
KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
Information and Computer Science Department

ICS 431 Operating Systems
Lab # 6

Inter-Process Communication (IPC) using Signals

Objective:

Now that we know how to create processes, let us turn our attention to make the processes
communicate among themselves. There are many mechanisms through which the processes
communicate and in this lab we will discuss one such mechanism: Signals. Signals inform
processes of the occurrence of asynchronous events. In this lab we will discuss how user-
defined handlers for particular signals can replace the default signals handlers and also how the
processes can ignore the signals.

By learning about signals, you can "protect" your programs from Control-C, arrange for an alarm
clock signal to terminate your program if it takes too long to perform a task, and learn how
UNIX uses signals during everyday operations.

Introduction

Programs must sometimes deal with unexpected or unpredictable events, such as:

 a floating point error
 a power failure
 an alarm clock "ring"
 the death of a child process
 a termination request from a user (i.e., a Control-C)
 a suspend request from a user (i.e., a Control-Z)

These kind of events are sometimes called interrupts, as they must interrupt the regular
flow of a program in order to be processed. When UNIX recognizes that such an event
has occurred, it sends the corresponding process a signal.

The kernel isn't the only one that can send a signal; any process can send any other
process a signal, as long as it has permissions.

A programmer may arrange for a particular signal to be ignored or to be processed by a
special piece of code called a signal handler. In the latter case, the process that receives
the signal suspends its current flow of control, executes the signal handler, and then
resumes the original flow of control when the signal handler finishes.

Signals inform processes of the occurrence of asynchronous events. Every type of signal
has a handler which is a function. All signals have default handlers which may be
replaced with user-defined handlers. The default signal handlers for each process
usually terminate the process or ignore the signal, but this is not always the case.

Signals may be sent to a process from another process, from the kernel, or from devices
such as terminals. The ^C, ^Z, ^S and ^Q terminal commands all generate signals which
are sent to the foreground process when pressed.
The kernel handles the delivery of signals to a process. Signals are checked for
whenever a process is being rescheduled, put to sleep, or re-executing in user mode
after a system call.

Types Of Signals:

There are 31 different signals defined in "/usr/include/signal.h". A programmer may
choose for a particular signal to trigger a user-supplied signal handler, trigger the
default kernel-supplied handler, or be ignored. The default handler usually performs
one of the following actions:

 terminates the process and generates a core file (dump)
 terminates the process without generating a core image file (quit)
 ignores and discards the signal (ignore)
 suspends the process (suspend)
 resumes the process

Some signals are widely used, while others are extremely obscure and used by only one
or two programs. The following list gives a brief explanation of each signal. The default
action upon receipt of a signal is for the process to terminate.

SIGHUP
Hangup. Sent when a terminal is hung up to every process for which it is the control terminal.
Also sent to each process in a process group when the group leader terminates for any reason.
This simulates hanging up on terminals that can't be physically hung up, such as a personal
computer.

SIGINT
Interrupt. Sent to every process associated with a control terminal when the interrupt key
(Control-C) is hit. This action of the interrupt key may be suppressed or the interrupt key may be
changed using the stty command. Note that suppressing the interrupt key is completely
different from ignoring the signal, although the effect (or lack of it) on the process is the same.

SIGTSTP
Interrupt. Sent to every process associated with a control terminal when the interrupt key
(Control-Z) is hit. This action of the interrupt key may be suppressed or the interrupt key may be
changed using the stty command. Note that suppressing the interrupt key is completely
different from ignoring the signal, although the effect (or lack of it) on the process is the same.

SIGQUIT
Quit. Similar to SIGINT, but sent when the quit key (normally Control-\) is hit. Commonly sent
in order to get a core dump.

SIGILL
Illegal instruction. Sent when the hardware detects an illegal instruction. Sometimes a process
using floating point aborts with this signal when it is accidentally linked without the -f option on

the cc command. Since C programs are in general unable to modify their instructions, this signal
rarely indicates a genuine program bug.

