Semester 022

March 26, 2003 Time: 8:00 -

9:15 pm

Serial #:	Student #:
Name:	Section #:

Show all your work. No credits for answers not supported by work

Problem 1. (32 points) Find the limit if it exists. If it is ∞ or does not exist, show why.

- (a) $\lim_{x \to 1} \sqrt[3]{x-1} = 0$
- **(b)** $\lim x|x| = 0$
- (c) $\lim_{x \to 0} (\frac{x^2 1}{x + 1})^3 = 8$ (d) $\lim_{x \to \infty} [\sqrt{x + 1} - x] = \lim_{x \to \infty} {\sqrt{x + 1} - x} = -\infty$

Problem 2. (24 points)

- (a) Find $\lim_{x \to 0} \frac{\sin x}{\sqrt{x}} = 0$ (b) Find $\lim_{x \to 0} \frac{\sin x}{\sqrt{x}} = 0$
- **(b)** Find $\lim_{x\to\infty} \frac{\sin x}{\sqrt{x}} = 0$

(c) Find all vertical and horizontal asymptotes of $f(x) = \frac{x^2 - 1}{(x-1)^2(x-3)}$, if any exists.

Problem 3. (20 points)

- (a) A particle moves on a line such that its position at time t is $s(t) = 3t^2 + t$. Find the average velocity of the particle over the interval [1,3]. Also find the the instantaneous velocity at t = 1.
- (b) Find the set of points where the function is continuous. $f(x) = \frac{x}{\sqrt{2-x}}$
- (c) Use the intermediate value theorem to show that the equation $x^2 x 1 = 0$ has a root between 1 and 2.
- (d) Find all values of c which will make the function f(x) continuous.

$$f(x) = \begin{cases} x+c & \text{if } x \ge 2\\ cx^2-1 & \text{if } x < 2. \end{cases}$$

Problem 4. (24 points)

- (a) Find the equation of the line tangent to the graph of the curve $f(x) = \sqrt{x}$ at (1, 1).
- (b) Use the definition to show that $\lim_{x\to\infty} \frac{1}{x^2} = 0$. If $\in = 0.01$, find the smallest value on N which satisfies the definition of the limit.
- (c) Use the definition of derivative to find f'(2), where $f(x) = \frac{1}{x^2}$.