
KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

Information and Computer Science Department

ICS 431 Operating Systems

Lab # 9

Semaphores

Objectives:
In this lab, we will use semaphore to solve various synchronization problems. Semaphores are
counters for resources shared between processes/threads. The basic operations on semaphores
are: increment the counter atomically, and wait until the counter is non-null and decrement it
atomically.

This lab has two primary objectives:

1. How to use semaphore to solve various synchronization problems
2. Implementing the POSIX.1b semaphore functions which include

 Initializing semaphores
 Decreasing the count of a semaphore.
 Increasing the count of a semaphore.
 Destroying semaphores.

Introduction
So far we have implemented mutexes and condition variables as the tools of synchronization and
managing critical sections of code. These are not the only tools that can be used for the job.
Semaphore is another tool to synchronize activities in a computer.

The concept of semaphores as used in computer synchronization is due to the Dutch computer
scientist Edsgar Dijkstra. They have the advantages of being very simple, but sufficient to
construct just about any other synchronization function you would care to have.

There are several versions to implement semaphores. The most common versions are:

1) POSIX semaphores
2) System V IPC semaphores

This lab will consider only POSIX semaphore, since POSIX semaphores has very clear API
functions to perform semaphore operations. However, it is more efficient to use System V
semaphore than POSIX semaphore when semaphores are shared between processes.

What is a Semaphore?
A semaphore is an integer variable with two atomic operations:

1) wait. Other names for wait are P, down and lock.
2) signal: Other names for signal are V, up, unlock and post.

The simplest way to understand semaphore is, of course, with code. Here is a little pseudo-code
that may help.

typedef struct SEMAPHORE {
 int value; /* the integer value for semaphore */
 other stuff;
} sem_t;

init(sem_t *S, int i)
{
 S->value = i;
}

void wait(sem_t *S)
{
 S->value--;
 if (S->value < 0)
 block on semaphore
}

void signal(sem_t *S)
{
 S->value++;
 if (S->value <= 0)
 unblock one process or thread that is blocked on semaphore
}

Basic Synchronization Patterns
This section presents a series of examples of basic synchronization problems. It shows ways of
using semaphore to solve them.

Example 1 (Signaling)
This example represents the simplest use for a semaphore (which is signaling), in which one
process/thread sends a signal to another process/thread to indicate that something has happened.
Suppose process one must execute statement a before process two executes statement b. To
solve this synchronization problem, we need a semaphore (say sync) with initial value 0, and
that both processes have shared access to it. The following pseudo-code describes the solutions:

a;
signal(&sync);

Process One
wait(&sync);
b;

Process Two

init(&sync, 0);

Example 2 (Rendezvous)
Puzzle: Generalize the signal pattern so that it works both ways. Process One has to wait for
Process Two and vice versa. In other words, given this code

we want to guarantee that a1 happens before b2 and b1 happens before a2. Please try to
think how to solve this puzzle before proceeding to next paragraph.

a1;
a2;

Process One
b1;
b2;

Process Two

Hint: You need to use two semaphores

u reject it quickly, because it has a serious problem (DEADLOCK). Can you

explain how?

Solution 1:

Solution 2:

it might have to switch between Process One and

Process Two more than necessary.

init(&sem1, 0);

init(&sem2, 0);

Deadlock:
While working on the previous problem, you might have tried something like this

if so, I hope yo

a1;
wait(&sem2);
signal(&sem1);
a2;

Process One
b1;
wait(&sem1);
signal(&sem2);
b2;

Process Two

a1;
signal(&sem1);
wait(&sem2);
a2;

Process One
b1;
signal(&sem2);
wait(&sem1);
b2;

Process Two

This solution is probably less efficient, since

a1;
wait(&sem2);
signal(&sem1);

Process One
b1;
signal(&sem2);
wait(&sem1);

Process Two

a2; b2;

Example 3 (Mutual exclusion)
This example illustrates how we can use a semaphore to guarantee that only one process/thread
accesses a shared memory (or global variables).

Suppose two threads try to access a global variable count. To enforce mutual exclusion, we
need a semaphore (say mutex) with initial value 1. The following pseudo-code describes the
solution:

wait(&mutex);
/* CS */
count = count + 1;
signal(&mutex);

Thread A Thread B

init(&mutex, 1);

wait(&mutex);
/* CS */
count = count + 1;
signal(&mutex);

Quiz
Consider the following pseudo code:

P ss 1: execuroce tes
 for (;;) {
 wait(&S);
 a;

ignal(&Q); s
 } }

P ss 2: execuroce tes
 for (;;) {
 wait(&Q);
 b;

ignal(&S); s

1) What happens if the semaphores S and Q are both initially 1?
2) What happens if one semaphore is initially 1 and the other 0?
3) What happens if both semaphores are initially 0?