SIGTRAP
Trace trap. Sent after every instruction when a process is run with tracing turned on with ptrace.

SIGIOT
I/O trap instruction. Sent when a hardware fault occurs, the exact nature of which is up to the
implementer and is machine-dependent. In practice, this signal is preempted by the standard
subroutine abort, which a process calls to commit suicide in a way that will produce a core
dump.

SIGEMT
Emulator trap instruction. Sent when an implementation-dependent hardware fault occurs.
Extremely rare.

SIGFPE
Floating-point exception. Sent when the hardware detects a floating-point error, such as a
floating point number with an illegal format. Almost always indicates a program bug.

SIGKILL
Kill. The one and only sure way to kill a process, since this signal is always fatal (can't be
ignored or caught). To be used only in emergencies; SIGTERM is preferred.

SIGBUS
Bus error. Sent when an implementation-dependent hardware fault occurs. Usually means that
the process referenced at an odd address data that should have been word-aligned.

SIGSEGV
Segmentation violation. Sent when an implementation-dependent hardware fault occurs. Usually
means that the process referenced data outside its address space. Trying to use NULL pointers
will usually give you a SIGSEGV.

SIGPIPE
Write on a pipe not opened for reading. Sent to a process when it writes on a pipe that has no
reader. Usually this means that the reader was another process that terminated abnormally. This
signal acts to terminate all processes in a pipeline: When a process terminates abnormally, all
processes to its right receive an end-of-file and all processes to its left receive this signal. Note
that the standard shell (sh) makes each process in a pipeline the parent of the process to its left.
Hence, the writer is not the reader's parent (it's the other way around), and would otherwise not
be notified of the reader's death.

SIGALRM
Alarm clock. Sent when a process's alarm clock goes off. The alarm clock is set with the alarm
system call.

SIGTERM
Software termination. The standard termination signal. It's the default signal sent by the kill
command, and is also used during system shutdown to terminate all active processes. A program
should be coded to either let this signal default or else to clean up quickly (e.g., remove
temporary files) and call exit.

SIGUSR1
User defined signal 1. This signal may be used by application programs for interprocess
communication. This is not recommended however, and consequently this signal is rarely used.

SIGUSR2
User defined signal 2. Similar to SIGUSR1.

SIGPWR
Power-fail restart. Exact meaning is implementation-dependent. One possibility is for it to be
sent when power is about to fail (voltage has passed, say, 200 volts and is falling). The process
has a very brief time to execute. It should normally clean up and exit (as with SIGTERM). If the
process wishes to survive the failure (which might only be a momentary voltage drop), it can
clean up and then sleep for a few seconds. If it wakes up it can assume that the disaster was only
a dream and resume processing. If it doesn't wake up, no further action is necessary.

Programs that need to clean up before terminating should arrange to catch signals
SIGHUP, SIGINT, and SIGTERM. Until the program is solid, SIGQUIT should be left
alone so there will be a way to terminate the program (with a core dump) from the
keyboard. Arrangements for the other signals are made much less often; usually they
are left to terminate the process. But a really polished program will want to catch
everything it can, to clean up, possibly log the error, and print a nice error message.
Psychologically, a message like ``Internal error 53: contact customer support'' is more
acceptable than the message ``Bus error -- core dumped'' from the shell. For some
signals, the default action of termination is accompanied by a core dump. These are
SIGQUIT, SIGILL, SIGTRAP, SIGIOT, SIGEMT, SIGFPE, SIGBUS, SIGSEGV, and
SIGSYS.

