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Threads Synchronization ( Mutex & Condition Variables ) 
  

Objective:     
 
When multiple threads are running they will invariably need to communicate with each other in 
order synchronize their execution. One main benefit of using threads is the ease of using 
synchronization facilities. 
  
Threads need to synchronize their activities to effectively interact. This includes: 
  

Implicit communication through the modification of shared data  
Explicit communication by informing each other of events that have occurred. 

  
This lab describes the synchronization types available with threads and discusses when and how 
to use synchronization.  There are a few possible methods of synchronizing threads and here we 
will discuss: 
  

 Mutual Exclusion (Mutex) Locks   
 Condition Variables  

  

Why we need Synchronization and how to achieve it?  
Suppose the multiple threads share the common address space (thru a common variable), and 
then there is a problem.  
 
THREAD A                                                      THREAD B 
x = common_variable ;          y = common_variable ; 
x++ ;                          y-- ; 
common_variable = x ;          common_variable = y ; 
 
If threads execute this code independently it will lead to garbage. The access to the 
common_variable by both of them simultaneously is prevented by having a lock, performing the 
thing and then releasing the lock.  
  

Mutexes and Race Conditions:  
 
Mutual exclusion locks (mutexes) can prevent data inconsistencies due to race conditions.  
A race condition often occurs when two or more threads need to perform operations on the same 
memory area, but the results of computations depends on the order in which these operations are 
performed. 
 
Consider, for example, a single counter, X, that is incremented by two threads, A and B. If X is 
originally 1, then by the time threads A and B increment the counter, X should be 3. Both threads 
are independent entities and have no synchronization between them.  
  



Although the C statement X++ looks simple enough to be atomic, the generated assembly code 
may not be, as shown in the following pseudo-assembler code: 
 
        move X, REG 
        inc REG 
        move REG, X 
 
If both threads are executed concurrently on two CPUs, or if the scheduling makes the threads 
alternatively execute on each instruction, the following steps may occur: 
 
 
 

1. Thread A executes the first instruction and puts X, which is 1, into the thread A 
register. Then thread B executes and puts X, which is 1, into the thread B register. The 
following illustrates the resulting registers and the contents of memory X.   

  
                        Thread A Register        Thread B Register            Memory X 
                                1                                        1                                        1 
  

2. Next, thread A executes the second instruction and increments the content of its 
register to 2. Then thread B increments its register to 2. Nothing is moved to memory X, 
so memory X stays the same. The following illustrates the resulting registers and the 
contents of memory X.   

  
                     Thread A Register           Thread B Register            Memory X 
                                2                                        2                                        1 

3. Last, thread A moves the content of its register, which is now 2, into memory X. 
Then thread B moves the content of its register, which is also 2, into memory X, 
overwriting thread A's value. The following illustrates the resulting registers and the 
contents of memory X.   

  
                   Thread A Register        Thread B Register                Memory X 
                             2                                        2                                        2 
 
Note that in most cases thread A and thread B will execute the three instructions one after the 
other, and the result would be 3, as expected. Race conditions are usually difficult to discover, 
because they occur intermittently. To avoid this race condition, each thread should lock the data 
before accessing the counter and updating memory X. For example, if thread A takes a lock and 
updates the counter, it leaves memory X with a value of 2. Once thread A releases the lock, 
thread B takes the lock and updates the counter, taking 2 as its initial value for X and 
incrementing it to 3, the expected result. 
 

Waiting for Threads:  
 
Condition variables allow threads to block until some event or condition has occurred.  
  
Boolean predicates indicate whether the program has satisfied a condition variable.  
The programmer defines the complexity of a condition variable predicate. A condition can be 
signaled by any thread to either one or all-waiting threads.  
 

 



 Mutex Variables: 
 
Overview  
 

 Mutex is a shortened form of the words "mutual exclusion".  
 Mutex variables are one of the primary means of implementing thread synchronization.  
 A mutex variable acts like a "lock" protecting access to a shared data resource. The basic  

concept of a mutex as used in Pthreads is that only one thread can lock (or own) a mutex  
variable at any given time. Thus, even if several threads try to lock a mutex only one  
thread will be successful. No other thread can own that mutex until the owning thread  
unlocks that mutex. Threads must "take turns" accessing protected data. 
  

