zcR*:z=Y A77s; where s; €5} (2.3)

J=1

has measure 1, that is, the characteristic function o of § is o scaling
function of & multiresolution analysis. Then for each natural number r =
1,2,3,... there ezists an r-regular wavelet set (consisting of |det Al — 1
functions) associeted with the dilation matriz A.

FEzamples (8, pp. 127-129L

(i) Let us take d = 2 and the simplest dilation A = 21d. Taking the set of
digits § as {{0,0),(0,1),(1,0),(1,1)}, we get @ = [0,1]*. This clearly
gives scaling function of a multiresolution analysis. Choosing the set

S as

{(0,0),(1,1),(0,1).(1,2)},
we obtain as the set ( the parallelogram with vertices from the set
5. This also gives a scaling function of a multiresolution analysis.
We take S = {{0,0),(1,0),(0,1),(=1,—1)}, then @ will be like the
Sierpinski triangle {see Figure 5.3 in (8, p. 129]}.
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(ii) Let us take d = 2 and the dilation given by the matrix i - . Ge-
ometrically speaking, this dilation is a rotation by 45° and expansion
by the factor v/2. Sirce det A = 2, we obtain one wavelet generating
an orthonormal basis in L,(#?) provided there is a scaling function.
Taking § = {(0,0),(1,0)}, we get Q as the fractal set known as the
‘twin dragon’ [8, pp. 129-130}.

3. WAVELET EXPANSION ASSOCIATED WITH DILATION
MATRIX

Associated with the V; spaces in the definition of multiresolution analysis,
there is the orthogonal complerment of V; in Viy,, denoted by W; such that
Visr = V;@W,. Thus Ly(RY) = L BW,. We define P; and @, = 1 — B
respectively, to be the orthogonal projections onto the spaces V; and W,
with kernels Pi{z,y) and Q,{z,y). By Theorem A there exists an associ-
ated wavelet set consisting of ¢ — 1 functions, where ¢ = |det Al. Coroliary
A guarantees the existence of r-regular wavelet sets. The sequence of pro-
jections {P;f(z)} is called the multiresolution ezpansion of f. The scaling
expansion of f is defined as

fr 2obialdet Afo(Az ) + 5 ay | det Alfh(Afz ) (3.1)
¥

k=7
where
G = [ S@)F(z)dx (3.2)
by = [ F(e)ldet APip( 42 — y)da, (3.3)

and f € Ly(RY).
The wavelet expansion associated with dilation matrix A or multivariable
wavelet erpansion of f is

fo a0 (a)de (3.4)
2¥

where a; , is given in (3.2).
Counsidering convergence in the sense of Ly{ RY), we may write

flt)= ZEaJnFjﬂ(t) {3.5)

and

I

FO) = o bialdet AP p(Ait —7) +3° 5 e Py (1)

k=3 ¥

Si(t) +ra(t). (3.6)
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The function fum € Vi, is, in fact, the projection f onto V,,. It can be written
as

fml@) = [ anle ()t (3.7)
where
gm{z,1) = | det A" 2g(A™z, A™) (3.8)
and
g(z,t) = Solz - Delt—71), 1€ 2, (3.9)

gm (2, t) will be called the reproducing kernel of Vo..

We will use mainly the following results for wavelet expansion given in
(3.4).

“or a scaling function p associated with a dilation matrix considered in
Section 1, the following results hold [8, p. 138].

jgdqo(:c)da: =1 (3.10)
S pls—v) = 1 (3.41)
yezZ¢

() < ﬁw F=1,23,... (3.12)

A sequence 8n(z,y) of functions in L,(R?) is called a quasi-positive delta
sequence if the following conditions are satisfled:
there exists a constant C such that

fRd 6n(z.y)lde < C, forall ye RS, meN (3.133)
there exists a vector ¢ = (¢}, ¢z, ..., c4) > 0 such that
f 8. (z,y)dr — 1 (3.13i)
jr—ewte]

uniformly on compact subset of R as m — oo,
for each r > 0,

sup |8n(x,y)] — 0 as m — oo. {3.1311)
le—yl=r

LEMMA 3.1. The reproducing kernel ga(z,y) of Vi, the multiresolution
analysis associated with a dilation matriz A, is @ quasi-delta sequence.