Requesting An Alarm Signal: alarm ()

One of the simplest ways to see a signal in action is to arrange for a process to receive
an alarm clock signal, SIGALRM, by using alarm (). The default handler for this signal
displays the message "Alarm Clock" and terminates the process. Here's how alarm ()
works:

int alarm (int count)
alarm () instructs the kernel to send the SIGALRM signal to the calling process after
count seconds. If an alarm had already been scheduled, it is overwritten. If count is 0,
any pending alarm requests are cancelled. alarm () returns the number of seconds that
remain until the alarm signal is sent.
Here's a small program that uses alarm () together with its output.

#include <stdio.h>
main ()
{
 alarm (5) ; /* schedule an alarm signal in 5 seconds */
 printf ("Looping forever ...\n") ;
 while (1) ;

 printf ("This line should never be executed.\n") ;
}

The output is:
Looping forever...
Alarm clock

signal System Call:

#include <signal.h>

void (*signal(sig, func))() /* Catch signal with func */
void (*func)(); /* The function to catch the sig */
 /* Returns the previous handler */
 /* or -1 on error */

The declarations here baffle practically everyone at first sight. All they mean is that the
second argument to signal is a pointer to a function, and that a pointer to a function is
returned.

The first argument, sig, is a signal number. The second argument, func, can be one of
three things:

SIG_DFL. This sets the default action for the signal.
SIG_IGN. This sets the signal to be ignored; the process becomes immune to it. The
signal SIGKILL can't be ignored. Generally, only SIGHUP, SIGINT, and SIGQUIT
should ever be permanently ignored. The receipt of other signals should at least be
logged, since they indicate that something exceptional has occurred.
A pointer to a function. This arranges to catch the signal; every signal but SIGKILL
may be caught. The function is called when the signal arrives.

The signals SIGKILL and SIGSTP may not be reprogrammed.

A child process inherits a parent’s action for a signal. Actions SIG_DFL and SIG_IGN
are preserved across an exec, but caught signals are reset to SIG_DFL. This is essential
because the catching function will be overwritten by new code. Of course, the new
program can set its own signal handlers. Arriving signals are not queued. They are
either ignored, they terminate the process, or they are caught. This is the main reason
why signals are inappropriate for interprocess communication -- a message in the form
of a signal might be lost if it arrives when that type of signal is temporarily ignored.
Another problem is that arriving signals are rather rude. They interrupt whatever is
currently going on, which is complicated to deal with properly, as we'll see shortly.
signal returns the previous action for the signal. This is used if it's necessary to restore
it to the way it was.
Defaulting and ignoring signals is easy; the hard part is catching them. To catch a signal
you supply a pointer to a function as the second argument to signal. When the signal
arrives two things happen, in this order:

 The signal is reset to its default action, which is usually termination. Exceptions are

SIGILL and SIGTRAP, which are not reset because they are signaled too often.
 The designated function is called with a single integer argument equal to the

number of the signal that it caught. When and if the function returns, processing
resumes from the point where it was interrupted.

 If the signal arrives while the process is waiting for any event at all, and if the
signal-catching function returns, the interrupted system call returns with an error
return of EINTR -- it is not restarted automatically. You must distinguish this return
from a legitimate error. Nothing is wrong -- a signal just happened to arrive while
the system call was in progress.

It's extremely difficult to take interrupted system calls into account when programming.
You either has to program to restart every system call that can wait or else temporarily
ignore signals when executing such a system call. Both approaches are awkward, and
the second runs the additional risk of losing a signal during the interval when it's
ignored. We therefore offer this rule: Never return from a signal-catching function.
Either terminate processing entirely or terminate the current operation by executing a
global jump (not described here).

If you make it a habit to always print out the value of errno when a system call fails (by
calling perror for example) you won't be mystified for long since the EINTR error code
will clarify what's going on.

Since the first thing that happens when a caught signal arrives is to change its action to
the default (termination), another signal of the same type arriving immediately after the
first can terminate the process before it has a chance to even begin the catching function.
This is rare but possible, especially on a busy system.

