King Fahd University of Petroleum & Minerals Department of Mathematical Sciences Math654 "Advanced Topics in Algebra" Semester 061 (Fall 2006) Dr. Jawad Y. Abuihlail Take Home Exam (Due: 20.01.2007, 12:30 pm)

<u>Remark</u>: Give self-contained proofs and arguments.

* SET 1 (Solve the following 2 questions)

Q1. Let P be a module over a **commutative ring** R. Show that:

1. P is a *-module if and only if $_{R}P$ is a quasi-progenerator.

2. P is a classical 1-tilting module if and only if $_{R}P$ is a progenerator.

Q2. Give examples of

1. a *-modules that is neither a quasi-progenerator nor classical 1-tilting.

2. a classical 1-tilting module that is not a progenerator.

* SET 2 (Solve any 10 of the following questions)

Q3. Let (R, \mathfrak{m}) be a Noetherian local commutative ring, $M \neq 0$ a finitely generated R-module, $R_1, ..., R_n \in \mathfrak{m}$ an M-sequence and set $M' := M/(R_1, ..., R_n)M$. Show that $\dim(M') = \dim(M) - n$.

Q4. Show that every zero-dimensional Noetherian commutative ring is Cohen-Macaulay.

Q5. every one-dimensional reduced commutative ring (i.e. with no non-zero nilpotent elements) is Cohen-Macaulay. Construct an example of a one-dimensional commutative ring, which is not Cohen-Macaulay.

Q6. Let (R, \mathfrak{m}) be a Noetherian local commutative ring, $x_1, ..., x_n$ an *R*-sequence. Show that *R* is Gorenstein if and only if $R/(x_1, ..., x_n)$ is Gorenstein.

Q7. Show that if R is a Gorenstein commutative ring, then so is the polynomial ring $R[X_1, ..., X_n]$.

Q8. Let R, S be ring, ${}_{S}W_{R}$ a bimodule and Q_{R} an injective module. Show that for every module N_{S} we have

$$\operatorname{Ext}_{S}^{i}(N, \operatorname{Hom}_{R}(W, Q)) \simeq \operatorname{Hom}_{R}(\operatorname{Tor}_{i}^{S}(N, W), Q)$$
 for all $i \geq 0$.

Q9. Let R, S be rings, ${}_{S}V_{R}$ a bimodule, C_{R} an injective cogenerator and $V^{*} := \operatorname{Hom}_{R}(V, C)$. Consider for each M_{R} and N_{S} the *canonical* maps

 ν_M : Hom_R(V, M) $\otimes_S V \to M$ and $\eta_N : N \to \text{Hom}_R(V, N \otimes_S V)$.

Show that:

1. $M \in \text{Gen}(V_R)$ if and only if ν_M is surjective.

2. $N \in \text{Cogen}(V_S^*)$ if and only if η_N is injective.

Q10. Let R be a commutative ring and T a f.g. R-module. Show that the following statements are equivalent:

- 1. $_{R}T$ generates all injective *R*-modules;
- 2. $\sigma[T] := \overline{\operatorname{Gen}(T)} = R \operatorname{-Mod};$
- 3. $_{R}T$ is faithful.

Q11. Let R be a domain, $S \subseteq R \setminus \{0\}$ a multiplicatively closed subset and consider the associated Fuchs-Salce tilting module δ_S . Show that δ_S is a generator in the class of S-divisible R-modules.

Q12. Let R be a domain, $\delta := \delta_{R \setminus \{0\}}$ be the Fuchs tilting module, \mathcal{P}_1 is the class of R-modules with projective dimension at most 1 and \mathcal{DI} is the class of divisible R-modules. Show that the 1-tilting *cotorsion pair* induced by δ is $(\mathcal{P}_1, \mathcal{DI})$ in case:

- 1. R is a Prüfer domain;
- 2. R is a Matlis domain.

Q13. Show that every *n*-tilting module over a von Neumann regular ring is projective.

Q14. Give an example of a direct summand of a tilting module that is not partial tilting (clarify the defect).

Q15. Give a complete description of the tilting modules over \mathbb{Z} .

GOOD LUCK