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In this paper it is shown that reduction from maximal to minimal static, spherical symmetry of
a space-time occurs in only one step reducing the number of independent Killing vector fields
from 10 to 4. Maximal symmetry corresponds only to the de Sitter, anti-de Sitter, and
Minkowski metrics, without reference to the Einstein field equations.

1.INTRODUCTION |

By Noether’s theorem' the symmetries of a Lagrangian
‘imply the existence of conserved quantities. These symme-
tries have been used” to obtain the constants of motion for
the trajectories of freely falling particles in the field of a
gravitating source, e.g.,, in the Schwarzschild, Reissner—
Nordstrom, and Kerr-Newmann geometries. In general rel-
ativity, symmetries are expressed in terms of Killing vector

. fields (or Killing tensor fields, as in the case of the Kerr—

Newmann geometry®). The number of independent Killing
vector fields (K'V’s) is related to the number of generators of
the corresponding symmetry group. Rather than trying to
work out the symmetries of some particular space-time by
group theoretic methods, we work out all possible KV’s for a
static, spherically symmetric space-txme by the process of
elimination.

A Killing vector field is a vector field k relative to whxch
the Lie derivative of the metric tensor g is zero, i.e.,

ZL.g=0. ' , (1)

In a torsion-free space, in a coordinate basis, the Killing
equation reduces to*

 Bapck 8ok + 8ucké =0 - (abec=0,.3). (2)

The number of K'V’s for the de Sitter, anti-de Sitter, and
Minkowski geometries are known to be maximal (10) and
for the Schwarzchild geometry to be minimal (4). A point

~<hat needs to be determined is whether the gaps in the num-
" _ser of KV’s from the maximal to the minimal symmetry for a
static, spherically symmetric space-time can be filled or not.

In this paper we examine this point. We start by considering

the most general static, spherically symmetric line element,
ds* =e"" dt? — " drP — P do* — Psin’ 0dg>.  (3)

The Killing equations are solved for all possible cases. It is
found that there can be either ten or four KV’s for the metric
given by Eq. (3), in general.

The authors have not found any work in recent litera-
ture exactly along the lines followed here. However, there

are two major lines followed that are fairly close to the ap- -

proach taken in this paper. One follows the standard work of
Petrov,” where he considers Einstein spaces, and the other is
the work on exact solutions of Einstein’s field equations, giv-
enby Kramer, Stephani, MacCallum, ang Herlt, for exam-
ple.

) Also the Centre of Basic Science, UGC, Islamabad, Pakistan.

1019 3. Math. Phys. 28 (5), May 1987

0022-2488/87/051019-04802.50

Since we are not dealing with Einstein spaces only, the
work on Einstein spaces does not apply to our consider-
ations. We have replaced the requirement by the conditions
of spherical symmetry and staticity. Thus ours is, in many
ways, a more restrictive assumption. Nevertheless, there are

. many examples of spherically symmetric, static metrics that

do not belong to Einstein spaces.
Of course, all cases considered by us are exact solutions

" of some Einstein field equations. However, the procedure

generally adopted is to deal with given Einstein equations
and determine the symmetry of their exact solutions. We
have reversed the order to deal with a given symmetry and
determine, where possible, the stress-energy tensor for such
asymmetry. This procedure may seem to provide a pointless
approach at first sight. However, our point of view was to
look only at the symmetries obtaining in a space-time, pro-
vided that it is static and spherically symmetric.

Itis instructive to put the work in group theoretic terms.
What we show in our paper is that the maximal symmetry
group of a spherically symmetric static four-dimensional
space-time is one of the three: (a) SO(1,4), (b) SO(2,3), or
(c) SO(1,3) ® R*. Here the R* give the four space-time
translations. Thus the groups are either the de Sitter, anti-de
Sitter, or Poincaré groups. The minimal allowed symmetry
group is SO(3) ® R, where the R gives time translation and
SO(3) the spatial rotations only. The remarkable result is
that there does not exist any group properly containing the
minimal group and properly contained in one of the minimal
groups.

In the next section we explain the procedure adopted for
finding K'V’s. This procedure is applied, in full, to one case in
Sec. III while mentioning the results for all other cases with-
out giving details. Finally, we state our main result in the
form of a theorem in the concluding section.

iil. PROCEDURE ADOPTED

To find the KV’s for the metric given by Eq. (3) we
write the complete set of first-order coupled partial differen-
tial equations obtained by inserting Eq. (3) into Eq. (2).
Now, by differentiating these equations, we can obtain iden-
tities between pairs of equations, leading to first- or second- .
order partial differential equations that are decoupled. We
then solve these differential equations by using the separa-
tion of variables. The separation and integration constants
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