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Curvature collineations of some static spherically symmetric space—timeksl?jare de-
rived and compared with isometries and Ricci collineations for corresponding
space—times. © 1996 American Institute of Physics. [S0022-2488(96)04106-0] .

I. INTRODUCTION

Over the past few years there has been much interest in the classification of solutions of the
Einstein field equations in terms of their isometries. These isometries are given by Killing vectors
(KVs), along which the Lie derivative of the metric tensor is zero, admitted by the space—time.
Each independent KV gives rise to a conservation law for the spacetime. The classification by
Petrov'? was incomplete in that it did not provide a list of metrics for a given set of isometries,
though a complete list of isome&ries was available. In an extensive study of spherically symmetric
spacetimes, Takeno® used the curvature invariants of such space—times to classify them according
to their isometries and these invariants. Following a different approach Qadir et al.* obtained a
classification of such space-timeés by their isometries and provided a complete list of distinct
space—time metrics. It appears that Takeno missed some metrics (for example, nonstatic spacetime
like the Einstein universe but with the role of z and r inter changed, so that the isometry group is
SO(1,3)XR instead of SO(4)XR).

Though the classification of space—times in terms of their isometries is important, Katzin,
Davies, and Lavine™® argue that the symmetries of the matter field would be given by Ricci
collineations (RCs), along which the Lie derivative of the Ricci tensor is zero. A complete clas-
sification of spherically symmetric, static metrics in terms of RCs has been obtained”® and is being
extended to the nonstatic cases.’

Katzin et al. also argue that the symmetries of the Riemann tensor, called curvature collinea-
tions (CCs), would also provide insights into general relativity. Though they give a theorem on
connection between RCs and CCs, no explicit attempt to classifying spacetimes according to their
CCs has been given. Keeping this point in mind and the complexity of the system of CC equa-
tions, we consider some specific spacetimes to obtain their CCs using some special methods. It is
hoped that this would enable one to extend these methods to obtain a classifications of general
space—times according to their CCs. :

In the next section we give the set of coupled quadratic CC equations and their form for
spherically symmetric static space—times. In the third section we solve this set of equations for
various specific cases. A summary and conclusion is given in the last section.

li. CC EQUATIONS
A CC, §, satisfies the equation
ZR=0, : 1)

where R is the Riemann Christoffel curvature tensor. In a torsion free space, in a coordinate basis,
this equation reduces to the set of partial differential equations (PDEs)

R% g fE+ Rl y+ Ryl ARy 8 4= g™ 4=0. )
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In a given 4-dimensional space—time there are actually 256 coupled PDEs to be solved for four
unknown functions of four variables. However, for spherically symmetric static space—times in
which at the most only six independent components (3 R°i0i, where i=1,...,3, 2 R, ,,, where a=1,
2,and 1 R2323) of the Riemann tensor can survive, the system of CC equations reduces to 22 sets
of coupled CC equations consisting of 54 PDEs to be solved only. These coupled CC equations
(without requiring summation over repeated indices) are given by

R €' g R%00€° =0, (i,@)=(0,1),(2,2),(3,3), 3)
R'2€ 0+ R%a0€° =0, (i,0)=(02),(1,1),(3,3), @
Ri33€ 0+ R%00€°3=0, (i,0)=(0,3),(1,1),(2,2), )
R s +2R 1€ =0, i=023 and f=1 or 2, : (6)
R 2+ R%0081=0, (i,a)=(0,0),(2,1),(3,3), (7)
R'i€' 5+ R% 08 1=0, (i,0)=(0,0),(3,1),(2,2), (8)
Rn& 3+ R% 56 ,=0, (i,a)=(0,0),(1,1),(3.2), ©)
Riyns&+2R,58,=0, i=0,1,3 and f=1 or 2, (10)
Ry & +2R383=0, i=0,1,2 and f=1 or 2, ' (11
‘ Rigio &+ 2R ;08%0=0, i=123 and f=1 or 2, (12)
(R%0i=R%a) €0 2=0, (i,@)=(1,3),(2,3),(1,2),(3,2),(2.1),(3,1), (13)
(R%0i=R%a)€%0=0, (i,)=(1,3),(2,3),(1,2),(3.2),(2,1),(3.1), (14)
(R%0i=RPig) €% =0, (i,e,8)=(0,12),(3,12),(0,1,3),(2,1,3), (15)
(R%ai=RPig)EP ,=0, (i,,8)=(0,12),(3,1,2),(0,3,2),(1,3,2), (16)
(Raiai—RBiﬂi)gﬁ,a=09 (i,2,8)=(0,1,3),(2,1,3),(0,2,3),(1,2,3). (17)

lll. SOLUTION OF THE CC EQUATIONS

We solve the CC equations for Minkowski, De Sitter (anti-De Sitter), Einstein (anti-Einstein),
Schwarzschild, and Reissner-Nordstrom metrics along with three Bertotti—Robinson-like
metrics.'® However, since the problem of solving CC equations is trivial in Minkowski space—
time, we do not solve this case explicitly and only give results. The CC equations in the De Sitter
and anti-De Sitter metrics reduce to the Killing equations. We therefore only quote results without
giving details for these two cases. We present the complete procedure for solving the CC equa-
tions for the Einstein metric. As the same methods apply for the anti-Einstein, Schwarzschild,
Reissner—Nordstrom, and Bertotti—Robinson-like metrics, we again only quote the results for
them.

For the Einstein metric

2
ds*=dr*- ar —r2(d9?+sin® & d¢p?) (18)
1-r%/R? ’
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