 Very often the action performed by a thread owning a mutex is the updating of global  
variables.  This is a safe way to ensure   that when several threads update the same  
variable, the final value is the same as what it would be if only one thread performed the  
update. The variables being updated belong to a "critical section".   

   A typical sequence in the use of a mutex is as follows:  
 
        Create and initialize a mutex variable  
        Several threads attempt to lock the mutex  
        Only one succeeds and that thread owns the mutex  
        The owner thread performs some set of actions  
        The owner unlocks the mutex  
        Another thread acquires the mutex and repeats the process  
        Finally the mutex is destroyed  
  

  When several threads compete for a mutex, the losers block at that call an  
unblocking call is available with "trylock" instead of the "lock" call.  

    

    

 

Creating / Destroying Mutexes : 
 
pthread_mutex_init ( pthread_mutex_t mutex,  pthread_mutexattr_t   attr)  
 
pthread_mutex_destroy ( pthread_mutex_t   mutex )  
 
pthread_mutexattr_init ( pthread_mutexattr_t   attr )  
 
pthread_mutexattr_destroy ( pthread_mutexattr_t   attr )  
  
pthread_mutex_init( ) creates and initializes a new mutex mutex object, and sets its attributes 
according to the mutex attributes object, attr. The mutex is initially unlocked.  
 
Mutex variables must be of type pthread_mutex_t.  
 
The attr object is used to establish properties for the mutex object, and must be of type 
pthread_mutexattr_t if used (may be specified as NULL to accept defaults).  
 
If implemented, the pthread_mutexattr_init( ) and pthread_mutexattr_destroy( ) routines are used 
to create and destroy mutex attribute objects respectively.  



 
pthread_mutex_destroy( ) should be used to free a mutex object which is no longer needed. 
 

Locking / Unlocking Mutexes : 
  
pthread_mutex_lock ( pthread_mutex_t   mutex )  
 
pthread_mutex_trylock ( pthread_mutex_t   mutex )  
 
pthread_mutex_unlock ( pthread_mutex_t   mutex )  
 
The pthread_mutex_lock( ) routine is used by a thread to acquire a lock on the specified mutex 
variable. If the mutex is already locked by another thread, the call will block the calling thread 
until the mutex is unlocked.  
 
pthread_mutex_trylock( ) will attempt to lock a mutex. However, if the mutex is already  locked, 
the routine will return immediately. This routine may be useful in preventing deadlock 
conditions, as in a priority-inversion situation.  
 
Mutex contention: when more than one thread is waiting for a locked mutex, which thread will 
be granted the lock first after it is released? Unless thread priority scheduling (not covered) is 
used, the assignment will be left to the native system scheduler and may appear to be more or 
less random.  
 
pthread_mutex_unlock( ) will unlock a mutex if called by the owning thread. Calling this routine 
is required after a thread has completed its use of protected data if other threads are to acquire 
the mutex for their work with the protected data.  
  
An error will be returned if:  
  
            If the mutex was already unlocked  
            If the mutex is owned by another thread  
 

Example: (Using Mutexes)  
  
This simple example code demonstrates the use of several Pthread mutex routines. The serial 
version may be reviewed first to compare how the threaded version performs the same task.  
  
Lab1.c: 
  
/* Code for hellothread.c  */ 
 
#include <pthread.h>  
#include <stdio.h> 
 
/* The function run when the thread is created */ 
void* compute_thread (void*); 
main( ) 
{ 

/* This is data describing the thread created */ 
pthread_t    tid; /* thread ID structure */ 



pthread_attr_t    attr; /* thread attributes */ 
char hello[ ] = {"Hello, "}; /* some typical data */ 
char thread[ ] = {"thread"}; 
 
/* Initialize the thread attribute structure */ 
pthread_attr_init(&attr); 
/* Create another thread. ID is returned in &tid */ 
/* The last parameter passed to the thread function */ 
pthread_create(&tid, &attr, compute_thread, thread); 
 
/* Continue on with the base thread */ 
printf(hello); 
sleep(1); 
printf("\n"); 
exit(0); 

} 
 
/* The thread function to be run */ 
void* compute_thread(void* dummy) 
{ 

printf(dummy); 
return; 

} 
  
Lab2.c: 
  