For the sake of convenience we write the proof for the two-dimensional
case.

Proof of Lemma 3.1. We have
Rl e mf2 Mo AT
[ am(ollde = [ [ det AP ig(A™a, A7y)lde
f_w f_m lg(z, A™y)idx
i j°° j“’ (1+jz~ Amg))*dz=C by (3.12).

b

[TAN
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Thus {3.131) holds.
We can write

y+c e A™(4er) AT (ader) .
[T e = [ ey 2 AT

Am{yp—c1) JA™(w2—cz)

tA™e AT
j f g(z, t)de
! t

—Afcy —A™Mcg

00 oo t— ATy t—ATey
t+A™Mc Ji+A™e —o0 —oa

=1- I] - 12
oo oo 1

cj f dx
raAmey Jepame, L+ (L — z)¥

oo ] 1
c-[A”‘m /”‘cg 1 +Ik ¥ ! !

as m — oo, Similarly, f; — 0 as m — oo. Hence (3.13ii) holds. (3.13iii)
can also be verified by using (3.12).

I

A

I}

h

1A

4. CONVERGENCE THEOREM

In. 1966, Carleson proved the famous Lusin conjecture that the Fourier series
of an arbitrary L2{R) function f converges pointwise almost everywhere to
f. This result was extended by Hunt to L, functions when 1 <p < 2. In
1971, C. Feffeman proved that spherically summed two-dimensional Fourier
series of Ly(R?) functions do not converge in L,(R?)for certain real p. Kelly,
Kon, Raphael [4, 5] have studied the convergence of wavelet expansions in-
dicating the inter-connection between classical results in this area and their
results including those concerning such expansions by Meyer and Walter.

We prove here a theorem on the pointwise convergence of two-dimensional
wavelet expansions associated with a dilation matrix. The proof is also valid
for higher dimensions. More precisely, we prove that a wavelet expansion
associated with a dilation matrix of a continuous function f belonging to
Li{R*) N Ly(R?) converges uniformly on a compact subset. 1t may be ob-
served that this result extends Lemma 1, Corollary 1 and Theorem 1 in
Walter {7}

Relaxation of continuity and weakening of regularity condition on the
wavelet require further investigation on the lines of Kelly, Kon and Raphaet
(3.

THEOREM 4.1. Lel ¢n{z,y) be o reproducing kernel of a multiresolution
analysis associated with o dilation matriz A; and let f € L(R?) be contin-
wous on an open set U in R, then

fmly) = f

[y—ny+n]xR

gmiz, ) f(z)dz — fly} 4.1)
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as m — oo unifermly on compact subsets' of U.
COROLLARY 4.1. Let f € Li(R*) N L,(R?) be continuous on a subset U
and let fm be the projection of f into Vin, then

fom — [ asm — o0,

uniformly on compact subsets of U.
Proof of Theorem 4.1 Let n > 0, then

fl) = [ e @)

* j[y+n.m]xﬂqm(z’ y)f(.’t)dm

[ @@

S OY O LS U [

+1 + =L+hL+h 42
{ [PES XSk ¢4 [—co.y-vn]xR} ! 2 : ( )

Now let K be a compact subset of U, and let V be a closed subset contained
in U containing K. For y € V, choose such that 0 < n < c. Further, we
restrict 5 such that |f{z) - F(y)] < € for y € K and |z —y| < 5. From this
it foliows that

ni<ef lam (2,3 dz (+.3)

[y—nu+n]xR
and

1 € sup lgm(z, )| | fllagmey  wheneverm = My (44

a<l-vl
where M is so large that

sup |gm(z, g}l <e form = M.

n<|z—yl

We choose My > M) so large that

\1 - f qm(m'l y)
[y—m5+n]

This holds because gn(z,y) is a quasi-positive delta sequence and so it
follows by (3.13i).
By (4.3), (4.4) and (4.5), we get

LF(y) = fmlp)] < 1£(y) = Bl el + 1l
- [ o)

te [ lan(amldz + elFl:

< €, whenever m > M. {4.5)

1A

sup |f(¥)le +eC +eliflhh
y€[a,B]

1A
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for m > M,, which gives us the desired uniform convergence on [a, f] and
hence on K. This proves the theorem.
Corollary 4.1 follows from Theorem 4.1 and Lemma 3.1
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