This loophole can be tightened, but not eliminated, by setting the signal to be ignored
immediately upon entering the catching function, before doing anything else. Since
we're not using signals as messages, we don't care if an arriving signal is thereby
missed. We're concerned only with processing the first one correctly and with not
terminating prematurely.

pause System Call:

int pause ()

pause () suspends the calling process and returns when the calling process receives a
signal. It is most often used to wait efficiently for an alarm signal. pause () doesn't
return anything useful.

The following program catches and processes the SIGALRM signal efficiently by having
user written signal handler, alarmHandler (), by using signal ().

#include <stdio.h>

#include <signal.h>

int alarmFlag = 0 ;
void alarmHandler () ;

main ()
{
 signal(SIGALRM, alarmHandler) ; /*Install signal Handler*/
 alarm (5) ;
 printf ("Looping ...\n") ;
 while (!alarmFlag)
 {
 pause () ; /* wait for a signal */
 }
 printf ("Loop ends due to alarm signal\n") ;
}

void alarmHandler ()
{
 printf ("An ALARM clock signal was received\n") ;
 alarmFlag = 1 ;
}
The output will be as:
Looping ...
An ALARM clock signal was received
Loop ends due to alarm signal

Protecting Critical Code And Chaining Interrupt Handlers:

The same techniques described previously may be used to protect critical pieces of code
against Control-C attacks and other signals. In these cases, it's common to save the
previous value of the handler so that it can be restored after the critical code has
executed. Here's the source code of the program that protects itself against SIGINT
signals:

#include <stdio.h>
#include <signal.h>

main ()
{
 int (*oldHandler) () ; /* holds old handler value */
 printf ("I can be Control-C'ed \n") ;
 sleep (5) ;
 oldHandler = signal(SIGINT, SIG_IGN) ; /* Ignore Ctrl-C */
 printf ("I am protected from Control-C now \n") ;
 sleep (5) ;
 signal (SIGINT, oldHandler) ; /* Restore old handler */
 printf ("I can be Control-C'ed again \n") ;
 sleep (5) ;
 printf ("Bye!!!!!!!\n") ;

}
Now run the program by pressing Control-C twice while the program sleeps.

kill System Call:

#include <signal.h>

int kill(pid, sig) /* Send the signal to the named process */
int pid;
int sig;
In the previous sections we mainly discussed signals generated by the kernel as a result
of some exceptional event. It is also possible for one process to send a signal of any type
to another process. pid is the process-ID of the process to receive the signal; sig is the
signal number. The effective user-IDs of the sending and receiving processes must be
the same, or else the effective user-ID of the sending process must be the super user.

If pid is equal to zero, the signal is sent to every process in the same process group as
the sender. This feature is frequently used with the kill command (kill 0) to kill all
background processes without referring to their process-IDs. Processes in other process
groups (such as a DBMS you happened to have started) won't receive the signal.

If pid is equal to -1, the signal is sent to all processes whose real user-ID is equal to the
effective user-ID of the sender. This is a handy way to kill all processes you own,
regardless of process group.

In practice, kill is used 99% of the time for one of these purposes:

To terminate one or more processes, usually with SIGTERM, but sometimes with
SIGQUIT so that a core dump will be obtained.
To test the error-handling code of a new program by simulating signals such as
SIGFPE (floating-point exception).

kill is almost never used simply to inform one or more processes of something (i.e., for
interprocess communication), for the reasons outlined in the previous sections.
Note also that the kill system call is most often executed via the kill command. It isn't
usually built into application programs.

Exercises

Note:

Lab Problems will be given during the lab based on material covered in this lab manual

	SIGHUP
	SIGINT
	SIGTSTP
	SIGQUIT
	SIGILL
	SIGTRAP
	SIGIOT
	SIGEMT
	SIGFPE
	SIGKILL
	SIGBUS
	SIGSEGV
	SIGPIPE
	SIGALRM
	SIGTERM
	SIGUSR1
	SIGUSR2
	SIGPWR
	Exercises