/* Code for mutex-hellothread.c */ 
 
#include <pthread.h> 
#include <stdio.h> 
 
/* Function run when the thread is created */ 
void* compute_thread (void*); 
/* This is the lock for thread synchronization */ 
pthread_mutex_t    my_sync; 
 
main( )  
{ 

/* This is data describing the thread created */ 
pthread_t   tid; 
pthread_attr_t   attr; 
char hello[ ] = {"Hello, "}; 
char thread[ ] = {"thread"}; 
 
/* Initialize the thread attributes */ 
pthread_attr_init (&attr); 
 
/* Initialize the mutex (default attributes) */ 
pthread_mutex_init (&my_sync,NULL); 
 
/* Create another thread. ID is returned in &tid */ 
/* The last parameter is passed to the thread function */ 
/* Note reversed the order of "hello" and "thread" */ 
 
pthread_create(&tid, &attr, compute_thread, hello); 
 
sleep(1); /* Let the thread get started */ 



 
/* Lock the mutex when it's our turn to do work */ 
pthread_mutex_lock(&my_sync); 
printf(thread); 
printf("\n"); 
pthread_mutex_unlock(&my_sync); 
exit(0);  

} 
 
/* The thread function to be run */ 
void* compute_thread(void* dummy)  
{  

/* Lock the mutex when its our turn */ 
pthread_mutex_lock(&my_sync); 
printf(dummy); 
pthread_mutex_unlock(&my_sync); 
sleep(1); 
return; 

} 
 

Condition Variables: 
  
Overview  

 Condition variables provide yet another way for threads to synchronize. While mutexes 
 implement synchronization by controlling thread access to data, condition  
variables allow threads to synchronize based upon the actual value of data. 

  
  

  Without condition variables, the programmer would need to have threads continually  
      polling (possibly in a critical section), to check if the condition is met. This can  
      be very   resource consuming since the thread would be continuously busy in  
      this  activity. A  condition variable is a way to achieve the same goal without   
      polling.  
  

 A condition variable is always used in conjunction with a mutex lock.  
  

The typical sequence for using condition variables:  
        Create and initialize a condition variable  
        Create and initialize an associated mutex  

  
Define a predicate variable (variable whose condition must be checked) 

  
A thread does work up to the point where it needs a certain condition to occur  
(such  as the predicate must reach a specified value). It then "waits" on a  
condition variable by:  
  
                    Locking the mutex  
                    While predicate is unchanged wait on condition variable  
                    Unlocking the mutex  
  
Another thread does work which results in the waited for condition to occur (such as changing 
the value of the predicate). Other waiting threads are "signalled" when this occurs by:  
                    Locking the mutex  



                    Changing the predicate  
                    Signalling on the condition variable  
                    Unlocking the mutex 
  

 

 Creating / Destroying Condition Variables: 
  
 pthread_cond_init ( pthread_cond_t  condition, pthread_condattr_t  attr)  
 
pthread_cond_destroy ( pthread_cond_t   condition)  
 
pthread_condattr_init ( pthread_condattr_t  attr )  
 
pthread_condattr_destroy ( pthread_condattr_t   attr )  
 
pthread_cond_init( ) creates and initializes a new condition variable object. The ID of the created 
condition variable is returned to the calling thread through the condition parameter.  
 
Condition variables must be of type pthread_cond_t . 
 
The optional attr object is used to set condition variable attributes. There is only one attribute 
defined for condition variables: process-shared, which allows the condition variable to be seen 
by threads in other processes. The attribute object, if used, must be of type pthread_condattr_t 
(may be specified as NULL to accept defaults).  
 
Currently, the attributes type attr is ignored in the AIX implementation of pthreads; use NULL.  
 
If implemented, the pthread_condattr_init( ) and pthread_condattr_destroy( ) routines are used to 
create and destroy condition variable attribute objects.  
 
pthread_cond_destroy( ) should be used to free a condition variable that is no longer needed.  
 

 
Waiting / Destroying Condition Variables : 
 
 pthread_cond_wait ( pthread_cond_t    condition,  pthread_mutex_t   mutex )  
 
pthread_cond_signal ( pthread_cond_t    condition )  
 
pthread_cond_broadcast ( pthread_cond_t   condition )  
 
pthread_cond_wait( ) blocks the calling thread until the specified condition is signalled. This 
routine should be called while mutex is locked, and it will automatically release the mutex while 
it waits.  
 
The pthread_cond_signal( ) routine is used to signal (or wake up) another thread which is 
waiting on the condition variable. It should be called after mutex is locked.  
 
The pthread_cond_broadcast( ) routine should be used instead of pthread_cond_signal( ) if more 
than one thread is in a blocking wait state.  



 
It is a logical error to call pthread_cond_signal( ) before calling pthread_cond_wait( ).  
 

Example: Using Condition Variables: 
  
Lab3.c: 
  
/* Code for cond-hellothread.c */ 
 
#include <pthread.h> 
#include <stdio.h> 
 
/* This is the initial thread routine */ 
void* compute_thread (void*); 
 
/* This is the lock for thread synchronization */ 
pthread_mutex_t    my_sync; 
 
/* This is the condition variable */ 
pthread_cond_t    rx; 
  
#define  TRUE   1 
#define  FALSE  0 
/* this is the Boolean predicate */ 
int   thread_done = FALSE; 
 
main( )  
{ 

/* This is data describing the thread created */ 
pthread_t   tid; 
pthread_attr_t   attr; 
char hello[ ] = {"Hello, "}; 
char thread[ ] = {"thread"}; 
/* Initialize the thread attributes */ 
pthread_attr_init (&attr); 
/* Initialize the mutex (default attributes) */ 
pthread_mutex_init (&my_sync, NULL); 
/* Initialize the condition variable (default attr) */ 
pthread_cond_init (&rx, NULL); 
/* Create another thread. ID is returned in &tid */ 
/* The last parameter is passed to the thread function */ 
pthread_create(&tid, &attr, compute_thread, hello); 
/* wait until the thread does its work */ 
pthread_mutex_lock(&my_sync); 
while (!thread_done) 

pthread_cond_wait(&rx, &my_sync); 
/* When we get here, the thread has been executed */ 
printf(thread); 
printf("\n"); 
pthread_mutex_unlock(&my_sync); 
exit(0);  

} 
  
  



/* The thread to be run by create_thread */ 
void* compute_thread(void* dummy) 
{ 

/* Lock the mutex - the cond_wait has unlocked it */ 
pthread_mutex_lock (&my_sync); 
printf(dummy); 
/* set the predicate and signal the other thread */ 
thread_done = TRUE; 
pthread_cond_signal (&rx); 
pthread_mutex_unlock (&my_sync); 
return; 

} 
  

 
Lab4.c: 
  
#include<stdio.h> 
#include<pthread.h> 
  
void *increment(void*); 
void *watch(void*); 
pthread_mutex_t  my_mutex; 
pthread_cond_t  w_cond; 
int count=0; 
  
main() 
{ 

pthread_t tid1, tid2, tid3; 
pthread_mutex_init (&my_mutex, NULL); 
pthread_cond_init(&w_cond, NULL); 

  
pthread_create(&tid1,NULL,watch, NULL); 
pthread_create(&tid2,NULL,increment, NULL); 
pthread_create(&tid3,NULL,increment, NULL); 

  
pthread_join(tid1,NULL); 
pthread_mutex_destroy(&my_mutex); 
pthread_cond_destroy(&w_cond); 
printf("Parent is DONE ....\n"); 
exit(0); 

}  
  
  
void* increment(void *dummy) 
{ 

while(count<10) 
{ 

pthread_mutex_lock(&my_mutex); 
printf("Cound =%d by thread %d\n",++count,pthread_self()); 
if(count==10) 
pthread_cond_signal(&w_cond); 
pthread_mutex_unlock(&my_mutex); 
sleep(1); 

} 
return; 

} 
  



  
void* watch(void *dummy) 
{ 

pthread_mutex_lock(&my_mutex); 
pthread_cond_wait(&w_cond,&my_mutex); 
pthread_mutex_unlock(&my_mutex); 
printf("Watch is DONE...\n"); 
return; 

}                      

 
Exercises 

  
Note:  
 
Lab Problems will be given during the lab based on material covered in this lab manual. 
 
  
  
  
  

http://www.ccse.kfupm.edu.sa/WINDOWS/Desktop/ICS431(032)/OS(Term-032)/web/public_html/021lab7notes.ppt

	                   Thread A Register        Thread B Register                Memory X 
	  