POSIX Semaphore
Semaphores are part of the POSIX.1b standard adopted in 1993. The POSIX.1b standard
defines two types of semaphores: named and unnamed. A POSIX.1b unnamed semaphore
can be used by a single process or by children of the process that created them. A POSIX.1b
named semaphore can be used by any processes. In this section, we will consider only how to
initialize unnamed semaphore.

The following header summarizes how we can use POSIX.1b unnamed semaphore:

Header file
name

#include <semaphore.h>

Semaphore
data type

sem_t

Initialization int sem_init(sem_t *sem, int pshared, unsigned value);

Semaphore
Operations

int sem_destroy(sem_t *sem);

int sem_wait(sem_t *sem);

int sem_post(sem_t *sem);

int sem_trywait(sem_t *sem);

Compilation cc filename.c –o filename –lrt

All of the POSIX.1b semaphore functions return -1 to indicate an error.

sem_init function initializes the semaphore to have the value value. The value parameter
cannot be negative. If the value of pshared is not 0, the semaphore can be used between
processes (i.e. the process that initializes it and by children of that process). Otherwise it can be
used only by threads within the process that initializes it.

sem_wait is a standard semaphore wait operation. If the semaphore value is 0, the sem_wait
blocks unit it can successfully decrement the semaphore value.

sem_trywait is similar to sem_wait except that instead of blocking when attempting to
decrement a zero-valued semaphore, it returns -1.

sem_post is a standard semaphore signal operation. The POSIX.1b standard requires that
sem_post be reentrant with respect to signals, that is, it is asynchronous-signal safe and may
be invoked from a signal-handler.

Example (Signaling):

Lab1.c

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <semaphore.h>

/* Global variables */
int x = 0;
sem_t sync;

/* Thread function */
void *my_func(void *arg)
{
 /* wait for signal from main thread */
 sem_wait(&sync);
 printf("X = %d\n", x);
}

void main ()
{
 pthread_t thread;

 /* semaphore sync should be initialized by 0 */
 if (sem_init(&sync, 0, 0) == -1) {
 perror("Could not initialize mylock semaphore");
 exit(2);
 }

 if (pthread_create(&thread, NULL, my_func, NULL) < 0) {
 perror("Error: thread cannot be created");
 exit(1);
 }

 /* perform some operation(s) */
 x = 55;
 /* send signal to the created thread */
 sem_post(&sync);

 /* wait for created thread to terminate */
 pthread_join(thread, NULL);

 /* destroy semaphore sync */
 sem_destroy(&sync);

 exit(0);
}

Example (Critical Section):

Lab2.c
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <semaphore.h>

/* Global variables */
int x = 0;
sem_t m;

/* Thread function */
void *thread(void *arg)
{
 /* critical section */
 sem_wait(&m); /* lock the mutex m */
 x = x + 1;
 sem_post(&m); /* unlock the mutex m */
}

void main ()
{
 pthread_t tid[10];
 int i;

 /* semaphore m should be initialized by 1 */
 if (sem_init(&m, 0, 1) == -1) {
 perror("Could not initialize mylock semaphore");
 exit(2);
 }
 /* create TEN threads */
 for (i=0; i<10; i++)
 {
 if (pthread_create(&tid[i], NULL, thread, NULL) < 0) {
 perror("Error: thread cannot be created");
 exit(1);
 }
 }
 /* wait for all created thread to terminate */
 for (i=0; i<10; i++) pthread_join(tid[i], NULL);
 printf("Final value of x is %d\n", x);
 exit(0);
}

Exercises

Note:
Lab problems will be given during the lab based on material covered in this lab manual.

	Objectives:
	Introduction
	
	What is a Semaphore?
	Basic Synchronization Patterns
	Example 1 (Signaling)
	Example 2 (Rendezvous)

	Deadlock:
	Solution 1:
	
	Solution 2:
	Example 3 (Mutual exclusion)
	Quiz

	 POSIX Semaphore
	 Example (Signaling):
	Lab1.c
	Example (Critical Section):
	Lab2.c
	Note:

